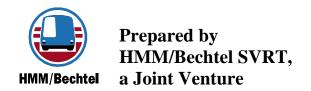
Silicon Valley Rapid Transit Project Tunnel Segment Geotechnical Data Report Volume V of VI


(P0503-D300-RPT-GEO-002, Rev.0)

Silicon Valley Rapid Transit Project

Tunnel Segment Geotechnical Data Report Volume V of VI

> P0503-D300-RPT-GEO-002 Rev. 0

VOLUME V

- APPENDIX 12: CLASSIFICATION TESTS
- APPENDIX 13: CONSTANT RATE OF STRAIN (CRS) CONSOLIDATION TEST RESULTS
- APPENDIX 14: STATIC DIRECT SIMPLE SHEAR TEST RESULTS
- APPENDIX 15: CONSOLIDATED DRAINED TRIAXIAL COMPRESSION TEST RESULTS
- APPENDIX 16: K₀-CONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS
- APPENDIX 17: K₀-CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST RESULTS (BISHOP METHOD)

Rev. 0 9/23/2005

Geotechnical Data Report

This page intentionally left blank.

9/23/2005 Rev. 0

APPENDIX 12 CLASSIFICATION TESTS

Rev. 0 9/23/2005

Geotechnical Data Report

Parikh Consultants performed laboratory tests on basic index properties, including moisture content/dry density tests, Atterberg limits tests, gradation analyses, hydrometer tests, unconfined compression tests and laboratory minivane tests. Appendix 12 presents the results of these tests.

9/23/2005 Rev. 0

TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, SANTA CLARA COUNTY, CALIFORNIA

APPENDIX 12

CLASSIFICATION TESTS

For

SVRT – HMM/BECHTEL 3331 North First Street, Building B San Jose, CA 95134

PARIKH CONSULTANTS, INC.

356 S. Milpitas Blvd, Milpitas, CA 95035 (408) 945-1011

- Geotechnical .
- Environmental =
- Materials Testing ■
- Construction Inspection ■

HMM/BECHTEL

3331 North First Street San Jose, CA 95134

June 3, 2005 Job No.: 204104.10

Attn.: Mr. Ignacio Arango

Sub:

Appendix 12 – Classification Tests

Tunnel Segment of Silicon Valley Rapid Transit (SVRT) Project

San Jose, Santa Clara County, California

Dear Mr. Arango:

As requested, we are presenting Appendix 12 – Classification Tests for the proposed Silicon Valley Rapid Transit (SVRT) project in San Jose, California.

Please contact us at (408) 945-1011 if you have any questions regarding the data presented in the appendix.

Very truly yours,

PARIKH CONSULTANTS, INC.

Senior Engineer

arikh, P.E., G.E., 666

FW/YDW/GP {\Projects\204104.10\App-11.doc}

TABLE OF CONTENTS

	Page
INTRODUCTION	1
PURPOSE AND SCOPE	1
METHODLOGY OF EXPLORATION	1
Laboratory Data	2

ATTACHMENTS

- Exploratory Borehole & In-Situ Test Program (Table A12-1)
- Summary of Laboratory Test Results (Tables A12-2 thru A12-90)
- Plasticity Charts (Figures A12-1 thru A12-47)
- Gradation Analysis with Hydrometer Charts (Figures A12-48 thru A12-121)

APPENDIX 12 – CLASSIFICATION TESTS

TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, SANTA CLARA COUNTY, CALIFORNIA

INTRODUCTION

This appendix includes data from our geotechnical exploration performed for the proposed Tunnel Segment of Silicon Valley Rapid Transit (SVRT) project in San Jose, Santa Clara County, California. The fieldwork was performed between October 2004 and April 2005. The work was performed generally in accordance with the project scope and technical specifications prepared by Hatch Mott MacDonald/Bechtel team.

PURPOSE AND SCOPE

The purpose of this exploration was to perform soil borings and in-situ tests and to provide subsurface data for the design team. The scope of work performed for this exploration included drilling 76 rotary wash boreholes (Appendix 1), with majority of them on city streets. In addition, the scope included the following: (1) performing vane shear tests in 23 boreholes (Appendix 2), (2) performing pressuremeter tests in 19 boreholes (Appendix 3), (3) performing P/S wave suspension logging in three boreholes (Appendix 4), and (4) installing vibrating wire piezometer in 17 boreholes (Appendix 5) and standpipe monitoring wells in two boreholes (Appendix 6). The "Exploratory Borehole & In-Situ Test Program" is summarized on Table A12-1.

METHODLOGY OF EXPLORATION

The geotechnical exploration consisted of 76 boreholes extending to depths between 42.5 feet (portal area) and 217 feet (P/S wave suspension logging boreholes). At the proposed stations, the borehole depths are typically 150 feet. Along the tunnel alignment, the borehole depths cover approximately 20 feet below the planned tunnel invert at the time of drilling. Majority of the exploration program was performed between October 4, 2004 and March 5, 2005; except that BH-78 (in Newhall yard near the west portal) was drilled on April 18, 2005 due to permitting and coordination with Union Pacific Railroad (UPRR).

HMM/Bechtel

Job No. 204104.10 (SVRT Tunnel Segment – Appendix 12)

June 3, 2005

Page 2

Laboratory Data

The laboratory tests for basic index properties performed by Parikh Consultants included the

following: Moisture/Density (ASTM D2216), Atterberg Limits (ASTM D4318), Gradation

Analysis with Hydrometer (ASTM D422), Unconfined Compression Tests (ASTM D2166), and

Laboratory Vane Tests (ASTM D 4648). Every sample was examined and identified in the

laboratory in accordance with visual-manual procedure as outlined in ASTM D2488. Final soil

classification was based on Unified Soil Classification System as outlined in ASTM D2487. The

laboratory test data are summarized and tabulated per each boring. Additional laboratory tests

performed by Fugro West, Inc. are included in subsequent appendices.

For four boreholes (BH-25, 58, 70 & 74) for four "Cut-and-Cover" structure locations and eight

boreholes (BH-3, 11, 15, 20, 35, 40, 43 & 46) for "Tunnel", extrusion of the continuous tube

samples were performed in the presence of representatives of Kleinfelder and HMM/Bechtel. The

tube samples were extruded and visually classified at every six inches by either HMM/Bechtel or

Kleinfelder. Additional laboratory tests were assigned as deemed appropriate. In order to improve

legibility of the gINT boring logs, these additional moisture/density data are presented in the

summary table.

Very Truly Yours,

PARIKH CONSULTANTS, INC.

Senior Engineer

FW/YDW/GP APP-11 (\PROJECT\204104.10\APP-11.DQC)

Cary Parikh, P.E., G.E 666

çt Manager

Table A12-1

Exploratory Borehole & In-Situ Test Program Silicon Valley Rapid Transit (SVRT) Project Tunnel Segment San Jose, California

7/26/2005

	Boring	Station	Off	set		1		In-Situ Tests	7/26/2005 Vib. Wire Piezometers
Exploration	Depth	(ft)	(ft)	R/L	Structure	Туре	Qty	Depth (ft)	& Standpipe Wells
East Portal to Alun			(11)			.,,,,,	٦.,	T- 17	
BH-56	42.5	566+11	42	L	Portal	Ι.			_
BH-57	42.5	569+16	18	L	Tunnel	VS	2	9.5 & 29.5	_
BH-01	61.5	574+05	13	L	Tunnel	VS	3	20, 30 & 40	_
BH-02	75.0		23	R	Tunnel	PM	4	39, 50, 58.5 & 60	25' & 52'
		578+07					·		25 & 52
BH-03	90.0	581+81	14	L	Tunnel			mpling (30' to 90')	-
BH-04	91.5	590+51	10	L	Tunnel	VS	1	45	20' & 52'
BH-05	92.5	598+17	55	R	Tunnel	-			-
BH-06	82.5	599+61	28	R	Tunnel	PM	5	44, 46, 53.5, 63.5 & 65	-
Alum Rock Station	1								
BH-58	151.5	600+32	53	R	Station	Continu	uous Sa	mpling (5' to 70')	30.5'
BH-59	200.5	602+37	146	L	Station	P/S Su	spensio	n Logging to 200'	Standpipe Well to 217'
BH-60	152.2	604+20	61	L	Station	PM	11	13, 15, 28, 33.5, 35, 43.5, 45, 73.5, 75, 97.5	5, 99
BH-61	151.5	605+84	41	L	Station	VS	12	9, 11, 19.5, 21.5, 30, 32, 39.5, 41.5, 49.5, 5	1.5, 64.5, 66.5
BH-62	151.0	607+05	47	L	Station	-			-
BH-63	151.5	607+67	16	R	Station	VS	7	13.5, 15.5, 23.5, 34.5, 36.5, 49.5 & 51.5	81'
Alum Rock Station	1				Otation	70		10.0, 10.0, 20.0, 0, 00.0, 10.0 0 0	0.
BH-07	86.0	609+41	9	R	Tunnel	VS	2	45 & 54.3	<u> </u>
									<u> </u>
BH-08	91.0	615+75	64	R	Tunnel	PM	6	53, 54.5, 63, 64.5, 73.5 & 75	001.0.751
BH-09	101.5	619+92	26	L	Tunnel	-		<u> </u>	30' & 75'
BH-10	105.5	624+91	14	L	Tunnel	VS	1	55	-
BH-11	110.0	627+54	14	L	Tunnel	Continu	uous Sa	mpling (50' to 110')	-
BH-12	121.5	634+69	13	L	Tunnel	VS	1	50	-
BH-13	131.5	640+81	13	L	Tunnel	PM	3	93.5, 114.5 & 116	30.5' & 100.5'
BH-14	127.0	642+52	15	L	Tunnel	-			-
BH-15	128.0	645+69	97	L	Tunnel	Continu	uous Sa	mpling (70' to 128')	30' & 90'
BH-16	116.5	650+33	25	L	Tunnel	VS	0	Soil resistance higher than vane shear	capacity
BH-17	107.5	654+44	24	L	Tunnel	-		, ,	T -
BH-18	100.5	660+03	24	L	Tunnel	PM	3	74.5, 76 & 86	-
BH-19	91.5	666+26	23	L	Tunnel	VS	1	45	30' & 60'
BH-20	91.5	669+80	24	L	Tunnel			mpling (30' to 90')	-
							2	40 & 50	
BH-21	80.0	675+49	86	R	Tunnel	VS			-
BH-50	150.5	681+71	5	L	Tunnel	VS	3	9.5, 34.5 & 40.5	-
BH-52	150.5	684+09	6	L	Tunnel			mpling (10' to 70')	-
BH-53	149.0	685+43	17	L	Tunnel	PM	3	25, 45 & 55	-
BH-54	121.5	687+16	10	L	Tunnel	VS	3	24, 34 & 48	-
BH-55	150.0	688+35	11	L	Tunnel	PM	2	25 & 45	-
Crossover/Downto	wn Station								
BH-23	130.5	690+03	74	R	Crossover	VS	4	14.6, 17.1, 38.5 & 44.6	-
BH-64	141.5	691+93	30	L	Crossover	PM	5	23.5, 25, 53, 54.5 & 74	-
BH-24	151.0	694+52	31	L	Crossover	Continu	uous Sa	mpling (10' to 70')	-
BH-65	149.0	695+58	16	L	Crossover	PM	7	13, 15, 38, 40, 54, 111.5, & 113	
BH-77	137.5	698+34	16	L	Crossover	VS	4	14.1, 19.1, 24.2 & 39.1	_
BH-25	150.0	701+55	2	R	Station	PM	13	21, 23, 48, 50, 74, 76, 105.5, 107, 113, 114.5, 13	27.5. 129. 148.5 & 150
BH-66	130.0	701153	29	L		VS	3	15.5, 21.5 & 44	
	130.0		29		Station				30', 80' & 160' (Piezometer at 3
BH-68	216.0	703+72	69	R	Station	P/S Su	spensio	n Logging to 200'	depth in separate hole)
BH-70	146.5	706+78	47	L	Station	Continu	uous Sa	mpling (10' to 70')	-
BH-71	148.0	707+62	18	L	Station	PM	6	23.5, 25, 43.5, 45, 63.5 & 65	•
BH-72	162.5	707102	22	L	Station	VS	5	18. 20. 22. 43 & 45	
BH-26	157.5	710+66	19	L	Station	-	T T	, 25, 22, 10 & 10	-
					StatiOH	1 -	L	1	
Crossover/Downto					- ·	T		T	1
BH-27	140.5	715+01	131	L	Tunnel	-			•
BH-28	150.0	720+23	48	R	Tunnel	-	1		-
BH-29	112.5	723+89	29	R	Tunnel	VS	1	88.5	-
BH-30	110.5	728+02	31	R	Tunnel				<u> </u>
BH-31	100.0	731+55	10	L	Tunnel	PM	4	72.5, 74, 82.5 & 84	30' & 60'
2									

Table A12-1

Exploratory Borehole & In-Situ Test Program Silicon Valley Rapid Transit (SVRT) Project Tunnel Segment San Jose, California

7/26/2005

Exploration	Boring	Station	Off	set	Structure			In-Situ Tests	Vib. Wire Piezometers
Exploration	Depth	(ft)	(ft)	R/L	Structure	Type	Qty	Depth (ft)	& Standpipe Wells
Diridon Station									
BH-33	150.8	735+14	52	L	Station	PM	12	13, 15, 23, 25, 43.5, 45, 74.5, 76, 88.5, 90, 1	113.5 & 115
BH-73	150.5	736+58	41	L	Station	VS	5	9.7, 11.5, 19.5, 21.5 & 23.5	
BH-74	150.5	738+28	32	R	Station	Continu	ious Sa	mpling (10' to 70')	30'
BH-75	200.5	739+52	45	R	Station	-			Standpipe Well to 200'
BH-76	152.5	741+02	70	R	Station	PM	9	13, 15, 25, 43.5, 45, 73.5, 75, 93.5 & 95	105'
BH-34	150.8	744+65	79	R	Station	VS	8	14.5, 16.5, 24.5, 26.5, 34.7, 44.5, 46.5	& 54.5
Diridon Station to	West Porta	ıl							
BH-35	78.0	750+49	77	R	Tunnel	Continu	ious Sa	mpling (20' to 78')	-
BH-36	81.0	755+33	101	R	Tunnel	-			-
BH-37	82.5	760+60	53	L	Tunnel	VS	2	42.5 & 52.5	20.5' & 60.5'
BH-38	95.5	765+24	5	L	Tunnel	PM	4	43.5, 51, 65 & 80	-
BH-39	96.0	768+77	17	R	Tunnel	VS	0	Soil resistance higher than vane shear	capacity
BH-40	68.5	775+76	75	L	Tunnel	Continu	ious Sa	mpling (10' to 69')	-
BH-41	60.0	781+35	12	L	Tunnel	VS	3	19.5, 29.5 & 34.5	20' & 40'
BH-79	216.0	782+50	17	L	Tunnel/Vent Shaft	P/S Sus	spensio	n Logging to 200'	35.5', 75.5' & 118.5'
BH-42	62.5	785+37	19	L	Tunnel	PM	6	23, 25, 33, 35, 43 & 44.5	
BH-43	60.0	789+72	20	L	Tunnel	Continu	ious Sa	mpling (5' to 60')	-
BH-80	100.0	794+39	112	L	Tunnel	-			47'
BH-44	61.5	798+28	20	L	Tunnel	VS	2	20 & 30	-
BH-45	85.5	802+44	26	L	Tunnel	PM	4	50, 58.5, 60 & 70	-
BH-46	60.0	809+36	9	L	Tunnel	Continu	ious Sa	mpling (5' to 60')	-
BH-47	61.5	813+52	52	L	Tunnel	VS	2	22 & 24.5	20' & 40'
BH-48	86.5	818+34	15	R	Tunnel	PM	6	30.5, 32.5, 48.5, 50, 58.5 & 60	
BH-49	77.5	824+28	66	L	Tunnel	-			
BH-78	80.8	831+41	15	L	Portal	-			

Note: Stations and offsets based on the April 2005, S1 track alignment.

Summary	Borings	Downhole Logging	Continuous Sampling	Pressuremeter Testing	Vane Shear Testing	Piezometer/Well Borings
Stations & Crossover	24	2	4	7	8	7
Tunnel	52	1	9	12	17	12

A. Sampling Schedule for Tunnel Borings:

Sampling for tunnel borings focused on the 60' tunnel zone (20' above crown to 20' below invert of the 20' diameter tunnel).

B. Sampling Schedule for Stations and Crossover:

Stations and crossover borings were drilled to approx. 150' depth in general. Shelby tubes or Pitcher barrels were taken in cohesive soils, and SPT sampler (2" O.D. & 1.4" I.D.) or Modified California sampler (3" O.D. & 2.43" I.D.) were typically taken in granular soils.

C. Continuous Sampling:

Continuous Pitcher Barrel or Shelby Tube samples (in cohesive soils) and driven SPT or MC samples (in granular soils) were taken throughout the 60' tunnel zone at specified tunnel boring locations. Continuous Pitcher Barrel or Shelby Tube samples (in cohesive soils) and driven SPT or MC samples (in granular soils) were taken from 10' to 70' at specified station boring locations.

D. Vane Shear Borings

Vane Shear tests were performed using Geonor H-10 Vane Borer equipment. Vane shear tests were not planned in granular soils and clay soils where the strength exceeded the equipment capacity (2.1 ksf). Along the tunnel alignment, vane shear testing was typically attempted at the tunnel crown, center and invert. Vane Shear tests were performed at specified depths of the station borings.

E. Pressuremeter Borings:

Pressuremeter tests were performed by Hughes Insitu Engineering Inc. Both "pre-bored" and "self-boring" pressuremeter tests were conducted. A top-drive drill rig was used for self-boring pressuremeter tests. In hard soils and gravelly soils, only the "pre-bored" type pressuremeter tests could be conducted. Along the tunnel alignment, pressuremeter testing was typically attempted at the tunnel crown, center and invert. Pressuremeter tests were performed at specified depths of the station borings.

F. Downhole Logging:

GEOVision Geophysical Services performed P/S suspension logging in borings at BH-59, BH-68 and 79.

G. Noise and Vibration Testing:

Noise and vibration tests were performed at BH-03, BH-10, BH-15, BH-19, BH-23, BH-27, BH-35, BH-40 and BH-46

				Grain	Grain Size Analysis	sivie	A#k	Atterbero I imite	1	Inconfined	46	č	Moiot	
6	Sample	Depth	***					Signal Signal	3	8	a a	ŝ	Moisture	
	Š	Œ)		grave	sand	ines	3	굽	ã	Сощо	Vane	Density	Content	Remarks
	1			(%)	(%)	8				(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-01	-	2.4	ರ									,	ı	
BH-01	7	7.4	CL CL									,	-	
BH-01	8	12.2	CL											
BH-01	4	17.5	J)				42	22	202	2.0		92.9	30	
BH-01	5	22.5	공									•		
BH-01	9	27.5	บี				6	83	1	1.2		94.1	29	
BH-01	7	32.5	CL CL										•	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BH-01	8	37.3	G.					-						
BH-01	6	42.5	CL											
BH-01	10	46.8	SC	25	47	28						113.0	16	
BH-01	11	51.3	sc	36	47	41						•	10	
BH-01	12	56.5	CH										1	
BH-01	13	6.09	sc	42	43	15						•	=	
										E				
							ĺ							
								,				!		
	1													
											!			
			SUMMARY OF LABORATORY TEST	OF LABO)RATOR'	Y TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	CALIFOR	OF SILIC	ON VALL	EY RAPII	D TRANSII	r (Svrt)	PROJECT		** USCS - visual-man	Symbol of Un ual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
		PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classification with ASTM	on based on I. D2487 when	classrification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005		Job No.: 204104.10

	Remarks																							** USCS - Symbol of Unified Soil Classification System per	visuai-manual procedures in accordance with ASTM D2488 or classification based on laboratory test results in accordance	with ASTM D2487 when laboratory data is available.	Job No.: 204104.10
Moisture	Content (%)	(o/)				21	,	25	10															Symbol of Unifie	ual procedures i on based on labo	D2487 when lat	
Dry	Density	(nd)		-	,	109.4		100.1			-	•	•	•									Notes:	- SOSO	visuai-man classificati	with ASTM	Date: 6/2005
Lab	Vane (S. ksf)	(0), (0)																									
Unconfined	Comp.	(10)						1.8										:						PROJECT			
its	<u>a</u>					11		Ξ	:												İ	İ		T (SVRT)			·
Atterberg Limits	굽					16		15) TRANSI			
Affe	4					27		56															RESULTS	EY RAPII			
lysis	fines (%)								15															ON VALL			
Grain Size Analysis	sand (%)								36														RATOR	OF SILIC	<u>∢</u>		ening
Grain	gravel (%)								49														OF LABO	GMENT		TS, INC.	ls Engine
	USCS**	ี่	CL CL	CL	CL	CL	CL	CL	ည္ပ	บ	ರ	บ	CL	CL									SUMMARY OF LABORATORY TEST	TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT	SAN JOSE, CALIFORNIA	PARIKH CONSULTANTS, INC.	Geotechnical & Materials Engineering
Denth	₹€	16.5	21.3	26.5	31.5	34.7	42.7	47.5	51.8	54.8	61.8	65.8	69.5	74.7												PARIKH CO	Geotechnic
Samos	2	-	2	3	4	5	9	7	80	6	10	7	12	13											(•	
Boring	No.	BH-02	BH-02	BH-02	BH-02	BH-02	BH-02	BH-02	BH-02	BH-02	BH-02	BH-02	BH-02	BH-02]

				- Grain	Grain Size Analysis	hveie	A#6	urbora limite		Poorge		i	7.1-14	
0	Sample	Depth	**300	5	7 2 7 1	Silvais		Allei Dei B LIII III	!	palilling	G .	<u>></u>	Moisture	
	ġ	(£)	SOSO	gravel (%)	sand (%)	tines (%)	=	చ	රි දු 	Comp.	Vane (S. ksh	Density	Content (%)	Remarks
BH-03	-	32.5	ಠ								(in)	85.0	37	
BH-03	2	34.6	ರ							-		,	5 .	
BH-03	3	37.5	သွ	16	40	43				-		115,3	18	
BH-03	4	39.9	ರ											
BH-03	5	41.5	ರ					:				,	,	
BH-03	9	45.0	C C							6.0		0.66	26	
BH-03	7	47.5	ر ا											
BH-03	8B	49.4	占			06						-		
BH-03	8A	49.9	SM			20								
BH-03	90	54.0	CL			83								
BH-03	9A	55.0	CL									116.8	15	
BH-03	10C	56.3	CL			9/								
BH-03	10A	57.3	CL			49						-		
BH-03	11E	58.0	CL.			93						-		
BH-03	11B	59.5	SC	23	32	46								
BH-03	11A	60.0	သွ											
BH-03	12C	64.0	CL-ML			20						•		
BH-03	12B	64.5	SM	20	53	27					!	,		
BH-03	12A	65.0	CL-ML	3	27	20			2	2.0		105.1	22	
BH-03	13B	6.99	CL-ML			87						,	'	
BH-03	13A	67.4	CL-ML											
BH-03	14B	69.3	CL-ML			95						•		
BH-03	14A	8.69	CL-ML									ı		
BH-03	15	74.8	SP	18	76	9						110.9	15	
BH-03	16	76.5	겁									•		
BH-03	17	80.0	ರ									•		
BH-03	18	81.0	CL-ML			,						•	•	
			SUMMARY OF LABORATORY TEST F	OF LABO)RATOR!	Y TEST R	RESULTS	i di	(i	ļ C		Notes:		5
			SAN JOSE, CALIFORNIA	CALIFOF	SNIA AINS	444	<u> </u>	LET KAPIU TRANSIT (SVR.I) PRUJECI	טאא (אאני	2		visual-man	symbol of Uni	USCS - Symbol of Unified Soil Classification System per visual arranual procedures in accordance with ASTM D2488 or
	O	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								crassincation with ASTM	on based on it D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	als Engine	ering						<u> </u>	Date: 6/2005		Job No.: 204104.10

				Grain	Grain Size Analysis	llysis	Atte	Atterberg Limits		Unconfined	Lab	ρΔ	Moisture	
No.	Sample No.	E (#)	USCS**	gravel	sand	fines	=	ā	_	Сошр.	Vane	Density	Content	Remarks
				(%)	(%)	(%)	;	-		(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-05	-	32.3	ರ										-	
BH-05	2	37.3	占									'	38	
BH-05	3	42.5	占											
BH-05	4	47.5	ರ			79				1.8		102.9	23	
BH-05	5	52.5	ರ									,	•	
BH-05	9	57.5	บ										35	
BH-05	7	62.5	ರ			88				1.5		100.2	24	5 5 5
BH-05	8	67.3	SC	2	57	37						116.9	16	
BH-05	6	71.5	CL-ML									1		
BH-05	9	77.5	겁									1	32	
BH-05	7	82.5	ರ											
BH-05	12	87.0	ML									'	25	
BH-05	13	92.1	ML											
					:									
					1								:	
										-				
			SUMMARY OF LABORATORY TEST	OF LABO	RATOR		RESULTS					Notes:		
,	ĺ		TUNNEL SEGMENT OF SILICON VALI SAN JOSE, CALIFORNIA	EGMENT (OF SILIC	ON VALL	EY RAPII) TRANSI	IT (SVRT)	LEY RAPID TRANSIT (SVRT) PROJECT		** USCS -: visual-man	Symbol of Uni ual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	O	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	crassing the passed on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Enginet	ering							Date: 6/2005		Job No.: 204104.10

				Grain	Grain Size Analysis	lysis	Atte	Atterberg Limits		Unconfined	Lab	DΓV	Moisture	
No.	No.	(#)	USCS**	gravel	sand	fines	=	₫	ā	Comp.	Vane	Density	Content	Remarks
ŀ				(%)	%	(%)	!		-	(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-06		22.5	占									•		
BH-06	2	27.0	ರ									•	•	
90-HB	3	32.3	ರ										34	
BH-06	4	37.1	C					L				,		
BH-06	5	39.5	СН				19	29	32				41	
BH-06	9	49.7	CL-ML									-		
BH-06	7	52.3	ML	1	45	55						110.0	19	
BH-06	8	54.7	ML				34	82	9			98.5	26	
90-HB	6	62.5	ರ			-						,	1	
BH-06	10	64.0	CL CL									,	28	
BH-06	11	72.2	CL				_						ı	
BH-06	12	77.0	CL-ML	1	4	96							30	
BH-06	13	82.5	CL-ML									,		
							1							
						1								
									+					
			SUMMARY OF LABORATORY TEST	OF LABC	RATOR	TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALI SAN JOSE, CALIFORNIA	EGMENT CALIFOR	OF SILIC	ON VALLI	EY RAPID	TRANSI	T (SVRT)	LEY RAPID TRANSIT (SVRT) PROJECT		** USCS - visual-man	Symbol of Uni	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classificati with ASTM	on based on k D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	als Engine. 	ering		İ				<u> </u>	Date: 6/2005	10	Job No.: 204104.10

				Crain	Crain Cito Applicate	di cio	174							
9	Sample	Depth	****		7 27 27 10	ll yalls	Alle	Allerberg Limits	Sills	Oncontined	Lab	Š	Moisture	
<u>8</u>	Š	Œ	2020	gravel	sand	tines		占	虿	Comp.	Vane	Density	Content	Remarks
1				(%)	<u>@</u>	<u>@</u>				(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-10	-	47.4	ರ									•	•	
BH-10	2	52.3	ರ									,	•	
BH-10	3	59.5	ರ				36	20	16	3.2		104.9	21	
BH-10	4	62.5	ರ										1	
BH-10	5	66.5	CL-ML				25	21	4	1.8		113.1	14	
BH-10	မ	69.5	GW-GM	25	38	ည							80	
BH-10	7	74.5	GW-GM	29	56	æ								
BH-10	80	79.5	GP-GM										00	
BH-10	6	84.9	SW-SM										1	
BH-10	10	8.68	SW-SM	33	61	မ							12	
BH-10	1	95.5	С С										•	
BH-10	12	101.5	ر ا										•	
BH-10	13	105.4	SP											
					_									
			SUMMARY OF LABORATORY TEST	OF LABO	RATOR	/ TEST R	RESULTS					Notes:		
,	ĺ		TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT	OF SILIC	ON VALL	EY RAPIC	TRANSI	T (SVRT)	PROJECT		** USCS - visual-man	Symbol of United Interest of Uni	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	O	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	on based on i D2487 when	crassincation based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Engine	ening							Date: 6/2005		Job No.: 204104.10

				Grain	Grain Size Analysis	sisyl	 	Atterhem imite	F	Inconfined	40 1	è	Major	
Boring	Sample	Depth	******					60			ב ב	Ś	MOISTURE	
Š	ġ	Œ	333	gravei	sand	unes (00)	=	굽	₫	CO CO CO	Vane	Density	Content	Remarks
				(%) (%)	(%)	<u>%</u>				(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-12	-	32.5	ML									95.3	29	
BH-12	2	37.4	ರ									102.2	13	
BH-12	3	42.4	ML/CL	1	30	20	35	24	-			94.2	31	
BH-12	4	47.5	ML/CL									86.3	37	
BH-12	5	52.5	٦ ا									98.0	27	
BH-12	9	57.5	ರ									88.9	32	
BH-12	7	60.7	끙									•	•	
BH-12	80	66.5	ML/CL				34	23	=			94.7	29	
BH-12	0	71.2	ML/CL	0	15	85				1.5		95.7	25	
BH-12	9	75.3	သင									1	1	
BH-12	11	79.8	SW-SM	42	53	2							13	
BH-12	12	86.3	CL				33	20	13	3.0		102.8	23	
BH-12	13	90.1	SC				:							
BH-12	4	94.8	GW-GM	55	39	9							6	
BH-12	15	99.6	GW-GM										•	
BH-12	16	104.7	GW-GM	49	46	9						,	11	
BH-12	17	109.3	GW-GM											
BH-12	18	115.3	ರ									86.9	34	
BH-12	19	121.5	CL									,	ı	
	i													
			SUMMARY OF LABORATORY TEST	OF LABC	RATOR	(TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	CALIFOR	OF SILIC	ON VALL	EY RAPII	TRANSI	T (SVRT)	PROJECT		** USCS - visual-man	Symbol of Unitral procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	on based on it I D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Engine.	ering							Date: 6/2005	2	Job No.: 204104.10

				Grain	Grain Size Analysis	lysis	V V	Atterhera I imite	boafacoul	10 -	è	110	
6	Sample		**0.00	or care	Page	200					ב ב	MOISINE	í
Ö.	Ö.	Œ	3	(%)) (%)	s (%)	<u> </u>	- R	l (a ksf)	Vane (S ksf)	Density (ncf)	Content (%)	Remarks
BH-13	-	71.0	SM				=				(13.4)	(0.1)	
BH-13	2	76.0	GW-GM	23	41	မ						8	
BH-13	က	80.7	SP								•		
BH-13	4	86.0	SW										
BH-13	5	91.3	GW-GM	59	36	9					•	6	
BH-13	9	96.3	SW-SM								,	ı	
BH-13	7	101.5	ML/SM	-	48	52					•	29	
BH-13	8	'	•								,	•	
BH-13	6	106.0	သွ								•	•	
BH-13	5	111.5	SW	23	73	4					117.7	13	
BH-13	=	117.5	占						4.0		118.5	16	
BH-13	12	124.0	CL-ML								,	•	
BH-13	13	125.6	SP-SM	33	61	9					126.6	11	
BH-13	14	131.5	SW-SC									-	
											3		
									:				
	1												
			SUMMARY OF LABORATORY TEST TUNNEL SEGMENT OF SILICON VAL	OF LABC	OF SILIC	Y TEST R	RESULTS LEY RAPII) TRANSIT (S	SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT		Notes:	Symbol of Uni	otes: ** USCS - Symbol of Unified Soil Classification System per
	(SAN JOSE, CALIFORNIA	CALIFOF	SNIA						visual-mar classificati	iual procedure on based on k	visual-manual procedures in accordance with ASTM D2488 or classification based on laboratory test results in accordance
	<u> </u>	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.							with ASTM	D2487 when	with ASTM D2487 when laboratory data is available.
3		Geofechnik	Geotechnical & Materials Engineering	als Engine	ering						Date: 6/2005	2	Job No.: 204104.10

	Remarks																								** USCS - Symbol of Unified Soil Classification System per	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.	Job No.: 204104.10
Moisture	Content	(%)	=		1	'	10	တ	- ∞	12	13	1-		7	•			:							Symbol of Unif	on based on lal	
Dry	Density	(bct)				,		,	129.6		1		•	1	,									Notes:	** USCS -	classification with ASTM	Date: 6/2005
Lab	Vane	(S _u , ksf)			-		•		:											:							
Unconfined	Comp.	(q _u , ksf)																							TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT		
mits	ā	<u>.</u>																							SIT (SVRT		
Atterberg Limits	ā	J -																					_	(A	ID TRAN		
Ä	=	;																						. RESULTS	LEY RAP		
alysis	fines	(%)	13		9		5	6	17	2	5	3												₹Y TEST	CON VAL		
Grain Size Analysis	sand	(%)					37		45		23													ORATOR	OF SILI		eering
Grai	gravel	(%)					25		38		72										į			OF LAB	EGMENT	TS. INC	als Engin
	USCS**		SC	SP	GW-GM	GW-GM	GW-GM	GW-GM	SM	SP-SM	GP-GM	GP-GM	GP-GM	GW-GC	GW-GC									SUMMARY OF LABORATORY TEST	TUNNEL SEGMENT OF S	PARIKH CONSULTANTS: INC.	Geotechnical & Materials Engineering
d+aoC	<u></u> €		71.3	75.8	81.0	85.7	90.7	92.8	100.8	105.5	110.6	115.3	120.3	125.3	126.2											PARIKH C	Geotechni
Samolo	No.		1	2	3	4	5	9	7	8	6	10	11	12	13											0	
Boring	g Z		BH-14	BH-14	BH-14	BH-14	BH-14	BH-14	BH-14	BH-14	BH-14	BH-14	BH-14	BH-14	BH-14						•						

Moisture	Content		32		42		7			12	1	27		1	26	26	26 26	26 26	26 26	26 26	26 26	26	26	26 26	26	26 26	26	26 26	26 26	26 26	99.8 26 26 Otto: ** USCS - Symbol of Unified Soil Classification System per Visital-manual procedures in accordance with ASTM DARR or visital-manual procedures in accordance with accordance with accordance with accordance with accordance with accordance with accordance with accordance with accordance with accordance with accordance with accordance with accordan	99.8 26 26 26 26 26 26 26 26 26 26 26 26 26
Dry	Density	(bct)	90.3		79.5			,	,			98.0			8.66	8.66	99.8	8.66	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	99.8	Notes:	99.8 Notes: "* USCS - & visual-mant classificatio with ASTM
Lab	Vane	(S _u , ksf)																														
Unconfined	Comp.	(q _u , ksf)																													SM 0 68 32 SM 0 68 32 TO SM 10SE CALIEORNIA) PROJECT
mits	Īā	Ē			25							6																			SIT (SVR)	SIT (SVR1
Atterberg Limits	ō	7			56	:						24																			D TRANS	D TRANS
Αŧ	-	1			51							33																		THE STATE OF THE S	RESULTS	RESULTS
alysis	fines	(%)					3			17						32	32	32	32	32	32	32	32	32	32	32	32	32	32		32 32 32 30 VALL	32 XY TEST F
Grain Size Analysis	sand	(%)					17			4						89	68	89	89	89	89	89	89	68	68	889	68	889	889	68 Martor	ORATOR OF SILIC	68 ORATOR OF SILIC
Grain	gravei	(%)					80			62						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O O O O O O O O O O O O O O O O O O O	O O O O O O O O O O O O O O O O O O O
	USCS**		ᆼ	CL CL	Я	GW	GW	GW	ML	GC	၁ဗ	ML/CL	ML	ML		SM	SW	WS	WS NS	WS S	MS.	NS.	No.	NS.	NS	NO.	NO NO NO NO NO NO NO NO NO NO NO NO NO N	NO INCIDENT TO THE PROPERTY OF	NO 1	SUMMARY	SM 0 68 32 SWAMARY OF LABORATORY TEST TUNNEL SEGMENT OF SILICON VAL	116.5 SM 0 66 116.5 SM 0 66 SUMMARY OF LABORA TUNNEL SEGMENT OF 8 SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.
	<u></u>		57.3	62.2	65.6	70.6	75.8	80.5	86.7	90.7	95.3	101.5	106.5	112.3		116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5	116.5 PARIKH C
	No.		1	2	3	4	5	9	7	8	6	10	11	12		2																
	No.		BH-16	BH-16	BH-16	BH-16	BH-16	BH-16	BH-16	BH-16	BH-16	BH-16	BH-16	BH-16	BH-16																	

				Grain	Grain Size Analyeis	lyeic	440	Attorborg Limits		I Possission I	40	ć	7 - 1 - 1	
Boring	Ś		***	1000	7 27 7	F			T		רשם	yo '	Moisture	ı
No	ġ	£)	325	gravei (%)	Sand	sauu (%)		٦ ا	<u>-</u>	Comp.	Vane	Density (200)	Content	Remarks
BH-17	-	46.9	丧		(2)	(0/)				(du, nai)	(Sq. KSI)	(bci)	(%)	
BH-17	2	52.5	3							,			, ,	
BH-17	8	57.5	M	0	42	28				7.7		107.6	35	
BH-17	4	2.09	SW-SC					1				2 '	3	
BH-17	5	0.99	SW-SC	43	50	7						•	σ	
BH-17	9	,												
BH-17	7	25.3	ರ											
BH-17	8	82.5	r Cr							3.6		108.0	20	
BH-17	6	87.5	C											
BH-17	10	62.2	ರ									100.1	24	
BH-17	11	5.76	CL											
BH-17	12	101.5	CL-ML									•		
BH-17	13	107.5	СН											
					•									
			SUMMARY OF LABORATORY TEST	OF LABC)RATOR)		RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT	OF SILIC	ON VALLI	EY RAPIC	TRANSII	r (SVRT)	PROJECT		** USCS - visual-mar	Symbol of Uniual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	Q	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classificati with ASTN	on based on I. I D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
		Geotechnik	Geotechnical & Materials Engineering	uls Engine	ering							Date: 6/2005	2	Job No.: 204104.10

	Remarks																											** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.	
Moisture	Content (%)	(av)		46		39		,	31	,		æ	1	•		ı	15	į.	78		ı	17		ı				Symbol of Un ual procedur	on based on l D2487 when	
Dry	Density (pcf)	,		747	,	82.0		•	88.9		, 			•	,	•		•	2.36	1		-	1	-			Notes:	** USCS - visual-man	classification with ASTM	
Lab	Vane (S ksf)	(3)		:																										
Unconfined	Comp. (a., ksf)	(in the state of t		1.8					2.7																			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA		
nits	₫			36															5									IT (SVRT		
Atterberg Limits	김			30															56									D TRANS		
Atte	Ⅎ			99															31								RESULTS	EY RAPI		
alysis	fines (%)									98	84	11					4	52				7			•	;	Y TEST F	ON VALI		
Grain Size Analysis	sand (%)											40					47	45				49					ORATOR	OF SILIC		Series C
Grain	gravel (%)											49					49	29				44					OF LAB(EGMENT CALIFOR	TS, INC.	te Engine
	uscs**	공	ᆼ	CH	CH	ᆼ	공		СН	СН	CL	GW-GC	GW-GC	GW-GC	GW-GC	1	GW	SM	ML	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM			SUMMARY OF LABORATORY TEST	TUNNEL SEGMENT OF S	PARIKH CONSULTANTS, INC.	Geotechnical & Materials Engineering
	(£)	32.5	34.8	37.5	40.0	42.4	45.0	-	50.0	51.2	54.4	55.3	58.5	60.5	62.9	ı	67.8	72.5	73.5	75.8	78.2	81.0	85.5	91.5					PARIKH C	Controbai
21		-	2	8	4	5	9	7	8	6	10	11	12	13	14	15	16	17C	17A	18	19	50	21	22					9	
	<u> </u>	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20	BH-20						>

	Remarks																							** USCS - Symbol of Unified Soil Classification System per	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.	
Moisture	Content	(%)	, 			,					10	σ		,	'		i							Symbol of Ur	on based on D2487 wher	
ρ	Density	(bct)			,	,		,					,										Notes:	** USCS - (classification with ASTM	
Lab	Vane	(S _u , ksf)																								•
Unconfined	Сошр.	(q _u , ksf)) PROJECT		
mits	۵	F.1																						SIT (SVRT		
Atterberg Limits	ā																:				,		 	S PID TRAN		
\[\]	=	;																		ē				LEY RAF		
alysis	fines	(%)									9	2											7	CON VAL		
Grain Size Analysis	sand	(%)									48	49												OF SILK		
Grair	gravel	(%)									46	47												GMENT CALIEDE	TS, INC.	
	uscs**		ر ت	ರ	C C	СН	CL	ซ	ML	SW-SC	SW-SC	SP	ML	SW-SC	В								TEST VOCTAGORA LEST	TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN IOSE CALIFORNIA	PARIKH CONSULTANTS, INC.	Geofechnical & Matarials Engineering
	<u>₹</u> €		22.5	27.5	32.5	37.3	42.2	47.5	52.1	55.9	60.0	65.1	70.0	74.5	79.1										PARIKH C	Conformi
	No.		-	2	3	4	5	9	7	8	တ	1	11	12	13										0	
	g Z		BH-21	BH-21	BH-21	BH-21	BH-21	BH-21	BH-21	BH-21	BH-21	BH-21	BH-21	BH-21	BH-21											

	Remarks																										Otes;	visual-manual procedures in accordance with ASTM D2488 or	dassince to the passed of rabbillatory test results in accordance with ASTM D2487 when laboratory data is available.	Job No.: 204104.10
Moisture	Content (%)	22		\$	28	27	32	31	ı	1	26	20	25	22	14	8	22	20	25	15	24	6	22				Chiral Del Delicition	inal procedures i	D2487 when lai	i
Dry	Density (pcf)	,		88.1	,		71.2			•	101.8	•	•	104.0	-	•	-	106.6	100.1		1	•	-			Notes	Notes:	visual-man	with ASTM	Date: 6/2005
Lab	Vane (S.,, ksf)																													
Unconfined	Comp.																							:			RESULTS	L DESCRIPTION L		
nits	<u>a</u>						14				8																FOX 60 FIG	(A)		
Atterberg Limits	4						21				22																10 E			
Att	=	-					35				30																RESULTS	<u>.</u> 		
lysis	fines (%)														14	5			69		13					į	Y TEST F			
Grain Size Analysis	sand (%)																										ORATOR!	SNIA SILIK		ering
Grain	gravel (%)			-																							OF LABO	CALIFOR	TS, INC.	ls Engine
	USCS**	ರ	ML	ರ	ರ	ರ	ರ	CL	C	C	ರ	ರ	ر ا	ML	SM	GБ	ರ	ರ	ರ		SM	В	ر ا				SUMMARY OF LABORATORY TEST RESULTS	SAN JOSE, CALIFORNIA	PARIKH CONSULTANTS, INC.	Geotechnical & Materials Engineering
thuck	(£)	3.9	7.0	12.0	22.5	24.8	28.5	33.5	36.0	41.7	47.5	51.0	0.09	67.5	76.3	86.3	95.8	106.8	117.3	'	121.3	125.0	130.5						PARIKH C	Geotechnic
Sample	ġ	-	2	3	4	5	9	7	8	6	10	7	12	13	4	15	16	17	18	19	20	21	22						9	
	o Z	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23	BH-23							J

				Grain	Grain Size Analysis	sisyle	Ä	Atterhera imits	Ĭ.	Linconfined	46	200	Moieture	
D	Sample	Depth	*******					a Bisal	3		רפט	ב ב	MOISION	
	Š	Œ)	5350	gravel (%)	Sand	tines (%)	7	٦ ا	₫	Comp.	Vane	Density	Content	Remarks
2	1,			(8)	(%)	(0)		1	1	(q ₀ , KSt)	(S ₀ , KST)	(bct)	(%)	
BH-24	-	5.5	ರ									,	15	
BH-24	2	12.3	SM									6'96	28	
BH-24	က	15.0	ر ا	0	10	90	43	19	24	2.1		98.0	25	Hydrometer test
BH-24	4	17.5	ر ا				35	16	19	6.0		96.3	30	
BH-24	5	20.0	ML	2	17	18				1.1		100.2	24	
BH-24	9	22.5	CL									91.9	32	
BH-24	7	25.0	ر ا									104.9	23	
BH-24	8	27.5	ፘ	0	14	88	31	22	6	1.4		94.6	28	Hydrometer test
BH-24	6	30.0	ML									94.6	29	
BH-24	10	32.4	ML	0	59	71	25	24	-	1.5		97.1	26	Hvdrometer test
BH-24	11	35.0	СН									78.7	44	
BH-24	12	37.3	ರ									9.66	28	
BH-24	13	40.0	SM	0	56	44						110.0	20	
BH-24	14	40.5	SM	18	64	18						,	19	
BH-24	15	43.8	GP-GM	98	5	6						•	12	
BH-24	16	46.3	GW-GM	54	40	9				=		,	6	
BH-24	17	50.4	ರ										25	
BH-24	18	53.5	၁ဗ									101.6	25	
BH-24	19	55.0	CL-ML	0	23	78	29	22	7	6.0		98.0	26	Hydrometer test
BH-24	20	57.5	CL-ML							:		106.9	22	
BH-24	21	60.0	CL-ML					-		1.3		105.3	21	
BH-24	22	62.5	CL-ML					-				102.0	23	
BH-24	23	65.0	ಠ	0	12	88				3.5		102.9	23	Hydrometer test
BH-24	24	67.5	ರ					•				0.66	27	
BH-24	25	70.0	ರ							3.3		115.3	17	
BH-24	98	81.0	В	27	69	၁						,	21	Hydrometer test
BH-24	27	90.5	SP-SM	24	69	7						,	15	Hydrometer test
			SUMMARY OF LABORATORY TEST I TUNNEL SEGMENT OF SILICON VAL	OF LABC EGMENT	OF SILIC	Y TEST R ON VALL	RESULTS LEY RAPI() TRANSI	T (SVRT)	RESULTS LEY RAPID TRANSIT (SVRT) PROJECT		Notes: ** USCS -	Symbol of Un	otes: ** USCS - Symbol of Unified Soil Classification System per
	Q	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classificat with ASTN	ion based on I. A D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Engine	ering						-	Date: 6/2005	Ž	Job No.: 204104.10

LL		- 1			Grain	Grain Size Analysis	lysis	Atte	Atterberg Limits	its	Unconfined	Lab	Dry	Moisture	
28 1100 SM 0 70 29 CT 19 8 2.5 30 11110 CL		No.	<u></u> €	USCS**	gravel	sand	fines	=	ā	ē	Comp.	Vane	Density	Content	Remarks
28 100.9 SM 0 70 29	\dashv				(%)	(%)	(%)	,	_	Ī.	(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
29 1110 CL	4	78	100.9	SM	0	70	29						,	18	Hydrometer test
30 1210 SM 29 50 22 1	4	23	111.0	7			59	27	19	88	2.5		105.0	21	
31 1294 SW	4	30	121.0	SM	29	20	22						1	13	Hydrometer test
32 141.0 CL-ML 0 44 56 26 21 5 1.4 33 151.0 SM 0 74 26 1	4	31	129.4	SW									'	80	
151.0 SM 0 74 26 SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SLICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA Geotechnical & Materials Engineering D TOTAL STANSIT (SVRT) PROJECT Geotechnical & Materials Engineering	4	32	141.0	CL-ML	0	44	56	26	21	5	1.4		108.7	19	Hydrometer test
ORATORY TEST RESULTS OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA	4	33	151.0	SM	0	74	26						98.8	25	Hydrometer test
ORATORY TEST RESULTS ORATORY TEST RESULTS	\dashv														
ORATORY TEST RESULTS OPENICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA	\dashv														
ORATORY TEST RESULTS OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA	1														
ORATORY TEST RESULTS OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA															
ORATORY TEST RESULTS ORATORY SAPID TRANSIT (SVRT) PROJECT RNIA Bering															
ORATORY TEST RESULTS ORATORY TEST RESULTS TOF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	_														
ORATORY TEST RESULTS **OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	\dashv														
ORATORY TEST RESULTS OP SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Being	_														
ORATORY TEST RESULTS OR SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA	\dashv														
ORATORY TEST RESULTS OP SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	_														
ORATORY TEST RESULTS OP SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	-														
ORATORY TEST RESULTS OR SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	-														
ORATORY TEST RESULTS OP SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	\dashv														
ORATORY TEST RESULTS OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Desiring	+														
ORATORY TEST RESULTS OR SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	\exists														
ORATORY TEST RESULTS OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	+														
ORATORY TEST RESULTS OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	+														
ORATORY TEST RESULTS OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering															
ORATORY TEST RESULTS OR SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering										+					
ORATORY TEST RESULTS OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT RNIA Bering	\vdash									1					
OF SILICON VALLEY KAPID I KANSIT (SVR.I.) PROJECT RNIA sering				SUMMARY	OF LABC	RATORY	TEST R	ESULTS					Notes:		
Dening	i	1		SAN JOSE,	CALIFOR	OF SILIC	ON VALLI	EY KAPIL	- KANSI	I (SVRI.)	PROJECT		visual-mar	Symbol of Un rual procedure	fied Soil Classification System per s in accordance with ASTM D2488 o
Date: 6/2005 Job No.:		9	PARIKH C	ONSULTAN	TS, INC.								with ASTIN	1 D2487 when	noratory test results in accordance laboratory data is available.
	7		Geotechnic	al & Materia	als Engine.	ering							Date: 6/200	5	Job No.: 204104.10

				eiere.	Grain Size Analyeis	alveie	***	Attorborg Limits	1	Incomena	100	å		
9	Sample	Depth	*****	5		Sign	אווג		2		OR J	<u>-</u>	Moisture	
	Ö	€	2220	gravel (%)	sand (%)	mues (%)	3	곱	<u>a</u>	Comp.	Vane (S. kef)	Density (ncf)	Content	Remarks
BH-25	-	6.5	SM	,						(10)	(5) (0)	(124)	(9/)	
BH-25	2	11.5	SP-SM											
BH-25	3	18.0	CL				38	23	15	1.9		86.2	35	
BH-25	4	32.5	ML										27	
BH-25	5	34.0	ML					:					1	
BH-25	9	36.5	OH/MH										39	
BH-25	78	40.7	SC/CL									94.2	30	
BH-25	₹.	41.2	SC/CL				47	56	21				29	
BH-25	8B	52.3	SP-SM									111.5	6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BH-25	8₽	52.8	SP-SM	98	56	8							13	
BH-25	თ	56.5	CL				33	21	12				28	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BH-25	10	61.7	ML				24	8	4		1.0		21	
BH-25	118	70.5	ML				22	21	-	î		106.5	21	
BH-25	11A	71.0	占	0	32	69	33	18	15	3.2		101.3	23	Hvdrometer Test
BH-25	12	81.5	SW-SM	98	56	6							13	
BH-25	13	91.5	SW-SM									,		
BH-25	41	•	•									•		
BH-25	15	104.0	ರ				34	18	16			,	27	
BH-25	16	112.5	٦ ا								5	,	•	
BH-25	17	113.5	ರ									109.1	17	
BH-25	18	114.0	SC									ı	,	
BH-25	19	116.0	SM									•		
BH-25	20	121.5	GW-GM	51	42	8						•	8	
BH-25	21	127.5	7									1	-	
BH-25	22	129.5	ರ									95.0	27	
BH-25	23	•	'									•	•	
BH-25	24	139.0	겁									•	•	
			SUMMARY OF LABORATORY TEST	OF LABC	RATOR	Y TEST R	RESULTS					Notes:		
(ĺ		I UNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	CALIFOR	OF SILIC	ON VALL	ey rapil	TRANSI	T (SVRT)	PROJECT		** USCS - visual-man	Symbol of Uniual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
		PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	vassilicatori based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Engine	ering							Date: 6/2005	2	Job No.: 204104.10
!									-					

				Grain	Grain Size Analysis	lysis	Attr	Atterbera Limits		Unconfined	lab	20	Moisture	
υ,	Sample	Depth	**SOSH	aravo	pues	fines				0000	1 7	,)	
	ġ	€	}	3,000	מַ כּ	<u>ה</u>	4	굽	ਛ	i E	vane	Density	Content	Kemarks
				<u>%</u>	(%)	<u>@</u>				(q ₀ , ksf)	(S _v , ksf)	(bct)	(%)	
	×	'	•									ı	1	
	25	142.0	သွ	33	42	18							10	
	56	147.5	ე					`				97.6	27	
	27	150.0	ر د									'		
-														
-														
\rightarrow														
\rightarrow														
-														
_														
1											i			
	1													
							Ī							
							Ī							
													į	
			SUMMARY OF LABORATORY TEST TUNNEL SEGMENT OF SILICON VAL SAN LOSE CALIFORNIA	OF LABC EGMENT	OF SILIC	Y TEST R ON VALL	results Ley Rapii	D TRANSI	T (SVRT)	SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SANJIOSE CALIFORNIA		Notes: ** USCS -	Symbol of Uni	lotes: ** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual procedures with ASTM D2488 or visual-manual
	9	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								classificati with ASTM	on based on Is 1 D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
_		Geotechnic	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	2	Job No.: 204104.10
														- II

				Grain	Grain Size Analysis	lyeic	*	sthere I mit	r	laconfined	1	Č	Mainten	
Boring	Sample	Depth	-	5	2000	Sicol	1		Ĭ		Lao	ر ک	Moisture	
, Ö	Š	·€	2550	gravel	sand	fines	1	<u>ا</u>	₫	Comp.	Vane	Density	Content	Remarks
				(%)	8	8				(q _u , ksf)	(S _u , ksf)	(pcf)	(%)	
BH-26	-	22.5	ರ									-		
BH-26	2	27.5	ರ									92.1	31	
BH-26	3	32.3	SC/CL	0	52	49							25	
BH-26	4	36.2	SM											
BH-26	2	42.2	C.									•	1	
BH-26	9	47.0	SC											
BH-26	7	50.3	ر ا											
BH-26	8	56.3	SP-SC	33	09	7							13	
BH-26	6	61.5	ML									•	1	
BH-26	10	67.5	ر ا									105.1	22	
BH-26	11	72.5	ರ									,	•	
BH-26	12	77.5	ក									99.1	25	
BH-26	13	81.5	C C								Ē			
BH-26	14	91.0	ر ا	2	33	99						f	26	
BH-26	15	102.5	C C										-	
BH-26	16	111.5	ر ال	1	30	69						'	21	Hydrometer Test
BH-26	17	_	•										•	
BH-26	18	117.3	SM									1		
BH-26	19	121.5	ر ا										-	
BH-26	20	125.7	GW-GC	50	41	6						1	10	
BH-26	21	131.5	占										ı	
BH-26	22	,	'									1	•	
BH-26	22A	137.0	ರ										ı	
BH-26	23	141.5	ರ									•	•	
BH-26	24	147.5	ರ									103.2	23	
BH-26	25	152.5	ರ									•	-	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BH-26	56	155.0	ರ									•	-	
			SUMMARY OF LABORATORY TEST	OF LABO)RATOR'	Y TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF S	EGMENT	OF SILIC	ON VALL	EY RAPI	TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	(SVRT)	PROJECT		** USCS - visual-man	Symbol of Uniual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	Q	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classification with ASTM	on based on I. I D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Engine	ering						•	Date: 6/2005	5	Job No.: 204104.10

				- Grain	Grain Size Analysis	lyeic	A#c	Afferberg imite	ءِ	Podgacoul I	101	å		
מ	Sample	ш	***************************************	0,000	P400	£ 200		85	3		ָ בַּמַ	ָ בֿ	Moisine	,
ġ	Š	€	3	Glavel (%)	Sand (%)	sauu	=======================================	굽	ā	Comp.	Vane	Density	Content	Remarks
BH-28	,	21.8	٢	(8)	(9)	(%)				(dn, KSI)	(S ₀ , KST)	(bct)	(%)	
BH-28	2	26.5	N 5	6	5	87							. {	
BH-28	ı e	32.5	3 3		2	5						•	32	
BH-28	4	37.4	SM									, ,		
BH-28	5	40.7	GP-GM	56	34	=							10	
BH-28	9	45.7	SM										2 .	
BH-28		52.2	ರ										•	
BH-28	8	55.0	ರ									,		
BH-28	6	57.3	ರ										•	
BH-28	10	61.8	SM											
BH-28	11	8:59	ರ									,	,	
BH-28	12	71.9	SC							<u> </u>			•	
BH-28	13	0.77	Cl	0	41	59						1	21	
BH-28	14	82.0	CL CL											
BH-28	15	91.3	ر ا										ı	
BH-28	16	101.4	SM									•	1	
BH-28	17	112.5	ರ											
BH-28	18	115.7	7										ı	
BH-28	19	121.3	ML									,		
BH-28	20	125.7	CF											
BH-28	21	132.5	ر ا									,	1	
BH-28	22	135.0	CL									ı		
BH-28	23	137.5	ರ									1		
BH-28	24	139.1	ე							 		,		
BH-28	25	141.8	ರ									,		
BH-28	56	145.0	ರ											
BH-28	27	150.0	ಠ									,		
			SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	OF LABC EGMENT	OF SILICA	7 TEST R	RESULTS LEY RAPIC) TRANSIT	r (SVRT)	PROJECT		Notes: ** USCS - :	Symbol of Uni ual procedure	otes: ** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH CO	PARIKH CONSULTANTS, INC.	TS, INC.								classification with ASTM	on based on It D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic 	Geotechnical & Materials Engineering	ıls Engine.	ering						•	Date: 6/2005	10	Job No.: 204104.10

Samole	ŧ		Grair	Grain Size Analysis	alysis	Atte	Atterberg Limits	lits	Unconfined	Lab	ριλ	Moisture	
No. (ft) USCS**	Sn	ķ	gravel	sand	fines	=	占	ā	Сотр.	Vane	Density	Content	Remarks
+			(%)	(%)	(%)				(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
51.8	4	ರ									1	•	
2 55.3 (_	귕									•	•	
3 61.5 SV	Ś	SW-SM			80						1	o	
65.5	_	占	23	23	54						,	28	
5 70.7		占				32	17	15				24	
6 76.5	_	占	0	17	83						107.4	24	
80.0 C	O	CL-ML				24	19	5				24	
8 86.5		ರ	0	31	69						104.2	24	
9 92.5		ರ									,		
10 95.8		SC	12	54	35						119.3	17	
11 102.0		SM			40						•	19	
12 107.5		CL CL										,	
13 112.5		ರ											
									:				
	_												
	-												
	\dashv												
	\downarrow												
	\dashv												
	4												
	\dashv												
	-	ĺ											
	_												
	-												
	\perp												
	4												
ns ∩S	3 ⊓	IMMARY INNEL S	SUMMARY OF LABORATORY TEST TUNNEL SEGMENT OF SILICON VAI	ORATOR OF SILIC	Y TEST R YON VALL	RESULTS Ley Rapid) TRANSI	IT (SVRT)	SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT		Notes:	Svmbol of Un	otes: ** USCS - Symbol of Unified Soil Classification System per
SA	SA	N JOSE	SAN JOSE, CALIFORNIA	RNIA							visual-mar	nual procedure	visual-manual procedures in accordance with ASTM D2488 or
PARIKH CONSULTANTS, INC.	SON	SULTAN	TS, INC.								with ASTN	1 D2487 when	with ASTM D2487 when laboratory data is available.
Geotechnical & Materials Engineering	ical	s Materi	als Engine	ening							Date: 6/2005	5	Job No.: 204104.10
	۱												

	Remarks																							otes: ** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or	crassification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.	Job No.: 204104.10
Moisture	Content	(%)	21		21	22	11	23	22	22	6	41	က		S									Symbol of Unificinal procedures	D2487 when la	
Dry	Density	(bct)	•	. 1	•	89.3	122.0	102.3	-	108.4	•	117.4	1											Notes: ** USCS - visual-mar	with ASTN	Date: 6/2005
Lab	Vane	(S _u , ksf)												:												
Unconfined	Сошр.	(q _u , ksf)						2.1		2.6									:					PROJECT		
imits	ā	Ξ.																						SIT (SVRT)		
Atterberg Limits	_ 	7																						'S PID TRAN		
	Ξ	4																				_		RESULTS Ley Rapii		
alysis	fines	%)	75		61	32	6		91		20	13	22											XY TEST SON VAL		
Grain Size Analysis	sand	(%)	24			89	43					52										İ		DRATOF OF SILIC		ering
Grail	gravel	(%)	0			0	48					36												OF LAB GMENT CALIFO	TS, INC.	ls Engine
	USCS**		귕	ರ	ರ	သွ	GP-GM	ರ	บี	ರ	သွ	SC	SC	บี										SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	PARIKH CONSULTANTS, INC.	Geotechnical & Materials Engineering
i	uden (€)		40.7	44.3	50.5	55.3	58.3	70.2	76.5	80.0	86.0	88.8	94.4	99.7											PARIKH CO	Geotechnic
Comple	Sample No.		-	2	3	4	5	9	7	8	0	9	11	12										ĺ	O	
	S o		BH-31	BH-31	BH-31	BH-31	BH-31	BH-31	BH-31	BH-31	BH-31	BH-31	BH-31	BH-31												J

ć				Grain	Grain Size Analysis	lysis	Atte	Atterberg Limits	इ	Unconfined	Lab	ρ	Moisture	
No.	Sample No.	(#)	uscs**	gravel	sand	fines	=	곱	_	Comp.	Vane	Density	Content	Remarks
				(%)	(%)	(%)				(q _u , ksf)	(S ₀ , ksf)	(bct)	(%)	
BH-32	-	32.4	ರ									•		
BH-32	7	37.4	ರ									-	1	
BH-32	က	42.0	SM	0	74	56						93.3	25	
BH-32	4	47.2	ರ									•		
BH-32	2	52.3	ر 2			81	27	18	თ			101.5	23	
BH-32	9	57.1	CL										-	
BH-32	7	60.8	GW-GM	52	දි	6							80	
BH-32	80	8.99	CL			\$	36	18	18				23	
BH-32	6	71.5	CL	6	28	63						111.7	17	
BH-32	10	77.0	CL									102.0	23	
BH-32	11	80.5	29	64	17	20						123.3	12	
BH-32	12	87.2	CL											
BH-32	13	92.5	ML	-	8	64						104.0	21	0.000
						- "								
								\dagger						
			SUMMARY OF LABORATORY TEST	OF LABO	SRATORY		RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT	OF SILIC	ON VALLI	EY RAPIC	TRANSI	T (SVRT)	PROJECT		** USCS visual-man	Symbol of Unual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKHC	PARIKH CONSTITUTE	CNI CNI								classification with ASTM	on based on l D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
_		Geotechnic	Geotechnical & Materials Engineering	is Engine	ering						,	Date: 6/2005		Job No - 204104 10

				1	3			1		L			
Boring	Sample	Depth		5	Gidili Oize Alidiysis	alysis	Alle	Allerberg Limits	Oncontined		<u>ک</u> د	Moisture	
Š	2	€	nscs	grave	sand	fines		<u>۔</u> ا	Pl Comp.	Vane	Density	Content	Remarks
				%	(%)	(%)	;		(q _u , ksf)) (S _u , ksf)	(bct)	(%)	
BH-34	-	7.8	ರ								•	1	
BH-34	2	12.3	7								91.8	30	
BH-34	3	22.4	CL-ML								,	,	
BH-34	4	32.5	טר								100.7	21	
BH-34	5	42.5	MS								ļ ,		
BH-34	9	52.5	บ								105.9	22	
BH-34	7	61.7	น								•	·	
BH-34	8	71.1	CL	į					!		,		
BH-34	6	80.8	SW-SM	10	78	12					116.7	16	
BH-34	10	90.8	GW-GM	29	26	7						1	
BH-34	11	100.8	SP-SM	0	06	10					105.5	20	
BH-34	12	111.3	ML	0	10	90						,	Hydrometer Test
BH-34	13	117.5	ರ								•	1	
BH-34	14	122.5	ದ								,	'	
BH-34	51	127.2	บ	0	4	26					94.3	28	Hydrometer Test
BH-34	16	131.8	ᆼ								,	•	
BH-34	17	136.9	7								•	-	
BH-34	18	142.4	Cl.								101.3	24	
BH-34	19	147.1	ರ								•	,	
BH-34	20	150.8	MIL	0	38	62					-	23	
İ			İ										
			SUMMARY OF LABORATORY TEST	OF LAB(DRATOR		RESULTS				Notes:		
			TUNNEL SEGMENT OF S SAN JOSE, CALIFORNIA	EGMENT CALIFOF	OF SILIC	ON VALL	ey rapic	TRANSIT (TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	5	** USCS visual-ma	- Symbol of Un inual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	O	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.							with AST	M D2487 when	crassing the second and a second and second and with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering						Date: 6/2005	35	Job No.: 204104.10

				Grain	Grain Size Analysis	lyeic	Δ#¢	Attorboro imite	- I looning	40-	ċ	100000	
Boring	Sample	Depth	****	5		2		SINCIA CILINIS			, D	Moisture	
ė Ž	ė	£	Saca	gravei (%)	sand (%)	rines (%)	=	4	PI Comp.	Vane (S. ksf)	Density	Content (%)	Remarks
BH-35	1	22.1	占						000	(2)	(124)	(2)	
BH-35	2	25.0	占								93.1	28	
BH-35	3	27.0	CL								•	ı	
BH-35	4	30.0	ر ا									'	
BH-35	5	32.3	ر ا										
BH-35	9	34.8	CL									-	
BH-35	7	37.5	CL								102.5	22	
BH-35	8	39.9	ر ا								•		
BH-35	6	42.5	CL						1.8		101.4	25	
BH-35	10	47.2	CL						!		•		
BH-35	11B	49.2	CL			94					ı	1	
BH-35	11A	49.7	SM/ML	0	53	47					100.2	25	
BH-35	12	52.5	ر ا			94						1	
BH-35	13	54.3	CL CL			98							
BH-35	14B	59.4	C			96							
BH-35	14A	59.9	占	0	28	72			3.6		100.5	25	
BH-35	150	61.0	ರ			79					' 	•	
BH-35	15C	61.5	ರ			71					•	•	
BH-35	15A	62.5	占								,	1	
BH-35	16	64.8	占			88					,	·	
BH-35	17	67.5	ರ	18	24	69					107.7	02	
BH-35	18	72.2	占								ļ	•	
BH-35	19	73.0	GW-GM	47	46	89					,	10	
BH-35	20	75.5	GW-GM								_	ı	
BH-35	21	78.0	GW-GM								•	f	
									:				
			SUMMARY OF LABORATORY TEST	OF LABO	ORATOR'	YTESTR	RESULTS		i i		Notes:		
ļ	ĺ		SAN JOSE, CALIFORNIA	CALIFOR	OF SILIC	ON VALL	H KAF	U IKANSII (FOWNEL SEGMENT OF SILICON VALLET RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA		visual-mar	Symbol of Unual procedure	USCS - Symbol of Unitied Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	O	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.							with ASTM	Ion based on I	crassification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ils Engine	ering						Date: 6/2005	5	Job No.: 204104.10

				Grain	Grain Size Analysis	alveis	Affe	Atterhera I imite	-	Inconfined	-	è	N Contract	
ō	Sample	Depth	**80081	0,000	Pacs	200		850			ָר מַּ	ر ج	Moisiule	
o S	ė.	(ft)	2	(%)	(%)	§ §	1	<u>ل</u>	₫	(a _{ur} ksf)	vane (S _{II} , ksf)	Density (pcf)	Content (%)	Remarks
BH-38	-	21.5	CL										,	
BH-38	2	26.5	CL											
BH-38	3	31.3	CL				45	18	27	2.5		94.2	28	
BH-38	4	35.0	ML											
BH-38	5	40.0	GM	36	35	53						•	15	
BH-38	9	,	•											
BH-38	7	49.9	SM											
BH-38	8	51.0	SM											
BH-38	6	52.0	SM											
BH-38	10	55.3	SM	0	98	4						,	22	
BH-38	11	60.2	ML											
BH-38	12	65.3	SW-SC											
BH-38	13	71.0	ر ال				33	17	16	3.1		105.8	21	
BH-38	14	76.3	CL										ŀ	
BH-38	15	78.8	CL	0	14	98						98.7	24	
ВН-38	16	82.0	SM											
BH-38	17	86.0	귕											
BH-38	18	90.5	SP-SM									,		
BH-38	19	95.0	CL-ML				27	21	9	2.6		109.2	22	
			SUMMARY OF LABORATORY TEST RESULTS	OF LABO	RATOR	Y TEST R	ESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	CALIFOR	OF SILIC	ON VALL	EY RAPII	TRANSI	T (SVRT)	PROJECT		** USCS - visual-man	Symbol of Uni	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classificati	on based on K I D2487 when	crassification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	5	Job No.: 204104.10

				S. C.	Grain Sizo Analysis	hoio	**	المتوطعة		11222		6		
6	Sample	Depth	***************************************	5	NE AZIO	SIS 1		Allei Derg Limits	2	Onconfined	Lab	, S	Moisture	
	Š.	Œ	- SOSO	gravel	sand	tines	글	చ	₫	Comp D	Vane	Density	Content	Remarks
				%	8	(%)				(q _u , ksf)	(S _u , ksf)	(pcf)	(%)	
BH40	-	12.5	ᆼ									1	•	
BH-40	2	14.6	CH									81.1	39	
BH-40	3	16.7	СН											
BH-40	4	19.8	СН										•	
BH-40	5	•	•									-		
BH-40	9	24.3	공				22	22	32	2.0		83.0	38	
BH-40	7	27.5	ъ										1	
BH-40	8	30.0	ರ									•	ı	
BH-40	6	32.5	ر ا									93.7	29	
BH-40	10	37.5	CL-ML										ı	
BH-40	11	39.5	CL-ML									1		
BH-40	12	42.5	CL-ML				27	21	9	2.2		97.8	26	
BH-40	13	47.2	CL										ı	
BH-40	14	50.0	ูบ										,	
BH-40	15	52.5	כר			94						94.5	27	
BH-40	16C	56.5	บ			58						,		
BH-40	16A	57.5	OL			94						,	,	
BH-40	17	0.09	OL.			88							•	
BH-40	18	62.4	QL CL			06						99.1	24	
BH-40	19	64.0	SM	5	62	33						•		
BH-40	20	65.8	SM	22	90	18						, .	16	
BH-40	21	68.3	SM										1	
		į												
			SUMMARY OF LABORATORY TEST	OF LABO	JRATOR	Y TEST R	RESULTS					Notes:		
	í		TUNNEL SEGMENT OF SILICON VAL SAN JOSE, CALIFORNIA	EGMENT , CALIFOF	OF SILIC	ON VALL	EY RAPII	D TRANS	IT (SVRT)	LEY RAPID TRANSIT (SVRT) PROJECT		** USCS - visual-mar	Symbol of United procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or classification based on laboratory test acculte in accordance.
	<u> </u>	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								with ASTN	D2487 when	with ASTM D2487 when laboratory data is available.
J		Geotechni	Geotechnical & Materials Engineering	als Engine	ering			i				Date: 6/2005	10	Job No.: 204104.10

_				Grain	Grain Size Analysis	iveis	Δ#Φ	Atterhern imite		Decipood	40	à	Mainteres	
0	Sample	Depth	**8.08.1	lovero	Paca	£100		65			20 3	<u></u>	DIDISION O	
ġ	<u>9</u>	Œ		(%)	(%)	2 %	-	굽	ā	(a ksf)	vane (S. ksf)	Density	Content (%)	Кетаткѕ
BH-42	-	4.0	ರ										(a)	
BH-42	2	6.0	SM	2	57	14						114.6	16	
BH-42	3	12.3	CL											
BH-42	4	17.0	CL										•	
BH-42	5	27.5	CL										29	10 10 10 10 10 10 10 10 10 10 10 10 10 1
BH-42	9	29.9	CL										-	
BH-42	7	37.5	CL									93.8	28	
BH-42	8	42.3	CL/SC	1	48	50						109.4	18	
BH-42	D	45.8	GW-GM	47	44	10							1	
BH-42	10	50.9	CL				38	18	20	2.0		92.8	27	
BH-42	11	57.4	CL									1		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BH-42	12	62.5	CL				31	16	15	3.9		107.1	20	
	†													
								+			j			
											i			
	1													
			SUMMARY OF LABORATORY TEST RESULTS	OF LABC	RATOR	/ TEST R	ESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT	EGMENT (OF SILIC	ON VALL	EY RAPID	TRANSI	T (SVRT)	PROJECT		*- SOSO **	Symbol of Un	** USCS - Symbol of Unified Soil Classification System per
ı	(SAN JOSE, CALIFORNIA	CALIFOR	¥N.							visual-man classificatio	ual procedura หา based on la	visual-manual procedures in accordance with ASTM D2488 or classification based on laboratory test results in accordance
	9	PARIKH CO	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	als Engine.	ering							Date: 6/2005		Job No.: 204104.10
														- 11

	Remarks																								999999999999999999999999999999999999999				otes: ** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.	Job No.: 204104.10
Moisture	Content	(%)	1	,		,	36		24		38	22		8	ı	•	10	ı	1	12	•	1	•	28					Symbol of Unifie	on based on lab D2487 when la	
Dry	Density	(bct)			1		83.5		9.66	-	83.5	100.9	,		•	ı		•	•	•		-	-	94.6					Notes: ** USCS - sistal-man	classificatio with ASTM	Date: 6/2005
Lab	Vane	(S _u , ksf)																													
Unconfined	Сощр.	(q _u , ksf)					6.0					2.0												1.9					' RESULTS ILEY RAPID TRANSIT (SVRT) PROJECT		
mits	ā	Ī																											SIT (SVRT		
Atterberg Limits	ā	1																											S PID TRAN		
Ä	=	1										_																	RESULT LLEY RAF		
nalysis	fines	(%)												9			9			10						i		_	RY TEST CON VAI		
Grain Size Analysis	sand	(%)												32			39			09									ORATO		eering
Grai	gravel	(%)												62			55			31							ļ		OF LAB	ITS, INC.	als Engin
	USCS**		ML	ML	SM	СН	ซ	СН	CL	บ	ᆼ	ე	GP-GM	GP-GM	GP-GM	GP-GM	GW-GM	GW-GM	GW-GM	SW-SM	SW-SM	ರ	•	ರ					SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPIL	PARIKH CONSULTANTS, INC.	Geotechnical & Materials Engineering
#0.0	Tebel ⊕		6.3	8.8	10.4	15.0	17.3	19.8	22.5	25.0	27.5	30.0	31.0	33.7	35.8	38.2	40.4	43.0	45.7	48.0	50.2	52.7	ı	60.0						PARIKHC	Geotechnik
olemen.	No.		-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22						9	
Doring	S S		BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43	BH-43							

		:		Grain	Grain Size Analysis	alysis	Atte	Atterberg Limits	its	Unconfined	Lab	20	Moisture	
No.	Sample No.	Gepth (#)	USCS**	gravel	sand	fines	=		ā	Comp.	Vane	Density	Content	Remarks
		(2)		(%)	(%)	(%)	1	7	Ξ	(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-44	-	2.8	ᆼ											
BH-44	2	6.2	ರ											
BH-44	3	11.2	SC/CL	3	49	48						-	23	
BH-44	4	17.3	СГСН							9.0		90.5	32	
BH-44	5	22.5	CL											
BH-44	9	27.5	CL											
BH-44	7	32.5	ರ							1.8		94.7	26	
BH-44	æ	37.4	CL CL						-				,	
BH-44	6	39.9	ರ									-		
BH-44	10	44.3	GW	62	35	4						101.9	24	
BH-44	11	45.7	GW									ı	8	
BH-44	12	50.8	GW-GC	53	40	9								
BH-44	13	58.9	SW-SC									•	6	
BH-44	14	60.5	SW-SC						-				-	
												ė		
						i								
			SUMMARY OF LABORATORY TEST	OF LABC)RATOR	Y TEST R	RESULTS					Notes:	,	
,	ļ		TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	CALIFOR	OF SILIC	ON VALL	EY KAPIL	TRANSI	T (SVRT)	PROJECT		visual-man	Symbol of Unual procedure	"* USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	<u>o</u>	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	crassincation based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005		Job No.: 204104.10

				Grain	Grain Sign Applyais	io.	× ×	1						
Boring	Sample	Depth	***************************************		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sick		Ailei Dei g Liffilis		Daulinopino	Lab	<u>}</u>	Moisture	
ġ	ġ	Œ)	3	(%)	pues (%)	seumes (%)	1	<u>ا</u>	ᅙ	Comp.	Vane	Density	Content	Remarks
BH-46	-	6.0	ដ						+-	(do, noi)	(Sur NSI)	(bci)	(%)	
BH-46	2	10.0	သွ										 - 	
BH-46	3	11.1	SM					:						
BH-46	4	14.5	C									91.5	29	
BH-46	5	15.7	SP									,		
BH-46	9	20.0	CL CL											
BH-46	7	22.5	ูบ				42	22	20	6.0		91.1	30	
BH-46	ω	25.0	ر ر										,	
BH-46	6	27.5	СН									80.9	41	
BH-46	10	29.8	sc					-				,		
BH-46	11	31.0	SW-SM	35	54	7-							13	
BH-46	12	'	•							-				
BH-46	13	38.5	SW-SM											
BH-46	4	41.1	SP-SM	47	47	9			-				=	
BH-46	15	43.8	GP-GM											5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BH-46	16	46.0	GP-GM	49	46	9						,	12	
BH-46	17	48.8	ML/CL											
BH-46	18B	52.0	ML/CL			96						. 1	1	
BH-46	18A	52.5	ML/CL			92	36	25	1	3.1		91.8	30	
BH-46	19D	56.0	MUCL			83								
BH-46	19B	57.0	ರ			83						,		
BH-46	8	0.09	CL-ML			97						99.3	25	
			SIMMARY OF LABORATORY TEST	OE I ABO	Yactva		35 100					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	GMENT (OF SILIC	ON VALLE	EY RAPID	TRANSII	r (SVRT)	PROJECT		** USCS -: visual-man	Symbol of Unual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
		PARIKH CO	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ls Enginet _	ering							Date: 6/2005		Job No.: 204104.10

				Grain	Grain Size Analysis	ksis	Affe	Atterbero imits		Inconfined	- 4g	È	Mojeturo	
o	Sample	Depth	USCS**	gravel	Sand	fines				i i	200/	Consity	Contont	9
Ö Z	o Ž	E)		(%)	(%)	(%)	∃	굽	₫	(q _u , ksf)	(S _{II} , ksf)	(bcl)	(%)	SV IBILIX
BH-48	1	15.5	SM								,	-		
BH-48	2	22.2	CL											
BH-48	3	27.4	CL									•	-	
BH-48	4	34.9	ML									,	1	
BH-48	5	40.0	ರ				29	18	11	3.7		109.0	19	
BH-48	9	44.0	SM	0	73	27						. 1	24	
BH-48	7	54.0	CL	0	27	73							23	
BH-48	8	61.7	CL.									ı		
BH-48	6	66.5	SW-SM	33	09	7					-		10	
BH-48	10	70.7	SP-SM	42	49	6						,	12	
BH-48	11	77.5	บ				38	18	20	3.7		100.5	24	
BH-48	12	82.5	ರ										•	
BH-48	13	86.0	SM									•	-	
														2
			SUMMARY OF LABORATORY TEST	OF LABO)RATOR'	Y TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT , CALIFOF	OF SILIC ∛NIA	ON VALL	EY RAPII	O TRANSI	IT (SVRT	PROJECT		** USCS - visual-man	Symbol of United In the Symbol of United Inc.	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	Q	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								classificati with ASTM	on based on I I D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechni	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	5	Job No.: 204104.10

	Remarks	19 19 19 19		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5																				** USCS - Symbol of Unified Soil Classification System per	visuarinariual procedures in accordance with ASTM 02466 or classification based on laboratory test results in accordance with ASTM 02487 when laboratory data is available.		Job No.: 204104.10
Moisture	Content (%)	2	'	24	80	1		17	22	56	,		'	1										Symbol of Unifi	ual procedures on based on lat 102487 when Is		
Dry	Density (pcf)	(is.el)	,	99.1				113.3	95.0	100.6		•		,									Notes:	- SOSO	classification		Date: 6/2005
Lab	Vane (S., ksf)	(m)										:															
Unconfined	Comp.									2.1														TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT			
mits	<u>a</u>																							SIT (SVRT			
Atterberg Limits	립																		,	•			u	ID TRANS			
Ā	그			:																			PECIII TO	LEY RAF			:
alysis	fines (%)				6	09		49	31										į	j			Y TEST	CON VAL			
Grain Size Analysis	sand (%)				40			33	89										į				OPATOR	OF SILI	<u> </u>	sering	
Grai	gravel (%)				25			0	-														OF LAB	EGMENT		ITS, INC. als Engine	,
	USCS**	ت ت	CL	CL.	GW-GM	ML	ML	ML	SM	겁	CL CL	겁	SP-SC	CL									SHMMARY OF I ABORATORY TEST	TUNNEL SI	SAIN JOSE, CALIFORNIA	PARIKH CONSULTANTS, INC. Geotechnical & Materials Engineering	
- three		17.5	22.5	26.5	30.4	35.5	41.1	47.1	52.0	56.5	62.1	67.3	72.0	77.5												Geotechnic	
olumeS	S O	-	2	3	4	5	9	7	8	6	5	7	12	13											C		
Boring		BH-49	BH-49	BH-49	BH-49	BH-49	BH-49	BH-49	BH-49	BH-49	BH-49	BH-49	BH-49	BH-49											•	<u></u>	

				Grain	Grain Size Analysis	lveis	Atto	Atterhera I imite		1 Inconfined	40	č	Moioturo	
Boring	Sample	Depth	uscs**	gravel	sand	fines				Comp.	Vane	Density	Content	Remarks
2	<u> </u>	(m)		(%)	(%)	(%)		٦ -	<u>.</u>	(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-50	-	3.1	끙									•	23	
BH-50	2	6.8	ರ				37	22	15	3.1		104.1	22	
BH-50	3	12.2	ರ				38	22	16	1.4		91.9	31	
BH-50	4	16.4	ರ				43	21	22	3.4		104.9	23	
BH-50	5	25.0	겁									89.0	32	
BH-50	9	27.3	ML									91.0	32	
BH-50	7	32.5	ರ				35	20	15	1.2		90.1	31	
BH-50	8	37.2	Н				56	27	59	4.1		79.7	14	
BH-50	6	45.0	ರ									102.0	25	
BH-50	10	47.5	ರ									98.8	27	
BH-50	1	52.5	ರ				36	23	13	2.2		90.2	32	
BH-50	12	56.3	ರ								:		29	
BH-50	13	61.1	SP-SM	35	59	9						,	24	
BH-50	14	70.4	ML										23	
BH-50	15	80.5	GP-GM	49	45	9							o	
BH-50	16	90.0	GW-GM	48	42	6						•	80	
BH-50	17	101.2	ರ				33	22	11			104.8	23	
BH-50	18	111.4	ರ				27	19	8	2.4		101.9	22	
BH-50	19	120.5	占	0	6	91	36	19	17			•	25	
BH-50	×	'										-	•	
BH-50	20	130.5	SM	-	83	17						-	25	:
BH-50	21	140.5	ರ	0	9	94	35	21	14			•	26	
BH-50	22	150.5	ML	0	20	80	31	24	7			•	23	
			SUMMARY OF LABORATORY TEST	OF LABC)RATOR	Y TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALI SAN JOSE, CALIFORNIA	EGMENT , CALIFOF	OF SILIC	ON VALL	EY RAPII) TRANSI	T (SVRT)	LEY RAPID TRANSIT (SVRT) PROJECT		** USCS - visual-man	Symbol of Unual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								with ASTM	on based on t 1 D2487 when	crassincation based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
]		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	2	Job No.: 204104.10

				Grain	Grain Size Analysis	hoic	***	Attorborg Limits		l localing a	40	å		
מ	Sample	Depth	***************************************			25	1	850	2		L'AD	<u> </u>	Moisture	
ġ	ò	€)	33	gravel (e/)	sand (%)	Tines		굽	ਛ	Comp	Vane	Density	Content	Remarks
	1			<u>@</u>	(%)	(§)				(q _u , kst)	(S _u , ksf)	(bct)	(%)	
BH-52	-	3.5	ರ										22	
BH-52	2	7.5	ML									-	21	
BH-52	က	12.4	ರ	ĺ								93.7	30	
BH-52	4	15.0	ರ									108.6	21	
BH-52	5	16.3	CL									110.0	19	
BH-52	9	19.5	CL				26	17	6			111.9	18	
BH-52	7	22.0	ML									102.9	32	
BH-52	80	24.2	C									98.3	26	
BH-52	o	26.9	CL			55						98.2	28	
BH-52	10	29.4	C C									9.66	24	
BH-52	11	31.9	CL				38	20	18	1.6		91.7	30	
BH-52	12	34.5	CL									86.3	37	
BH-52	13	36.6	СН				51	25	26	1.5		7.87	43	
BH-52	4	39.1	ᆼ				72	28	44	2.0		80.5	40	
BH-52	15	41.4	딩				46	19	27			101.0	26	
BH-52	16	44.5	ر ا									95.4	58	
BH-52	17	46.7	占				36	21	15			93.3	25	
BH-52	18	49.3	占									3'68	33	
BH-52	19	52.0	占									1001	26	
BH-52	20	54.5	ML	0	4	56						107.8	21	
BH-52	21	56.7	CUSC	0	48	53	33	22	11	1.7		91.6	28	
BH-52	22	58.8	占									102.4	26	
BH-52	8	61.0	SM	0	77	23						ŀ	28	
BH-52	24	63.6	ΒW									•	- 8	
BH-52	22	65.8	SP-SM	45	49	9						•	10	
BH-52	88	68.7	¥									•	19	
BH-52	27	70.8	SM									,	25	
			SUMMARY OF LABORATORY TEST	OF LABC	RATORY	TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT - CALIFOR	OF SILIC	ON VALL	EY RAPID	TRANSII	r (SVRT)	PROJECT		** USCS -	Symbol of United Interest of Uni	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C(PARIKH CONSULTANTS, INC.	TS, INC.								classificati with ASTM	on based on I D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ls Engine	ering							Date: 6/2005	10	Job No.: 204104.10

				Grain	Grain Size Analysis	alysis	Atte	Atterberg Limits		Unconfined	Lab	کارا	Moisture	
Boning	Sample	Depth (#)	USCS**	gravel	sand	fines		7 7	T	Comp.	Vane	Density	Content	Remarks
į	2	(1)		(%)	(%)	(%)	1	7	Σ	(q _u , ksf)	(S _u , ksf)	(bcl)	(%)	
BH-52	28	75.2	SP-SM	32	58	10						,	12	
BH-52	29	81.0	SP-SM									•	28	
BH-52	30	84.9	SW-SM	40	55	9						•	10	
BH-52	31	90.1	SW-SM	25	89	80						•	12	
BH-52	32	94.3	SW-SM										18	
BH-52	33	101.5	겁										19	
BH-52	34	106.5	디									108.9	23	
BH-52	35	111.5	ರ									108.3	22	
BH-52	36	116.5	ರ	0	27	73	33	21	12	5.3		103.9	21	
BH-52	37	121.5	SC/CL	3	50	48						112.4	18	
BH-52	38	130.3	SM	0	83	17						1	22	
BH-52	39	141.5	占				į					103.5	23	
BH-52	40	150.3	SM/ML	0	99	45						-	25	
							1							
												_ •		
		i												
			SUMMARY OF LABORATORY TEST	OF LAB	ORATOR	Y TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT,	OF SILIC	ON VALL	EY RAPIC	TRANSI	T (SVRT)	PROJECT		** USCS - visual-mar	Symbol of Un rual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or procedure with ASTM D2488 or proce
	<u> </u>	PARIKHC	PARIKH CONSULTANTS, INC.	ITS, INC.								with ASTN	4 D2487 when	with ASTM D2487 when laboratory data is available.
]		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	5	Job No.: 204104.10

ý.	nt Remarks																														** USCS - Symbol of Unified Soil Classification System per	visual-infantual procedures in accordance with ASTM DZ488 or classification based on laboratory test results in accordance with ASTM DZ487 when laboratory data is available.	
Moisture	Content	%	21	27	27	21	32	33	25	32	29	24	24	29	25	24	29	24	28	19	27	80	#	29	22	20	19	32	33		Symbol o	on based On based 1 D2487 w	
Dry	Density	(bct)	103.2	•	99.1	106.7		88.1	99.8	 	0.99	100.6		93.4	•	'	93.7	98.7	•		,	, 	-	-		110.7		•	•	Notes:	-* USCS	visual-III.al classificati with ASTIV	
Lab	Vane	(S _u , ksf)																															
Unconfined	Сотр.	(q _v , ksf)						1.3				3.6		2.6																			
nits	<u>a</u> .		18		11	17		9	6		38	24		9		9	4							24		12		12					
Atterberg Limits	곱		23		21	19		26	22		35	20		23		24	30							22		15		25					
Attr	17		41		32	36		32	31		23	44		33		30	34							46		27		37					
alysis	fines	(%)														78			46		14	9			52	45	10						
Grain Size Analysis	sand	8	:																54		98	53			84		82				;	₹	
Grair	gravel	(%)																	0		0	41			0		6				<u>.</u> !	TS. INC.	
	USCS**		ರ	ಠ	ರ	ರ	ರ	ML	CL	CL	MH/CH	ರ	ರ	ರ	ರ	ML	M	ರ	SM/ML	ರ	SM	SW-SM	SW-SM	ರ	CL/SC	သင	SP-SM	ML	ML		1 0	PARIKH CONSULTANTS. INC.	
	(#)		4.9	7.1	12.2	17.0	22.5	25.0	27.2	31.5	37.5	42.2	45.0	47.5	52.5	54.2	57.3	62.4	66.5	71.5	76.3	81.0	91.0	100.5	110.5	116.5	120.2	125.2	131.5			PARIKH C	
-1	No.		-	2	3	4	5	9	7	8	6	10	11	12	13	4	15	16	17	18	19	20	21	22	23	24	52	56	27			0	
1000	No.		BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53	BH-53				

aj	nt Remarks																		otes: ** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or	orassincation based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.	
Moisture	Content (%)	24	24	23	32														- Symbol c	M D2487	
کام	Density (pcf)		106.2	,	90.2														Notes: ** USCS visual-m	with AST	
Lab	Vane (S.,, ksf)						5					:									
Unconfined	Comp.										-) PROJECT		
imits	٦	17	2		19														SIT (SVRI		
Atterberg Limits	~ ~	24	21		25														S ID TRAN		
¥	1	41	23		44														RESULTS		
alysis	fines (%)		79													-			Y TEST FOON VALI		
Grain Size Analysis	sand (%)													:		i			DRATOR OF SILIC		
Grain	gravel (%)																		OF LAB(GMENT CALIFOR	TS, INC.	
	uscs**	ರ	ML	ML	ರ														SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	PARIKH CONSULTANTS, INC.	
	Depth (ff)	136.5	141.4	146.5	149.0															PARIKH C	
	Sample No.	78	53	30	31															0	
	Boring No.	BH-53	BH-53	BH-53	BH-53									i							

				Grain	Grain Size Analysis	heie	ΔĦΦ	Atterborn Limits	۲	Poogacoall	-		142,24,00	
Boring	Sample	Depth	**0001	0,0,0	7000	200	<u> </u>	-			}	· ·		
9	Š	£	222	gravei (%)	Sand (%)	(%)		<u>ط</u>	<u>a</u>	Comp.	Vane (S. kef)	Density (200)	Content	Remarks
BH, 54	-	3.5	2			(2)				(Au. hai)	(Ou, NSI)	(bc)	(20)	
	- 6	3	;									,	25	
BH-54	7	6.0	ಠ				5					,	29	
BH-54	က	11.6	ರ	0	4	26	59	20	6			95.0	31	Hydrometer Test
BH-54	4	17.0	ರ				30	18	12	2.9		108.4	22	
BH-54	သ	22.5	CL-ML	0	31	69	28	21	7	6.0		96.2	28	Hydrometer Test
BH-54	9	27.4	СН									103.9	22	
BH-54	7	32.0	ದ	0	15	85	32	20	12	6.0		95.0	28	Hydrometer Test
BH-54	8	37.5	ᆼ							1.7		75.3	46	
BH-54	6	42.5	ರ	0	24	92	37	16	21	2.4		103.1	22	Hydrometer Test
BH-54	9	47.5	ರ									95.3	28	
BH-54	7	52.5	占	1	11	88	39	20	19	1.8		100.5	23	Hydrometer Test
BH-54	12	57.5	CL								:		25	
BH-54	13	62.5	CL				27	16	7			107.8	20	
BH-54	14	71.4	ML	0	35	65						100.2	21	Hydrometer Test
BH-54	15	81.0	SW-SM	42	53	9							8	
BH-54	16	91.0	CL	0	15	85	8	19	15				26	
BH-54	17	101.2	SM			40							24	
BH-54	18	111.0	SW-SM	44	48	6						•	6	
BH-54	19	120.8	SM/ML	0	55	45						-	19	
	:													
			SUMMARY OF LABORATORY TEST	OF LABO	RATOR	Y TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT CALIFOF	OF SILIC	ON VALL	EY RAPID	TRANSI	T (SVRT)	PROJECT		** USCS - visual-mar	Symbol of Unival procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	<u> </u>	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTIV	on based on i. 1 D2487 when	crassification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	2	Job No.: 204104.10

				وفق	Signal Assistance		114							
Boring	Sample	Depth	***************************************	5	317 27 C	Sis		Allei Deig Liffilis	2	Ouconined	e e	<u>></u>	Moisture	
	ò	Œ)	SOSO	gravel (%)	sand (%)	fines (%)		굽	죠	Comp. (q., ksf)	Vane (S ksf)	Density	Content (%)	Remarks
BH-55	-	3.1	ರ							(10.00)	(5): (5)	(ixd)	19	
BH-55	2	7.5	ML									,	14	
BH-55	Э	12.4	را در				35	23	12	4.7		107.5	16	
BH-55	4	16.9	C.			8	32	18	14			108.0	22	
BH-55	5	21.5	Cl.	0	13	87				:			24	
BH-55	9	26.7	ರ				31	20	=			96.1	27	
BH-55	7	32.3	บ										35	
BH-55	8	37.5	MH/CH				69	34	35			77.0	47	
BH-55	6	42.5	ู่									1	22	
BH-55	10	45.0	CL				37	17	20	2.2		101.4	24	
BH-55	11	47.5	ر ا				35	23	12			93.4	30	
BH-55	12	52.5	J J									ı	30	
BH-55	13	57.5	CL-ML			62						,	26	
BH-55	14	62.5	CL-ML				24	17	7			111.5	19	
BH-55	15	67.3	CL-ML									,	23	
BH-55	16	71.6	ML			29	23	21	2	1.2		103.4	23	
BH-55	17	82.5	GW-GM	52	38	10							10	
BH-55	18	86.7	SW-SM	40	52	8						•	10	
BH-55	19	90.7	SW-SM										13	
BH-55	20	94.5	GP-GM	55	33	12						•	6	
BH-55	21	100.3	ML	0	42	59							24	Hydrometer Test
BH-55	22	110.8	占									102.0	23	
BH-55	23	115.8	ML									102.0	23	
BH-55	24	120.5	SM	i								_	24	
BH-55	25	125.3	M									•	26	
BH-55	26	131.5	겁									107.5	21	
BH-55	27	136.5	ರ				39	21	18			103.9	23	
												Notes:		
			SAN JOSE, CALIFORNIA	CALIFOF	≷NIA							** USCS - visual-man	Symbol of Uniual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	<u> </u>	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classificativ	on based on ig D2487 when	classfrication based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Matenals Engineering	als Engine	ering						•	Date: 6/2005		Job No.: 204104.10

				Grain	Grain Size Analysis	alysis	Atte	Atterberg Limits		Unconfined	Lab	Drv	Moisture	
e e	No.	(#)	uscs**	gravel	sand	fines	=	ā	ā	Comp.	Vane	Density	Content	Remarks
				%)	(%)	(%)	ļ	J -	-	(q _u , ksf)	(S _u , ksf)	(bct)	(%)	•
BH-57	-	3.3	FILL									,	1	
BH-57	2	7.3	C										•	
BH-57	3	11.3	占							1.1		95.4	27	
BH-57	4	17.4	ᆼ										-	
BH-57	5	22.2	СН							2.0		94.1	78	
BH-57	9	27.4	CL											
BH-57	7	32.3	СН									86.1	36	
BH-57	8	37.3	บ									,	j	
BH-57	6	42.4	CL									101.5	24	
														5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			SUMMARY OF LABORATORY TEST	OF LABC	RATOR	Y TEST R	RESULTS					Notes:		
(1		I UNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	CALIFOR	OF SILIC	ON VALL	EY RAPII	O TRANSI	T (SVRT)	PROJECT		** USCS - visual-man	Symbol of Unual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	<u> </u>	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								with ASTM	D2487 when	viassification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	15	Job No.: 204104.10

				C. C.	Grain Siza Analyeis	l'veis	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	di langua		1122211				
Boring	Sample			<u>.</u>	2070	Sic		Auter Derig Liffilis	2	Onconined	Lab	ک ت	Moisture	
No.		·£		gravel (%)		fines (%)		귑	酝	Comp. (a., ksf)	Vane (S., ksf)	Density	Content (%)	Remarks
BH-58	1	3.3	ರ											
BH-58	20	6.4	ರ									,	22	
BH-58	2A	7.4	ರ				29	18	=		1.5	99.5	22	
BH-58	ဒ္ဓင	9.0	CL-ML									7.66	24	
BH-58	3B	9.5	CL-ML				24	18	9			•	27	
BH-58	3A	10.0	CL-ML								0.4	,	,	
BH-58	40	10.6	CL-ML									97.0	28	
BH-58	48	11.6	าว								1.7	-		
BH-58	44	12.1	ML/CL				44	56	18			0.96	28	
BH-58	×	•	•										,	
BH-58	50	16.5	CL-ML					-					23	
BH-58	5B	17.0	CL-ML					-			0.5		 - 	
BH-58	5A	17.5	CL-ML				21	15	9			109.4	22	
BH-58	ပ္ဖ	19.0	SP-SC						_				19	
BH-58	6A	20.0	ML/CL				35	24	7		9.0	8.66	31	
BH-58	70	21.5	ML				31	24	7			97.3	30	
BH-58	7A	22.5	ML								9.0	98.2	25	
BH-58	သ္ထ	23.3	ರ									95.3	56	
BH-58	88	23.8	ر ا								0.8	-	1	
BH-58	8A	24.3	ರ				39	24	15			94.5	31	
BH-58	ပ္ထ	26.2	ML				35	56	6			88.8	32	
BH-58	9B	26.7	ML								0.7	•		
BH-58	6	27.2	M				90	22	8			100.1	27	
BH-58	100	28.7	ML									-	30	
BH-58	108	29.2	CL/CH								6.0	-	•	
BH-58	10A	29.7	CL/CH				20	56	24			90.2	34	
BH-58	110	30.6	CLCH									•	25	
			SUMMARY OF LABORATORY TEST RESULTS TUNNE! SEGMENT OF SILLCON VALLEY RAPID TRANSIT (RVPT) DECLE	OF LABC	RATOR)	TEST R	RESULTS I FY RAPIN	TRANSI	(EG/\S) 1	TOSICA		Notes:	Supplied of the	otes:
			SAN JOSE, CALIFORNIA	CALIFOR	NIA I		} ; ; ;					visual-man	nual procedures	visual-manual procedures in accordance with ASTM D2488 or
	<u>a</u>	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	crassification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Engine	ering							Date: 6/2005	2	Job No.: 204104.10

_				Crain	Grain Size Analysis	hieie	V#0	the second	1			(
6	Sample	Depth	***************************************		0750 AIR	Sie r			2		Lao	Š	Moisture	
	ġ	£	5750	gravel (%)	Sand	tines (%)	1	굽	₫	Comp.	Vane	Density	Content	Remarks
BH-58	100	21.0]	(//0)	(8)	()	18		!	(q ₀ , KST)	(S _u , KST)	(pct)	(%)	
8 6	9	0.1.0	M:		1		39	27	12		0.7	98.1	27	
8H-58	4LT	32.1	¥						1			1	-	
BH-58	120	33.7	ML									•	30	
BH-58	12B	34.2	ML								6.0	-	1	
BH-58	12A	34.7	ML				38	29	6			94.2	30	
BH-58	130	36.1	ML										33	
BH-58	13B	36.6	ML								9.0			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BH-58	13A	37.1	ML				37	27	2			93.3	32	
BH-58	14C	38.6	MH/CH									1	34	
BH-58	14B	39.1	MH/CH								1.4	•		
BH-58	14A	39.6	MH/CH				63	32	31			86.3	36	
BH-58	150	41.0	ML/CL										40	
BH-58	15B	41.5	ML/CL								1.0	1	1	
BH-58	15A	42.0	ML/CL				48	27	12			92.7	31	
BH-58	160	43.4	ᆼ									•	33	
BH-58	16B	43.9	ᆼ								1.6	•	'	
BH-58	16A	44.4	ᆼ				51	25	56			2.06	31	
BH-58	17C	46.2	უ										29	
BH-58	17B	46.7	ರ								1.4	-		
BH-58	17A	47.2	ರ				47	24	23			92.9	30	
BH-58	180	48.4	ರ				45	17	28			102.0	22	
BH-58	18B	48.9	ರ								1.8			
BH-58	18A	49.4	ರ				32	14	18			109.4	18	
BH-58	19B	51.8	ರ				31	20	11			102.2	26	
BH-58	19A	52.3	ر ا								8.0	•	•	
BH-58	20C	53.8	ರ									97.2	25	
BH-58	20B	54.3	¥				35	25	10			,		
	1		SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	OF LABO EGMENT (CALIFOR	RATORY JF SILICC NIA	'TEST RI ON VALLE	ESULTS EY RAPID	TRANSI	T (SVRT)	PROJECT		Notes: ** USCS visual-man	Symbol of Unitual procedure	otes: ** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or place in accordance with ASTM D2488 or place in accordance with ASTM D2488 or place in the control of the c
	<u> </u>	PARIKH CO	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	with ASTM D2487 when laboratory data is available.
		Geotechnic	Geotechnical & Materials Engineering	ıls Enginee	ering							Date: 6/2005	10	Job No.: 204104.10

				, is	A SEIO		A 44.5							
Boring	Sample	Depth	1	1815	Grain Size Analysis	llysis	Arre	Agerberg Limits	2	Uncontined	Lap	ر مر	Moisture	
No.	No.		SOSO	gravel (%)	sand (%)	fines (%)		చ	ā	Comp. (q _u , ksf)	Vane (S _{iii} ksf)	Density (pcf)	Content (%)	Remarks
BH-58	20A	54.8	ML								6.0	96.5	27	
BH-58	21C	56.5	CL									•	23	
BH-58	21B	57.0	ರ								1.0	•	-	
BH-58	21A	57.5	겁				46	26	20			91.8	32	
BH-58	22C	29.0	ML									•	56	
BH-58	22B	59.5	ML								1.3	-		
BH-58	22A	0.09	ML				42	27	15			93.4	30	
BH-58	23C	61.4	CL									•	26	
BH-58	23B	61.9	CL								1.2	•	-	
BH-58	23A	62.4	CL				33	24	12			96.2	29	
BH-58	24C	64.0	ML									•	20	
BH-58	24B	64.5	ML								4.1	•		
BH-58	24A	65.0	ML				25	23	2			2.66	26	
BH-58	25C	66.5	CL									t	23	
BH-58	25B	67.0	ับ								1.1	-		
BH-58	25A	67.5	CL				35	19	16			98.3	26	
BH-58	26C	0.69	ರ										28	
BH-58	26B	69.5	占								1.8	1	•	
BH-58	26A	70.0	7				27	19	8			104.4	22	
BH-58	27	82.0	บี									-	1	
BH-58	28	91.3	ರ	•								1	,	
BH-58	29	101.2	SP-SM									-	•	
BH-58	30	110.8	SW-SM									,	•	
BH-58	31	116.3	ر ا				37	23	14			•	24	Hydrometer Test
BH-58	32	122.4	CL-ML									,	ı	
BH-58	33	127.0	SP									-	•	
BH-58	34	130.5	GP-GM	99	27	7						1	-	
			SUMMARY OF LABORATORY TEST	OF LAB(JRATOR	Y TEST R	RESULTS					Notes:		
		-	TUNNEL SEGMENT OF SILICON VAL SAN JOSE, CALIFORNIA	EGMENT CALIFOF	OF SILIC	ON VALL	EY RAPID	TRANSII	T (SVRT)	LEY RAPID TRANSIT (SVRT) PROJECT		** USCS -	Symbol of Un	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	1	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classincar with ASTN	lon based on I 1 D2487 when	crassincation based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Engine	ering							Date: 6/2005	5	Job No.: 204104.10
											7	24177		

		1		Grain	Grain Size Analysis	llysis	Aff	Atterberg Limits		Unconfined	Lab	ριλ	Moisture	
9	Sample	Depth	#SCSE	avero	pues	finor				-	,			·
o N	ģ	(#)		(%)	(%)	S 8	<u>-</u>	굽	<u>a</u>	(q _u , ksf)	vane (S _u , ksf)	Density (pcf)	Content (%)	Кетагкѕ
BH-58	35	135.4	MS										-	
BH-58	36	141.0	GW-GM	61	32	7						 -		
BH-58	37	145.8	S.									•	•	
BH-58	38	151.5	CL CL									'		
											i			
								:						
			SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	OF LABC EGMENT	DRATOR) OF SILICA NIA	Y TEST R ON VALL	RESULTS LEY RAPIC) TRANSI	T (SVRT)	PROJECT		Notes: ** USCS - visual-man	Symbol of Uni	lotes: ** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								classificati with ASTIV	ion based on k d D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	als Engine	ering		i					Date: 6/2005	5	Job No.: 204104.10

				Grain	Grain Size Analysis	lyeic	Δ#or	Atterhera I imite	ڀ	Podiagon	46		A desirability	
6	Sample	Depth	**000	10,10,10	7000	2009		- 652	2		, La	<u>.</u>	Niciolatric	
O	Š	€	3	91avc	Dillos	(%)	<u>-</u>	చ	ਛ	i G	Vane	Density	Content	Remarks
02 70	,		ē		<u> </u>	(e)	+			(q _u , KST)	(Su, KST)	(bct)	(%)	
25-100	-	2.	5									-	1	
BH-59	7	19.7	ರ									•	ı	
BH-59	3	30.5	CL Cl				4	20	24			,	28	
BH-59	4	38.9	7									,		
BH-59	5	51.0	ರ										•	
BH-59	9	60.5	ರ				90	19	=			,	22	
BH-59	7	68.8	GW-GC	51	37	12						1	{	
BH-59	8	79.7	C C	0	7	93						105.0	70	
BH-59	o	89.9	ML	0	3	67						98.8	25	Hydrometer Test
BH-59	10	99.7	SM	0	72	28						101.2	21	
BH-59	11	108.7	cc	59	59	12						,	11	
BH-59	12	119.7	ML	0	24	76						100.5	24	Hydrometer Test
BH-59	13	129.5	SM	56	55	20						,	14	
BH-59	14	138.3	GW-GM											
BH-59	15	148.8	GW-GM									•	ı	
BH-59	16	160.5	ರ				32	21	11			105.1	22	
BH-59	17	170.5	บี										<u> </u>	
BH-59	18	180.5	ᆼ									103.5	24	
BH-59	19	190.5	СН									1		
BH-59	8	200.5	Ю									109.4	21	
				•										
									1					
	1					1	1							
			SUMMARY OF LABORATORY TEST	OF LABC)RATOR)		RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	GALIFOR	OF SILIC	ON VALLI	EY RAPID	TRANSI	T (SVRT)	PROJECT		** USCS - visual-man	Symbol of Unual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	9	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classification with ASTM	on based on Ia D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ls Engine	ering	ı					<u> </u>	Date: 6/2005	10	Job No.: 204104.10

				Grain	Grain Size Analysis	No.	Atto	Atterhera I imite	١	Inconfined	40	è	A de le trans	
6	Sample	Depth	***					852	3		Lan	Š	Moistare	
Ö	ė.	Œ	555	grave:	sand (%)	IIInes	I.	٦ -	豆	Comp.	Vane	Density	Content	Remarks
2	1,			(8)	(e)	(e/.)				(q _u , KSt)	(S _u , KST)	(pct)	(%)	
00-60	-	3.1	3											
9H-60	7	10.0	ರ				28	20	8			93.2	31	
BH-60	3	20.0	ML/CL										,	
BH-60	4	32.5	ML/CL				33	23	9			8.66	24	10 10 10 10 10 10 10 10 10 10 10 10 10 1
BH-60	5	34.9	ML/CL									•	•	
BH-60	9	42.4	공				63	90	33			87.0	34	
BH-60	7	44.8	공									,	,	
BH-60	8	52.5	ರ										,	
BH-60	6	62.5	CL	0	9	96	35	20	15			100.0	24	Hydometer Test
BH-60	10	72.5	CL											
BH-60	11	75.0	CL	0	8	92	90	19	11				24	Hvdometer Test
BH-60	12B	80.3	ML	0	23	77							,	Hydometer Test
BH-60	12A	80.8	ML	0	18	82						101.0	23	
BH-60	13	92.0	ML	0	1	66	36	25	11			,	26	Hydometer Test
BH-60	×	,	•									,	•	
BH-60	4	101.2	ML	0	4	96						104.5	23	
BH-60	15	109.5	GW-GM	64	29	8						125.7	6	
BH-60	16	119.0	SP											
BH-60	17	125.6	ML	0	10	06						106.2	21	
BH-60	18	132.4	ರ									,		
BH-60	19	137.3	ರ									, 		
BH-60	20	141.5	ರ									,	-	
BH-60	21	147.0	ರ											
BH-60	22	152.2	ರ									•	-	
			SUMMARY OF LABORATORY TEST	OF LABO	RATOR	Y TEST RI	RESULTS					Notes:		
ļ			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT CALIFOR	OF SILIC	ON VALL	ey rapic	TRANSII	r (SVRT)	PROJECT		** USCS - visual-man	Symbol of Unitional procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTN	I D2487 when	crassilication based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	ıls Engine	ering							Date: 6/2005	5	Job No.: 204104.10

				Grain	Grain Size Analysis	sissis	ΔĦ¢	Atterhera imite		Local	4	è	Moiot	
g	Ő		USCS**	gravel	Sand	finac				2000	7/200	, ting C	Moistane	
o Z	Ö	Ê		(%)	(%)	%	=	굽	<u>a</u>	(a _n , ksf)	(S., ksf)	(pcf)	meino (%)	Zellerks
BH-61	1	7.0	ក									,	-	
BH-61	2	17.3	ರ									102.6	23	
BH-61	3	27.1	CL-ML											
BH-61	4	37.3	ರ									92.6	29	
BH-61	5	47.3	끙											
BH-61	9	57.3	บ									97.6	25	
BH-61	7	62.5	CL		•									
BH-61	8	72.4	ರ	7	9	92	8	21	13			104.5	23	Hydrometer Test
BH-61	6	81.9	СН										ı	
BH-61	10	91.9	ر ا	0	4	92	43	25	18			97.8	27	Hydrometer Test
BH-61	11	101.4	Σ	0	22	78						103.2	22	
BH-61	12	110.3	SW-SM	31	58	12						•	6	
BH-61	13	115.4	SP-SM	18	71	11						,	6	
BH-61	14	121.2	СН									95.1	30	
BH-61	15	127.5	СН										•	
BH-61	16	132.4	GH									94.8	53	
BH-61	17	137.4	ᆼ											
BH-61	18	142.0	ರ									103.5	23	
BH-61	19	146.0	ರ											
BH-61	20	151.5	MĹ	0	20	80						108.3	21	
İ														
			SUMMARY OF LABORATORY TEST	OF LABC	RATOR	Y TEST R	RESULTS				•	Notes:		
\ 	ĺ		TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT CALIFOF	OF SILIC	ON VALL	EY RAPII) TRANSI	IT (SVRT)	PROJECT		** USCS - visual-man	Symbol of Unitional procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or desification based on Inhabitation that
	O	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								with ASTM	1 D2487 when	with ASTM D2487 when laboratory data is available.
J		Geotechni	Geotechnical & Materials Engineering	als Engine	ering				i			Date: 6/2005	10	Job No.: 204104.10

	Remarks																	Hydrometer Test												otes: ** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.	Job No.: 204104.10
Moisture	Content	(%)	-	19		ı	25		1	32			22	'	24		2	59	27		10		10		4				23	Symbol of Unifie	on based on lab D2487 when la	
Ory	Density	(bct)	•	103.9	•	•	98.8	i 		90.4		'	102.8	•	1001				96.5		·				118.8		•	,	103.1	Notes: ** USCS - { visual-man	classificatid with ASTM	Date: 6/2005
Lab	Vane	(S _u , kst)										:																				
Unconfined	Comp.	(q _u , ksr)																												RESULTS LEY RAPID TRANSIT (SVRT) PROJECT		
mits	₫																	16												SIT (SVRT		
Atterberg Limits	ፈ		ļ															24												s ID TRANS		
At	=						i											40												RESULTS LEY RAP!		
alysis	fines	<u>8</u>					91								91		7	98			18		8		23					Y TEST (SON VAL		
Grain Size Analysis	sand	<u>(</u>					6								6		29	2			29		22		9					ORATOR OF SILIC RNIA		ering
Grair	gravel	(%)		İ			0								0		14	0			53		70		71					OF LAB EGMENT CALIFO	TS, INC.	ıls Engine
	nscs**		ರ	ರ	ರ	ರ	ML	CL.	CL	ูบ	CL	CL	CL CL	บ	บ	၁၄	SP-SM	ე	ರ	ರ	၁၁	GP	GP-GC	GР	ည္ပ	ರ	ರ	ر ر	٦	SUMMARY OF LABORATORY TEST I TUNNEL SEGMENT OF SILICON VAL SAN JOSE, CALIFORNIA	PARIKH CONSULTANTS, INC.	Geotechnical & Materials Engineering
	(#)		2.8	7.2	11.0	17.5	22.4	27.5	32.5	37.5	42.4	47.5	52.3	55.5	62.5	65.3	70.9	82.2	92.3	100.6	110.4	114.9	119.8	125.0	130.0	136.5	139.8	144.5	149.8		PARIKH C	Geotechni
	Š		-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27		0	
Boring		8	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62	BH-62			J

				Grain	Grain Size Analysis	shve ic	Į.	Attorboro mite	ľ,	- Inconfessed	40			
Boring	Sample	Depth	#000					652	,		S .	Ŝ	MOISION	
	Š	Œ	2020	grave	sand	tines	_	٦	۵	Сошр.	Vane	Density	Content	Remarks
				%	(%)	(%)				(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-63	-	11.3	占									•	•	
BH-63	2	21.3	ML									99.7	26	
BH-63	3	27.4	ML					!						
BH-63	4	32.5	ับ									•		
BH-63	5	42.5	СН					<u> </u>				92.7	30	
BH-63	9	47.5	C											
BH-63	7	57.0	TO										•	
BH-63	8	66.2	SW-SM	56	62	6						•	12	
BH-63	6	70.5	SW-SM											
BH-63	10	75.0	SW-SM	31	59	10							6	
BH-63	11	80.1	SP-SM											
BH-63	×	•	•										-	
ВН-63	12	91.3	CL-ML				59	21	æ			112.2	19	
BH-63	13	92.8	CL-ML	0	30	02							25	Hydrometer Test
BH-63	41	100.3	ML	0	2	86						1	25	Hydrometer Test
BH-63	15	109.1	SM										•	
BH-63	16	110.3	SM	0	56	44						,	23	
ВН-63	17	114.3	SM									1	•	
BH-63	18	119.5	GM	45	43	13							11	
BH-63	19	124.5	သွ	31	48	21						,	12	
BH-63	20	131.0	ರ											
BH-63	21	136.5	ರ									,	23	
BH-63	22	142.5	ರ									•	ı	
BH-63	23	147.4	공									,		
BH-63	24	151.5	공										•	
			SUMMARY OF LABORATORY TEST	OF LAB(JRATOR		RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VAI SAN JOSE, CALIFORNIA	EGMENT , CALIFOF	OF SILIC	ON VALL	EY RAPI	LLEY RAPID TRANSIT (SVRT) PROJECT	(SVRT)	PROJECT		** USCS - visual-mar	Symbol of United Interest of Uni	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	Q	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.							'	with ASTIV	D2487 when	viassification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	2	Job No.: 204104.10

	Remarks																												otes: ** USCS - Symbol of Unified Soil Classification System per	visual-manual procedures in accordance with ASTM D2488 or classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.	Job No.: 204104.10
Moisture	Content	(%)	13	32	27	27	38	23	10	21	21	26	24	6	4	10	10	1	27	25	•	27	24	6	13	23	-		Symbol of Ur	on based on I On based on I O2487 wher	2
Dry	Density	(pcf)	-	92.4	-	97.6	87.8	•	•	108.1	•	•	102.4	98.1		•		•	1	100.4	ı	93.2	-	-	•	102.0	•		Notes:	visual-mar classificati with ASTN	Date: 6/2005
Lab	Vane	(S _u , ksf)																													
Unconfined	Comp.	(q _u , ksf)				1.1																1.8				3.3			SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT		
nits	ā	-	12	2		15	15			1			14							16		17				15			SIT (SVRT		
Atterberg Limits	<u> </u>	-	14	29		18	25			22			21							21		21				20			S ID TRANS		
Αŧ	=	;	56	31		33	40			23			35							37		38				35			RESULTS LEY RAPI		
alysis	fines	(%)							7			10				7	10		53				11	11					SY TEST		
Grain Size Analysis	sand	(%)							9			98				20	53		47				98	40					ORATOF OF SILIN	RNIA A	eering
Grain	gravel	(%)							28			4				44	88		0				3	50					OF LAB	, CALIFO	als Engin
	USCS**		ರ	ML	ML	ರ	겁	CL	SP-SM	M	ರ	SP-SM	٦	ML	СW	SW-SM	SW-SM	ML/SM	ML/SM	CL	•	ษ	SP-SM	GW-GM	GW-GM	ე	-		SUMMARY OF LABORATORY TEST TUNNEL SEGMENT OF SILICON VAI	SAN JOSE, CALIFORNIA PARIKH CONSIII TANTS INC	Geotechnical & Materials Engineering
4	inde Geb		3.8	12.3	22.5	24.8	32.5	42.4	45.7	52.4	54.7	61.0	72.5	74.0	80.1	84.3	6.06	100.7	102.4	107.1		117.4	122.0	126.0	131.0	136.9	,			PARIXHC	Geotechni
Cample	No.		-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	×	19	20	21	22	23	×			9	
Boring			BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64	BH-64				J

	-			Grain	Grain Size Analysis	llysis	Atte	Atterberg Limits	ş	Unconfined	Lab	ρί	Moisture	
Boung No.	Sample No.	(f)	sosn	gravel	sand	fines	=	٦.	<u> </u>	Comp.	Vane	Density	Content	Remarks
				8	(%)	8				(q _u , ksf)	(S _u , ksf)	(bcl)	(%)	
BH-65	-	3.9	ರ						,			•	•	
BH-65	2	9.5	ML				31	24	7			93.3	29	
BH-65	3	22.5	ರ									120.6	25	
BH-65	4	32.5	ರ				30	20	10			7.78	27	
BH-65	5	46.0	GW-GM	51	42	2			-			-	6	
BH-65	9	58.5	CL									103.0	23	
BH-65	7	67.5	CL					-				104.5	21	
BH-65	8	76.0	SM	45	48	7							11	
BH-65	6	86.0	SW-SM	32	09	8						,	11	
BH-65	9	96.3	ರ										20	
BH-65	11	109.0	SM				21	20	-			107.1	19	
BH-65	12	114.0	SM									,	16	
BH-65	13	121.6	ರ									104.0	23	
BH-65	4	126.2	SP-SM	24	70	9							14	
BH-65	15	130.5	딩	-								•	ŀ	
BH-65	16	135.5	ರ									103.7	23	
BH-65	17	142.5	디									,	•	
BH-65	18	147.5	ML									9.66	22	
BH-65	19	148.8	SM									-		
	i													
		••	SUMMARY OF LABORATORY TEST	OF LABC	RATOR		RESULTS					Notes:		
		. •,	TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT	OF SILIC	ON VALL	EY RAPID	TRANSI	T (SVRT)	PROJECT		** USCS - visual-mar	Symbol of United Inc.	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PADIKUC	ONI STANT HISNOO HAIGNG	SH SH								classificati with ASTIV	on based on I: I D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
_		Geotechnic	Geotechnical & Materials Engineering	ıls Engine	ering						•	Date: 6/2005		Job No.: 204104.10

				Grain	Grain Size Analysis	Veis	ΔĦΦ	Atterbero Limite	1	Inconfined	46	٤	Moint	
6	Sample	Depth	**8081	layer p	puco	fines		-	}				Noister C	
ġ Ž	ė Ž	Œ)	}	(%)	2010	8 8	<u></u>	చ	₫	comp.	vane (c. han	Density	Content	Kemarks
BH-66	,	2.7	3		(2)	(2)				(Hu, NSI)	(Our NSI)	(DCI)	(%)	
00-1		2.0	ML									-	19	
99-HB	2	6.3	물									•	29	
99-HB	3	11.1	ML									-	10	
99-HB	4	19.0	Ь										37	
99-HB	5	24.5	CL									94.1	27	
99-HB	9	27.4	כר									101.2	24	
BH-66	7	32.5	SM									99.7	25	
BH-66	8	35.7	SP-SM			o							17	
BH-66	6	41.5	ML/SM									-	37	
BH-66	10	47.5	ರ									•	26	
BH-66	11	52.4	SP-SM										26	
BH-66	12	62.5	U U				35	16	19			99.1	25	
BH-66	13	72.5	CL-ML				22	16	မ			107.0	20	
99-HB	14	81.1	GW-GC			6						, ,	10	
99-HB	15	90.7	SW-SM									,	13	
BH-66	16	101.5	ರ			69						,	27	
BH-66	17	112.5	占				37	19	18			101.0	24	
BH-66	18	116.3	GP			5						1	20	
BH-66	19	120.5	SM			13						ı	12	
BH-66	20	•	,											
BH-66	21	128.4	CL-ML				25	18	7			110.0	19	
					1		1							
	1													
			SUMMARY OF LABORATORY TEST	OF LABO	RATORY	TEST RI	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT : CALIFOR	OF SILIC	ON VALLI	ey RAPID	TRANSI.	T (SVRT)	PROJECT		** USCS - visual-man	Symbol of Uni	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								classification with ASTM	on based on Ia I D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ıls Engine	ering							Date: 6/2005	10	Job No.: 204104.10

Boring	Sample	Depth	1000	Crair	Grain Size Analysis	alysis	Atte	Atterberg Limits		Unconfined	Lab	ρŷ	Moisture	
	No.	(£)	nscs.	gravel (%)	sand (%)	fines (%)	-	굽	<u>a</u>	Comp. (g., ksf)	Vane (S ksf)	Density	Content (%)	Remarks
BH-68	-	3.1	ر ا								(10.00)		(ov.)	
BH-68	2	-	,											
BH-68	3	13.1	СН		i									
BH-68	4	20.7	H									80.8	40	
BH-68	5	29.3	SM	23	53	24						116.2	18	
BH-68	9	39.6	SM						-			,		
BH-68	7	51.0	SC	1	99	43						1		
BH-68	80	•	•									,		
ВН-68	6	62.5	ರ										•	
BH-68	10	70.5	ر ا	0	80	92						103.6	22	Hydrometer Test
BH-68	11	79.0	SW-SM	47	48	5						•	o	
BH-68	12	90.5	GP-GC						-					
BH-68	13	100.0	ر ر									101.0	25	
BH-68	14	111.0	CL											
BH-68	15	119.0	GP-GC	48	43	o							10	
BH-68	16	130.0	CH									,	,	
BH-68	17	141.0	CL-ML									,	,	
BH-68	18	151.0	CL									97.5	26	
BH-68	19	158.8	SM	0	79	21						112.5	22	Hydrometer Test
BH-68	20	169.3	GP-GC	65	31	5							8	
BH-68	21	180.5	ᆼ	0	1	66						6.86	26	
BH-68	22	190.5	GW-GC											
BH-68	23	199.0	ರ	i					-				1	
·		•	SUMMARY OF LABORATORY TEST	OF LABC	RATOR	TEST R	RESULTS					Notes:		
	ĺ		TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	GMENT	OF SILIC	ON VALL	EY RAPID	TRANSIT	(SVRT)	PROJECT		** USCS - visual-man	Symbol of Unual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	O	PARIKH CC	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	crassing the passed of raboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ls Engine.	ering							Date: 6/2005		Job No.: 204104.10

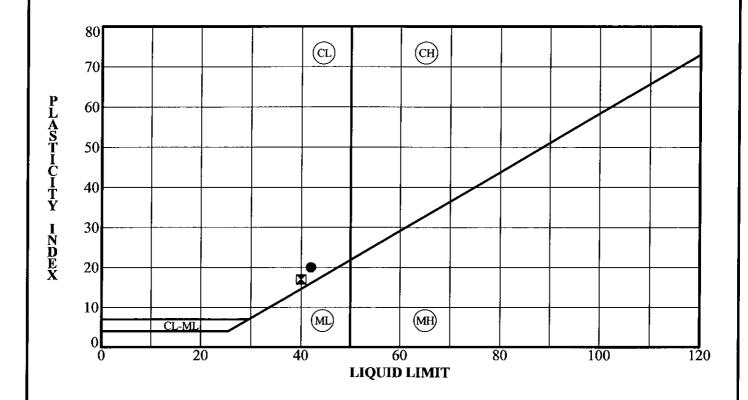
				Grain	Croin Circ Applying	oje, d	44.4	1	 					
	Sample	Depth	-		2028	Sie		Attendeng Liffins	2	Onconlined	Lab	<u>></u>	Moisture	
	o N	Œ	220	gravel	sand	nnes		굽	ਛ	Comb.	Vane	Density	Content	Remarks
				(%)	8	8				(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-70	-	8.3	SP-SM									101.8	91	
BH-70	7	10.9	SW-SM											
BH-70	က	13.7	CL											
BH-70	4	•	•										,	
BH-70	5	19.0	ರ										36	
BH-70	6B	21.6	ML				34	82	9			87.0	33	
BH-70	6A	22.1	ರ								1,4	91.6	18	
BH-70	7C	24.0	ರ										27	
BH-70	78	24.5	บ								1.5	100.1	21	
BH-70	7.A	25.0	כר				32	19	13			102.1	21	
BH-70	8C	26.3	CL-ML				28	21	7			9.66	23	
BH-70	8A	27.3	MS-dS										19	
BH-70	6	29.0	WS-dS									ı		
BH-70	10	31.5	SW		İ									
BH-70	11	34.0	SP-SM	30	61	10							15	
BH-70	12	35.5	SP-SM									,		
BH-70	13	39.0	SM	0	58	42						•	19	Hydometer Test
BH-70	14	40.9	ರ									<u>'</u>	,	
BH-70	150	44.0	ರ				45	25	20				27	
BH-70	15B	44.5	ر ر								1.0	102.1	25	
BH-70	15A	45.0	ರ				30	19	11			100.2	23	
BH-70	16C	46.5	ರ									94.7	44	
BH-70	16B	47.0	ರ								6.0	•		
BH-70	16A	47.5	ರ				32	18	14	0.3		99.5	26	
BH-70	11	49.3	SP-SM									94.0	25	
BH-70	18	51.5	SP-SM	7	82	1						1	23	
BH-70	19	53.3	SW-SM									-		
			SUMMARY OF LABORATORY TEST RESULTS THANE! SEGMENT OF SHIPON VALLEY BARINGT KRYDTA DDO HOT	OF LABO	OF SILIC	Y TEST R	RESULTS LEV BABIL	TOANCE	(TO)(0) T	0 0 1		Notes:	iel 190 Jodeen (otes:
	ĺ		SAN JOSE, CALIFORNIA	CALIFOF	SNIA		<u> </u>	5	(2)			visual-man	ual procedure	visual-manual procedures in accordance with ASTM D2488 or lassification has no laboration test receive in accordance with ASTM D2488 or lassification has no laboration test receive in accordance.
	9	PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTM	D2487 when	with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	als Engine	ering					İ		Date: 6/2005	10	Job No.: 204104.10

				Grain	Grain Size Analysis	lycic	ΔĦΦ	Atterberg imite	ife	- Poorgood I	40	à	Moioturo	
Boring	Sample	Depth	1000		200	cle		in fill	2		G L	È	Moisture	
	Š	£)	- SOSO	grave	sand	fines (%)	=	చ	ā	Comp.	Vane	Density	Content	Remarks
26	8	6		(e)	(0,)	(%)				(q _u , ksr)	(S ₀ , KST)	(bct)	(%)	
01-Na	8	55.3	3									·]	-	
BH-70	210	29.0	리									102.5	28	
BH-70	21B	59.5	ರ								2.2	ı	,	
BH-70	21A	60.0	CL				33	21	12			107.0	20	
BH-70	22	62.5	ರ									99.2	25	
BH-70	23	65.0	ರ										-	
BH-70	24	67.1	CL-ML								1.2	•		
BH-70	25B	68.8	CL-ML									111.4	19	
BH-70	25A	69.3	CL-ML				22	17	2			108.0	19	
BH-70	56	80.1	GP-GC	51	42	9				-			Ξ	
BH-70	27	90.5	GP-GC									,	1	
BH-70	28	•	•							:		,	'	
BH-70	59	105.8	ر ا									,	1	
BH-70	30	110.9	SM	0	29	33						-	25	Hydrometer Test
BH-70	31	116.4	ر ا									97.9	27	
BH-70	32	120.3	SW									,	•	
BH-70	33	126.5	ML									•	'	
BH-70	34	132.3	ML									,	,	
BH-70	35	137.3	ᆼ									-	1	
BH-70	98	140.5	ᆼ	0	16	84		-				81.3	40	Hydrometer Test
BH-70	37	145.5	သွ									,	'	
BH-70	38	146.4	SC									•	ı	
								E						
			SUMMARY OF LABORATORY TEST	OF LABC)RATOR'		RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	SCALIFOR	OF SILIC	ON VALL	EY RAPIC) TRANS	IT (SVRT) PROJECT		** USCS - visual-mar	Symbol of Un	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH CO	PARIKH CONSULTANTS, INC.	TS, INC.								classificati with ASTIN	ion based on I 1 D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	ls Engine	ering							Date: 6/2005	ň	Job No.: 204104.10

				i co	Grain Ciao Apolyois	l oin	*	1 2 2 2 4 2			1-1	6		
Boring	Sample	Depth	****	000	SIZE AIIE	Sister		Allerberg LIMITS	2	Onconined	Lab	ر ک	Moisture	
ģ		£	-SOSO	gravel	sand	fines	님	귑	颪	Comp	Vane	Density	Content	Remarks
				(o/.)	(%)	<u>(</u>				(q _u , KST)	(S _u , KST)	(bct)	(%)	
BH-71	-	2.5	ರ									-	ı	
BH-71	2	5.5	SP-SM									•	•	
BH-71	က	10.8	SP-SM	40	54	9						-	o	
BH-71	4	16.9	ML									•	,	
BH-71	5	21.0	ЮН				70	28	42			82.3	33	
BH-71	9	25.0	НО									•		
BH-71	7	31.5	JM										•	
BH-71	8	42.0	нэ				51	56	25			86.4	36	
BH-71	6	45.1	нэ											
BH-71	10	50.3	SP-SM											
BH-71	11	51.6	WS-dS	39	52	O						•	6	
BH-71	12	62.5	CL CL				36	20	16	2.9		98.0	26	
BH-71	13	64.9	ე									-		
BH-71	14	71.9	ر ر	0	39	61						108.7	19	
BH-71	15	79.7	SP-SM	40	54	9						•	10	
BH-71	16	89.7	SP-SM									•	1	
BH-71	17	99.7	ぴ				33	16	17			•	18	
BH-71	×	,	,									-	1	
BH-71	18	111.3	SP-SM									•	,	
BH-71	19	115.3	SP-SM	14	92	10						-	20	
BH-71	20	119.9	SP-SM									•	1	
BH-71	21	125.5	ರ				28	20	8	3.6		102.5	22	
BH-71	22	130.1	ರ									•	-	
BH-71	23	135.2	ML				25	24	-			-	35	
BH-71	24	142.2	ರ									•	-	
BH-71	25	147.9	SP-SC	29	59	12						-	14	
												Notos:		
			SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPII SAN JOSE, CALIFORNIA	OF LAB(EGMENT CALIFOF	ORATOR' OF SILIC RNIA	Y TEST R ON VALL	ESULTS EY RAPII) TRANSI	IT (SVRT)	RESULTS LEY RAPID TRANSIT (SVRT) PROJECT		** USCS -	Symbol of Uni Tual procedure	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								classificati	ion based on I. A D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005	ڻ ر	Job No.: 204104.10

				Grain	Grain Size Analysis	lvsis	Affe	Atterberg Limits	4	Unconfined	da	200	Moieture	
Boring	Sample	Depth				25		000	3	2	3	<u></u>	DIDISION.	
ė.	, S			gravel (%)	sand (%)	fines (%)		٦ -	<u>a</u> .	Comp.	Vane (S. ksf)	Density	Content (%)	Remarks
BH-73	-	3.1	FILL							(-0-1)	(5) (5)	(24)	(o/)	
BH-73	2	7.3	ರ									89.7	26	
BH-73	3	17.2	C C									, ,	1	
BH-73	4	27.1	CL									88.7	32	
BH-73	5	30.7	CL				-						•	
BH-73	9	32.3	29	43	33	24							1	
BH-73	7	36.1	CC									•	-	
BH-73	8	41.2	SW-SC	39	20	=							10	
BH-73	×	-	,									ı	•	
BH-73	6	50.8	GC											
BH-73	10	56.1	29	44	36	20							11	
BH-73	11	62.5	C									,	1	
BH-73	12	66.5	CL									,		
BH-73	×	1	•										-	
BH-73	13	81.7	ML	0	8	91	58	25	4			89.7	34	Hydrometer Test
BH-73	14	92.2	C C	5	30	64						,	23	
BH-73	15	101.5	ರ										ı	
BH-73	16	112.3	ML	0	10	90	22	21	1			103.5	21	Hydrometer Test
BH-73	17	116.2	SM	7	51	43							19	
BH-73	18	121.9	CL										•	
BH-73	19	126.3	CF	23	31	47						,	15	
BH-73	20	131.5	ᆼ									,		
BH-73	21	137.3	CL CL									,	•	
BH-73	22	141.8	CL-ML										•	
BH-73	23	146.5	ᆼ										•	
BH-73	24	150.5	SC	38	45	17						•	12	
			SUMMARY OF LABORATORY TEST	OF LAB	DRATOR	Y TEST R	RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT	EGMENT	OF SILIC	ON VALL	EY RAPIE) TRANS	T (SVRT)	PROJECT		** USCS -	Symbol of Un	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	0	PARIKH C(PARIKH CONSULTANTS, INC.	TS, INC.								classificati with ASTM	on based on la 1 D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnic	Geotechnical & Materials Engineering	als Engine	ening							Date: 6/2005	10	Job No.: 204104.10

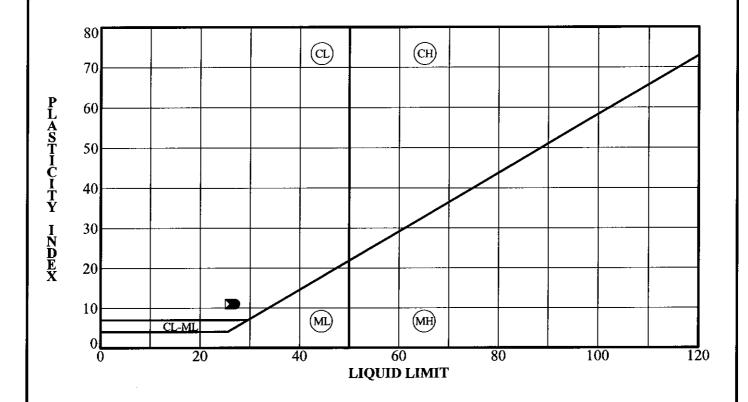
				Grain	Grain Size Analysis	lysis	Δ#or	Atterhera I imite	با	pediadodi	46	è	Moichin	
Boring	Sample	Depth	1	5		319313	בווכ	E COLO	2		a P	<u>^</u>	Moisture	
	No.		sosn	gravel (%)	sand (%)	fines (%)		~~	₫	Comp. (q., ksf)	Vane (S ksf)	Density (pcf)	Content (%)	Remarks
BH-74	-	3.3	FILL									-		
BH-74	7	6.3	ე								0.1	,	28.0	
BH-74	38	9.4	ರ				40	19	21			95.5	26	
BH-74	₩	6.6	ರ						-		1.6		24	
BH-74	4	11.9	ರ				28	20	8		2.1	104.5	19.0	
BH-74	လ	15.0	ML/CL				34	24	5		1.0	100.0	25.1	
BH-74	9	17.0	ML				24	21	3		1.8	105.2	21.0	
BH-74	7	19.8	ರ				30	18	12		9.0	101.2	24.0	
BH-74	8	22.4	ML				28	24	4		1.2	100.6	24.0	
BH-74	၁၉	23.8	ರ								E	97.5	26	
BH-74	Α6	24.8	ر ا				43	23	20		1.3	99.4	27	
BH-74	10C	26.5	MH				25	32	25			87.4	34	
BH-74	10A	27.5	ᆼ				25	27	30		8.0	87.4	33	
BH-74	1	29.3	占				36	19	17		1.0	87.1	33.0	
BH-74	12C	31.0	占				37	20	17			100.3	25	
BH-74	12A	32.0	ರ								1.8	112.3	12	
BH-74	13	34.4	CL-ML				27	22	2			102.1	21.0	
BH-74	4	37.2	占				36	72	4		0.5	93.0	28.0	
BH-74	15	39.8	ML				27	23	4		0.5	107.5	21.0	
BH-74	160	41.2	M					-				-	22	
BH-74	16A	42.2	¥				1	=	0		0.3	96.2	26	
BH-74	170	43.2	SP-SM									ŀ	24	
BH-74	17B	44.2	ರ									•	22	
BH-74	17A	44.7	디				27	15	12		1.4	105.9	21	
BH-74	<u>28</u>	46.5	占									-	20	
BH-74	18A	47.5	ರ				စ္က	8	5		0.8	97.1	25	
BH-74	19C	49.0	CL-ML				24	19	5			-	7	
			SUMMARY OF LABORATORY TEST RESULTS TUNNEL SEGMENT OF SILICON VALLEY RAPII	OF LABO)RATOR' OF SILIC	Y TEST R ON VALL	ESULTS EY RAPID	TRANSII	r (SVRT)	RESULTS LEY RAPID TRANSIT (SVRT) PROJECT		Notes:	Symbol of Ha	otes: ** ISCS - Symbol of Unified Soil Classification System per
			SAN JOSE, CALIFORNIA	CALIFOR	\$NIA) • •					visual-mar	nual procedure	visual-manual procedures in accordance with ASTM D2488 or
		PARIKH C	PARIKH CONSULTANTS, INC.	TS, INC.								with ASTIV	on based on I	crassingation based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	ıls Engine	ering		į					Date: 6/2005	2	Job No.: 204104.10


				ان	Grain Sizo Analysis	o io	V#V	ini I modi	١	I Indiana	70	2	1000	
Boring	Sample	Depth	1,000	5	7 2 2	1933		טווכווחפוא רווווווא	2		Car Car	<u>.</u>	Moisture	
	ģ	£	2220	gravel	sand	tines	1	٦ ا	₫	Comp	Vane	Density	Content	Remarks
				(%)	(%)	8				(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-74	19A	50.0	CL-ML				50	13	7		0.8	108.9	20	
BH-74	20C	51.5	ML				30	25	5			,	25	
BH-74	20A	52.5	บี				34	19	15		1.4	100.5	25	
BH-74	21E	53.0	ر د									,	28	
BH-74	21C	54.0	ರ										17	
BH-74	21A	55.0	M				29	23	9		6:0	9.96	27	
BH-74	22C	56.5	ರ									•	19	
BH-74	22A	57.5	ر ا				34	18	16		1.7	107.9	20	
BH-74	23C	59.0	CL									1	25	
BH-74	23A	60.0	บ				35	20	15		1.3	98.6	25	
BH-74	24C	61.4	ML									'	23	5
BH-74	24A	62.4	ML				30	24	9			107.8	19	
BH-74	25C	63.6	ML				32	28	4			•	31	
BH-74	25A	64.6	ML								0.9	103.5	20	
BH-74	56	66.8	SM	3	50	47						•	17.0	
BH-74	27	71.3	В	52	35	14						'	8.7	
BH-74	28	77.4	ರ	52	40	8	30	17	13			103.9	23	Hydrometer Test
BH-74	29	82.3	ر ا									•	•	
BH-74	30	87.3	占									•	•	
BH-74	31	91.8	占									9.66	23	
BH-74	32	95.7	ВW	- 67	59	4						•	11	
BH-74	×	1	•									,		
BH-74	33	107.5	占									97.3	24	
BH-74	34	110.5	GW-GC	52	40	8						,	6	Hydrometer Test
BH-74	35	115.3	SW									,	•	
BH-74	36	120.5	SW-SM	26	63	11			•			•	11	
BH-74	37	126.5	占									-	-	
			SUMMARY OF LABORATORY TEST	OF LAB(SRATOR		RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VAL SAN JOSE, CALIFORNIA	EGMENT CALIFOF	OF SILIC		EY RAPII) TRANSI	T (SVRT)	LEY RAPID TRANSIT (SVRT) PROJECT		** USCS · visual-ma	Symbol of Ur nual procedur	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	O	PARIKHC	PARIKH CONSULTANTS, INC.	TS, INC.								with AST	M D2487 wher	dassilication based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	ıls Engine	ering							Date: 6/2005	35	Job No.: 204104.10

				انونوا	Grain Sizo Analysis	i o d	**	thorn in	-	Location 1	100			
Boring	Sample	Depth		5	200	Sick	אוני	עווכו מבו היוווי	2		ראם פר	2	Moistare	
Š			200	gravel	sand	tines	1	4	ਛ	Comb	Vane	Density	Content	Remarks
İ				<u>@</u>	(%)	(%)				(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-75	-	9.9	ರ									•	-	
BH-75	2	21.0	ರ									104.7	23	
BH-75	3	30.9	CL									•	. 1	
BH-75	4	41.0	CL									102.8	21	
BH-75	5	51.0	CL			91							23	
BH-75	9	61.0	SM									1		
BH-75	7	70.5	SC	20	99	15						1	18	
BH-75	8	81.0	ML										,	
BH-75	6	89.3	ರ	0	38	62						103.6	23	Hydrometer Test
BH-75	10	99.0	GW-GC	99	37	7						123.2	6	
BH-75	11	110.5	ರ											
BH-75	12	121.0	ರ									107.1	20	
BH-75	13	128.8	SP-SC	30	62	8						-	12	
BH-75	14	141.0	CL	0	22	78						104.4	20	Hydrometer Test
BH-75	15	151.0	CL									,	1	
BH-75	16	160.0	CL									106.1	21	
BH-75	17	169.8	CL									 	•	
BH-75	18	178.9	SP-SC	24	89	8						1	13	
BH-75	19	190.8	CL.										•	
BH-75	20	200.3	SM	4	89	28						,	15	
			SUMMARY OF LABORATORY TEST RESIII TS	OF LAB	ORATOR	Y TEST R	FSI II TS					Notes:		
			TUNNEL SEGMENT OF S	EGMENT	OF SILIC	ON VALL	EY RAPII	D TRANSI	T (SVRT	TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA		** USCS -	Symbol of Un	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	9	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								classificat with ASTN	ion based on I A D2487 when	classification based on laboratory test results in accordance with ASTM D2487 when laboratory data is available.
)		Geotechni	Geotechnical & Materials Engineering	als Engine	sering							Date: 6/2005	15	Job No.: 204104.10

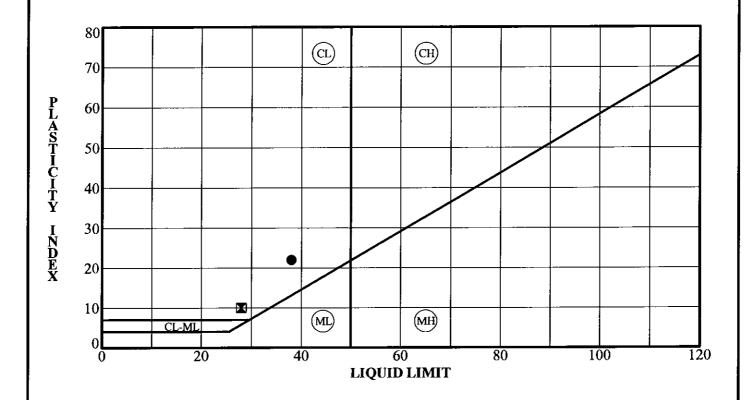
				Grain	Grain Size Analysis	lyeis	Δ#A	Atterhera imite		Locophood	46	2	Mainten	
CD.	Sample	Depth	##SOSI	aravel	pues	fines					2007	2 50	Moistare	e i i i i i i i i i i i i i i i i i i i
Ö.	Ö.	(¥))	(%)	(%)	<u>8</u>	=	굽	<u>a</u>	(q _u , ksf)	(S _u , ksf)	(pcf)	(%)	Kemarks
BH-78	1	2.3	FILL		,									
BH-78	2	6.5	СН									73.5	43	
BH-78	က	12.3	끙									_		
BH-78	4	17.5	CH.									85.9	35	
BH-78	5	22.5	SC									•		
BH-78	9	25.8	СW									,		
BH-78	7	31.2	В	46	38	16						126.1	6	
BH-78	8	36.8	В									,	-	
BH-78	6	41.3	SM									107.1	20	
BH-78	10	46.2	CL									,	'	
BH-78	11	51.2	ML	8	31	61							21	
BH-78	12	56.0	GW										-	
BH-78	13	61.1	SW-SM	27	64	6						121.2	12	
BH-78	41	65.7	CL									•	-	
BH-78	15	72.4	CL									99.3	25	
BH-78	16	75.8	GP-GM	52	38	10							10	
BH-78	17	80.8	SM									1	•	
				j										
		Ì												
			SUMMARY OF LABORATORY TEST	OF LABO	RATOR	Y TEST R	RESULTS					Notes:		
	ĺ		TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA	EGMENT , CALIFOF	OF SILIC ≷NIA	ON VALL	EY RAPII	TRANS	T (SVRT)	PROJECT		** USCS - visual-man	Symbol of United Interest of Uni	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or presidential passed on Inhoration that is according to the passed on Inhoration that is according to the passed on Inhoration that is according to the passed on Inhoration that is according to the passed on Inhoration that is a passed on Inhoration that i
	1	PARIKH C	PARIKH CONSULTANTS, INC.	ITS, INC.								with ASTM	1 D2487 when	with ASTM D2487 when laboratory data is available.
J		Geotechnik	Geotechnical & Materials Engineering	als Engine	ering						-	Date: 6/2005	2	Job No.: 204104.10

				Grain	Grain Size Analysis	Ivsis	Affei	Atterberg Limits		Hoonfined	46	è	Moieture	
Boring	Ó	Depth	USCS**	grave	pues	fines		<u> </u>	T	Comp	Vane	Density	Content	9720
o Z	o S	(ft)		(%)	(%)	(%)		굽	颪	(q _u , ksf)	(S _u , ksf)	(pcf)	(%)	Mendana
BH-79	1	12.5	CL											
BH-79	2	22.5	СН				65	27	38			83.1	38	
BH-79	က	32.4	ML									•	,	
BH-79	4	41.8	ML	7	40	53						106.6	19	
BH-79	5	51.3	SW										ı	
BH-79	9	62.4	CL				33	17	16	2.5		99.7	25	
BH-79	7	72.4	CL									,		
BH-79	8	82.5	CL				35	11	18			102.8	23	
BH-79	6	91.5	CL									•		
BH-79	10	100.5	SW											
BH-79	11	112.1	ML	0	20	88						106.1	21	
BH-79	12	121.3	ML/CL										,	
BH-79	13	132.3	ML/CL				32	23	o			100.1	25	
BH-79	14	140.3	ML/CL							 				
BH-79	15	150.5	SM/ML	0	99	34							22	
BH-79	16	151.2	SM/ML									1		
BH-79	17	160.4	ΘM	48	36	15						•	o	
BH-79	18	171.0	ML									,		
BH-79	19	180.3	SP-SM	36	99	8						ı	12	
BH-79	20	191.1	ML									ı		
BH-79	21	200.4	SC	35	43	23						_	11	
			SUMMARY OF LABORATORY TEST	OF LABO	JRATOR!		RESULTS					Notes:		
			TUNNEL SEGMENT OF SILICON VAL	EGMENT CALLEDE	OF SILIC		EY RAPIC	TRANSI	T (SVRT)	LEY RAPID TRANSIT (SVRT) PROJECT		** USCS -	Symbol of Uni	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or
	E											classificative with ASTM	on based on Is	classification based on laboratory test results in accordance with ASTM 102487 when laboratory data is available
	1	PARIKHC	PARIKH CONSULTANTS, INC.	ITS, INC.	-						•			מסטומוטון עמומ זט מאמומטומ.
J		Geofechnik	Geotechnical & Materials Engineering	als Engine	ering							Date: 6/2005		Job No.: 204104.10

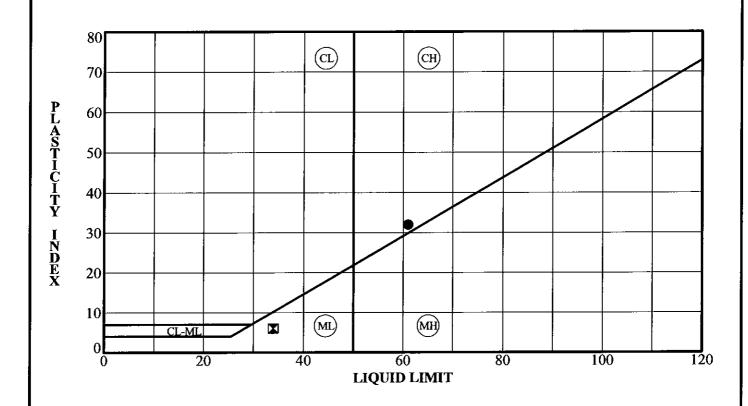

				Grain	Grain Size Analysis	alysis	Atte	Atterberg Limits	š	Unconfined	Lab	٥	Moisture	
Boring	Sample	Depth #	USCS**	gravel	sand	fines		ì		Comp.	Vane	Density	Content	Remarks
į	<u>.</u>	(iii)		(%)	(%)	(%)	L.	7	ī	(q _u , ksf)	(S _u , ksf)	(bct)	(%)	
BH-80	-	5.8	SM									'	•	
BH-80	2	9.8	ВМ											
BH-80	3		-									•	1	
BH-80	4	20.0	כר									,	•	
BH-80	5	26.5	CL									•		
BH-80	9	31.5	CL										,	
BH-80	7	36.5	CL									,	•	
BH-80	8	40.0	ML	0	34	99						105.1	20	
BH-80	6	45.0	GW-GM	52	42	9							o	
BH-80	10	50.2	CL CL				59	21	8			101.5	24	
BH-80	11	55.0	ರ	1	35	64						96.2	28	
BH-80	12	59.9	SM									,		
BH-80	13	1	,									1	,	
BH-80	14	68.5	ರ				29	20	6			103.6	23	
BH-80	15	74.3	SM	0	59	41						-	26	
BH-80	16	81.3	SM										1	
BH-80	17	86.3	SP-SM	41	48	11						132.2	6	
BH-80	18	8.06	SP-SM									•	-	
BH-80	19		,									•	•	
BH-80	20	99.5	ರ										1	
			SUMMARY OF LABORATORY TEST	Y OF LAB	ORATOR		RESULTS					Notes:		
			TUNNEL SEGMENT OF S SAN JOSE, CALIFORNIA	SEGMENT :, CALIFOI	OF SILK RNIA	SON VALI	EY RAPI	D TRANS	IT (SVRT	TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA		** USCS - visual-mar classificati	Symbol of Un rual procedure on based on la	** USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D2488 or classification based on laboratory test results in accordance
		PARIKH C	PARIKH CONSULTANTS, INC.	NTS, INC.								with ASTN	1 D2487 when	with ASTM D2487 when laboratory data is available.
		Geotechni	Geotechnical & Materials Engineering	ials Engine	ening							Date: 6/2005	5	Job No.: 204104.10

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-01	17.5	42	20	0.405	30		CL
×	BH-01	27.5	40	17	0.341	29		CL
				•				

	PREPO BY:	PLASTICITY CHART AND DATA	FIGURE
	APPORY: Y. D. Wang DATE: 17/6/05 DWG FILE:	SVRT DOWNTOWN	A12-1
		San Jose, California	PROJECT No.
	ľ		204104.10


ATTERBERG 204104 06 20 2005.GPJ VERSION-042904.GDT 17/6/05

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-02	34.7	27	11	0.482	21		CL
X	BH-02	47.5	26	11	0.909	25		CL
							.	
						i		· · ·
	<u></u>							


PREPOBY:	PLASTICITY CHART AND DATA	FIGURE
Y. D. Wang DATE 17/6/05 DWG FILE	SVRT DOWNTOWN San Jose, California	A12-2 PROJECT No. 204104.10

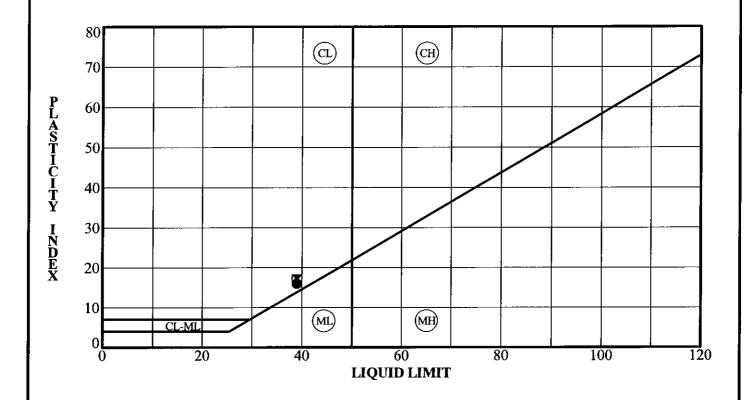
ATTERBERG 204104 06 20 2005.GPJ VERSION-042904.GDT 17/6/05

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-04	47.4	38	22	0.273	22		CL
	BH-04	76.8	28	10	0.200	20		CL
	<u> </u>							
				-				
							-	
	· · · · · · · · · · · · · · · · · · ·							

	PREPID BY:	PLASTICITY CHART AND DATA	FIGURE
	APPD BY: Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-3
	DWG FILE:	San Jose, California	PROJECT No.
			204104.10

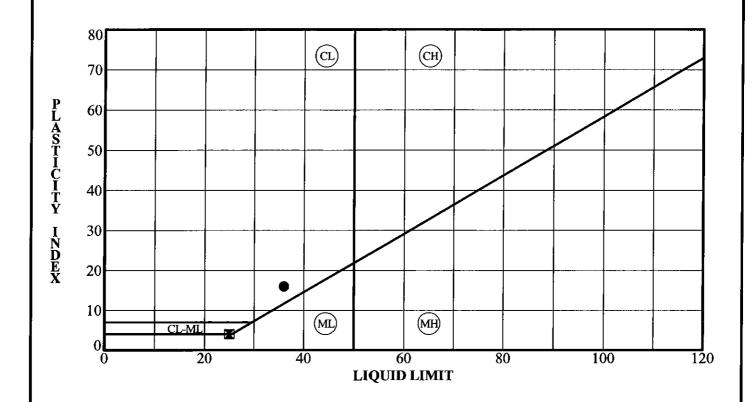
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-06	39.5	61	32	0.375	41		СН
X	BH-06	54.7	34	6	-0.333	26		ML
	i							
:								

K	


PREPID BY:
APPOSY: Y. D. Wang
DATE: 17/6/05
DWG FILE:

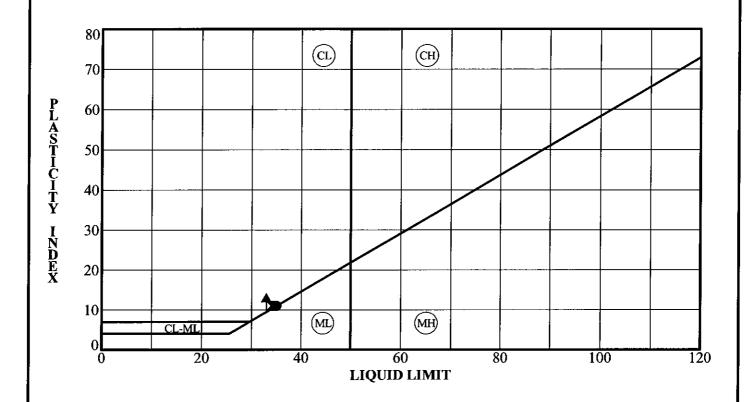
PLASTICITY CHART AND DATA

SVRT DOWNTOWN
San Jose, California

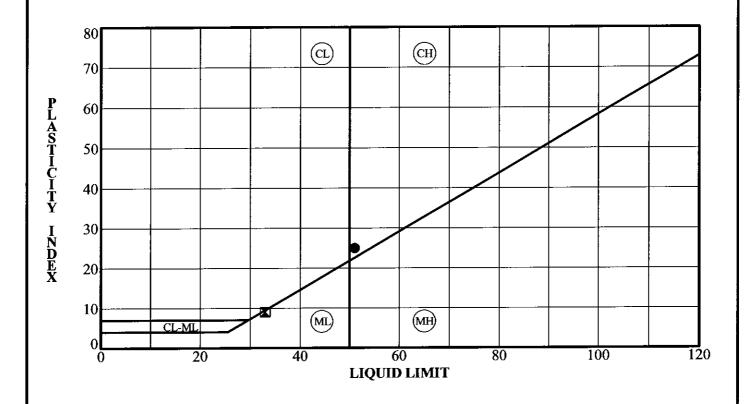

FIGURE
A12-4
DOO IFOT M

PROJECT No. 204104,10

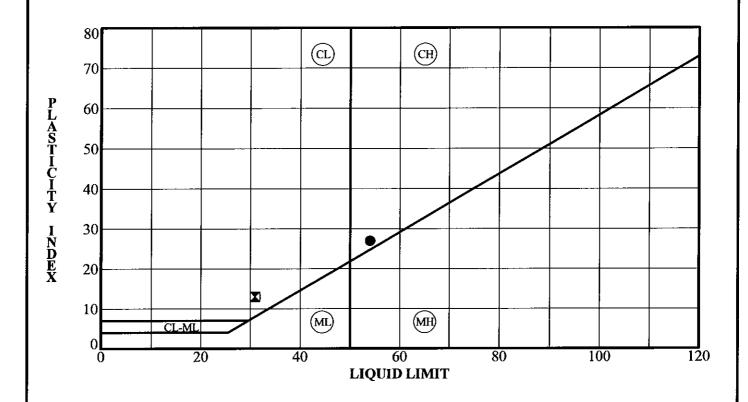
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-08	47.5	39	16	0.438	30		CL
×	BH-08	60.0	39	17	0.412	29		CL
, ,								
		_						


PREPO BY:	PLASTICITY CHART AND DATA	FIGURE
APPOBY: Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-5
DWG FILE:	San Jose, California	PROJECT No. 204104.10

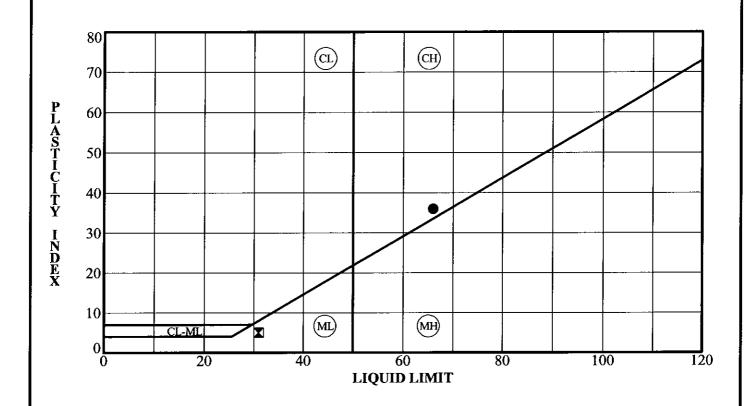
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-10	59.5	36	16	0.063	21		CL
	BH-10	66.5	25	4	-1.750	14		CL-ML
							i	
				'				
:				,				
					, <u></u>			


PREP'D BY:	PLASTICITY CHART AND DATA	FIGURE
Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-6
DWG FILE:	San Jose, California	PROJECT No.
		204104.10

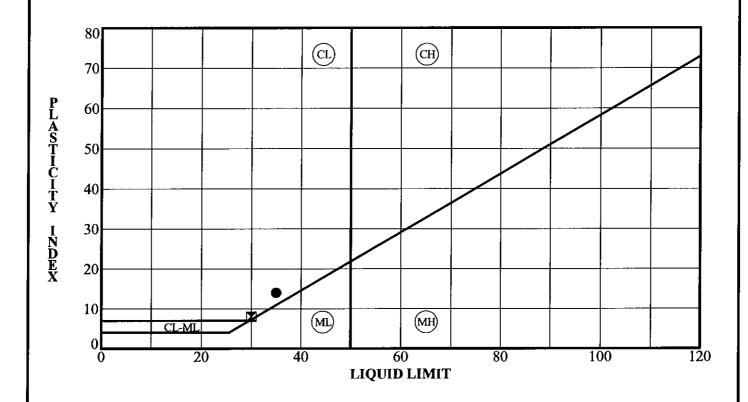
ATTERBERG 204104 06 20 2005.GPJ VERSION-042904.GDT 17/6/05


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-12	42.4	35	11	0.609	31	70	ML/CL
X	BH-12	66.0	34	11	0.545	29		ML/CL
A	BH-12	86.3	33	13	0.200	23		CL
					<u> </u>			
								,

PREPID BY:	PLASTICITY CHART AND DATA	FIGURE
APPDBY: Y. D. Warrg DATE: 17/6/05	SVRT DOWNTOWN	A12-7
DWG FILE:	San Jose, California	PROJECT No.
		204104.10


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-16	65.6	51	25	0.624	42		CH
	BH-16	101.5	33	9	0.289	27		ML/CL
					,		,	
·*-								
	<u> </u>	,						
					-			
		-						

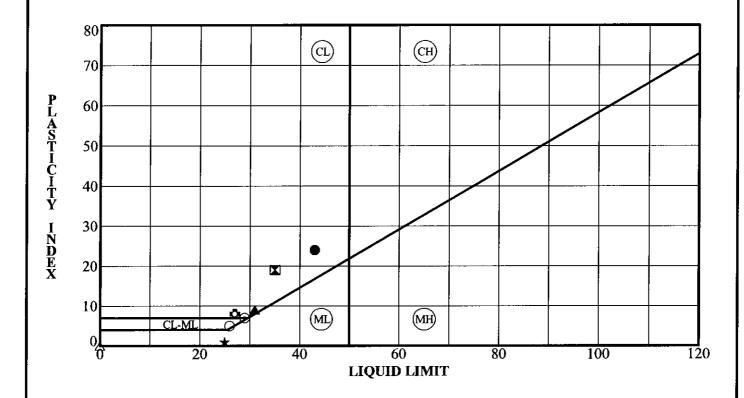
AND DATA FIGURE
A12-8
ornia PROJECT No. 204104.10


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-18	52.5	54	27	0.148	31		СН
×	BH-18	73.5	31	13	0.231	21		CL
				•				
	•							
							<u> </u>	
								<u> </u>

PREPO BY:	PLASTICITY CHART AND DATA	FIGURE
APPO BY: Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-9
DWG FILE:	San Jose, California	PROJECT No.
		204104.10

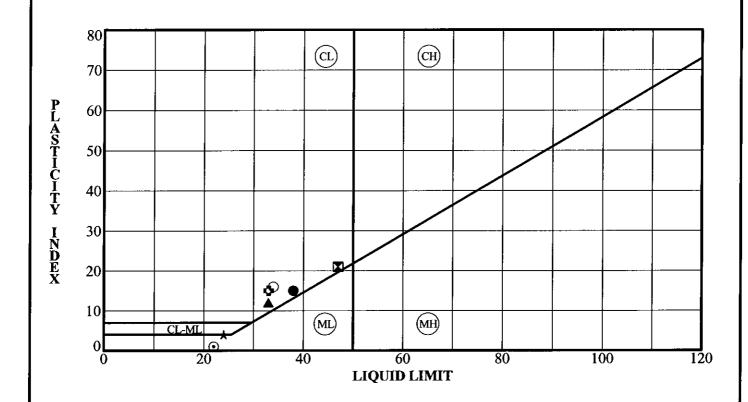
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-20	37.5	66	36	0.442	46		СН
X	BH-20	73.5	31	5	0.400	28		ML
							+	
			· ·					
		:						

PREPD BY:	PLASTICITY CHART AND DATA	FIGURE
Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-10
DWG FILE:	San Jose, California	PROJECT No.
		204104.10

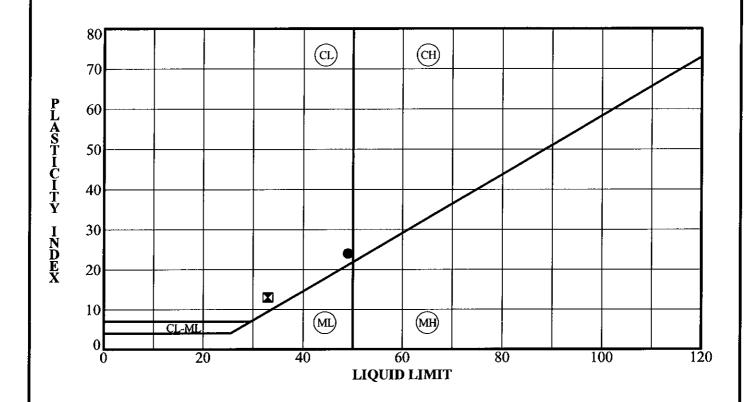


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-23	28.5	35	14	0.793	32		CL
×	BH-23	47.5	30	8	0.463	26		CL
		•						
					•			

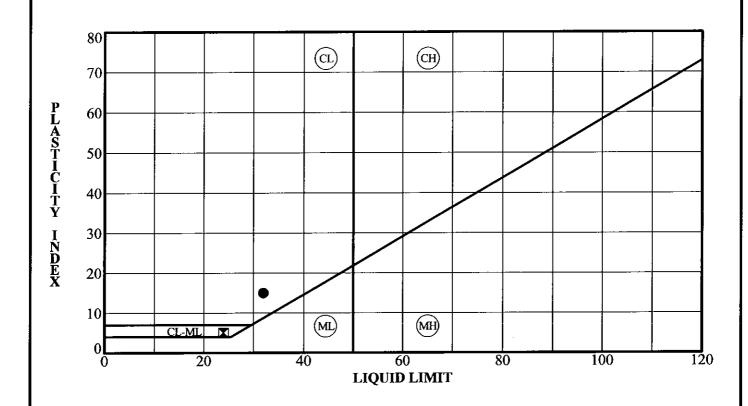
FIGURE


A12-11

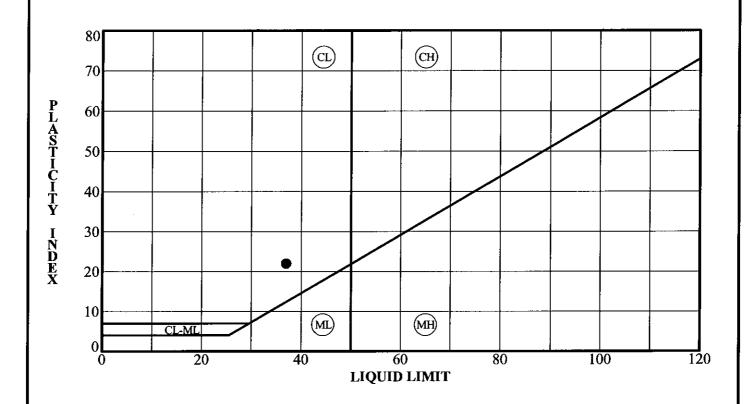
PROJECT No.
204104.10


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-24	15.0	43	24	0.229	25	90	CL
×	BH-24	17.5	35	19	0.732	30		CL
A	BH-24	27.5	31	9	0.678	28	86	CL
*	BH-24	32.4	25	1	2.300	26	71	ML
•	BH-24	55.0	29	7	0.514	26	78	CL-ML
•	BH-24	111.0	27	8	0.225	21	59	CL
0	BH-24	141.0	26	5	-0.500	19	56	CL-ML
Δ	BH-24	151.0	NP	NP		25	26	SM

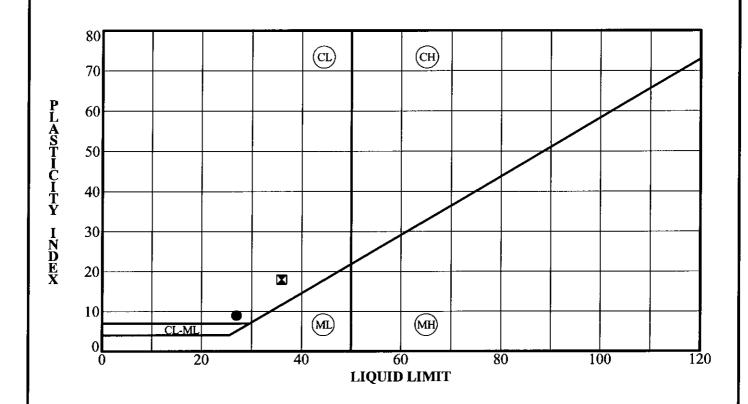
Y. D. Wang	- 40 40
17/6/05 SVRT DOWNTOWN San Jose, California	PROJECT No.


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-25	18.0	38	15	0.813	35		CL
X	BH-25	41.2	47	21	0.119	29		SC/CL
A	BH-25	56.5	33	12	0.542	28		CL
*	BH-25	61.5	24	4				ML
•	BH-25	70.5	22	1	0.000	21		ML
٥	BH-25	71.0	33	15	0.340	23	**	CL
0	BH-25	104.0	34	16	0.569	27		CL
				· · · · · · · · · · · · · · · · · · ·				
					~~			
					1			

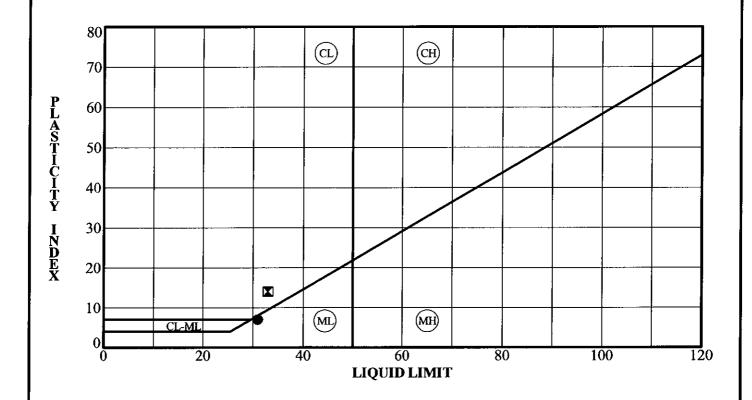
PREPTO BY:	PLASTICITY CHART AND DATA	FIGURE
APPD BY: Y. D. Wang OATE: 17/6/05 DWG FRE:	SVRT DOWNTOWN	A12-13
	San Jose, California	PROJECT No.
		204104.10


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-27	32.5	49	24	0.342	33		CL/CH
×	BH-27	131.5	33	13	0.331	24		CL
					!			
				<u>.</u>				
				<u>.</u> .				

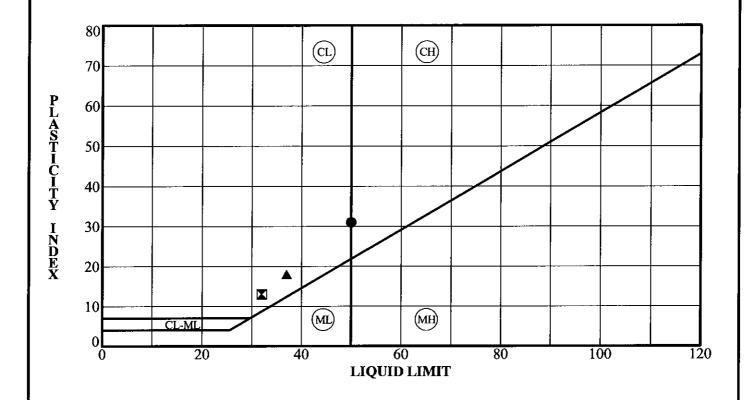
PREPOBY:	PLASTICITY CHART AND DATA	FIGURE
Y. D. Wang DATE 17/6/05	SVRT DOWNTOWN	A12-14
DAVG FILE:	San Jose, California	PROJECT No. 204104.10


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-29	70.7	32	15	0.467	24		CL
×	BH-29	80.0	24	5	1.000	24		CL-ML
	·							
.,					·			
_								
		-		- 1				
]		

	PREPDBY:	PLASTICITY CHART AND DATA	FIGURE	
	Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-15	
	DWG FILE:	San Jose, California	PROJECT No.	
		Jan Joss, Jamoina	204104.10	

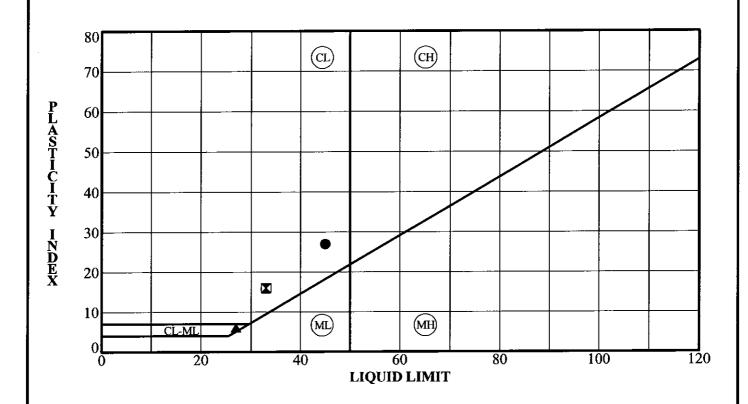

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-30	75.5	37	22	0.295	22		CL
								*·
								· · · · · ·
		;						
		1						

APPO BY: Y, D, Wang	PLASTICITY CHART AND DATA	FIGURE
17.6/05 DWG FLE:	SVRT DOWNTOWN San Jose, California	A12-16 PROJECT No. 204104.10

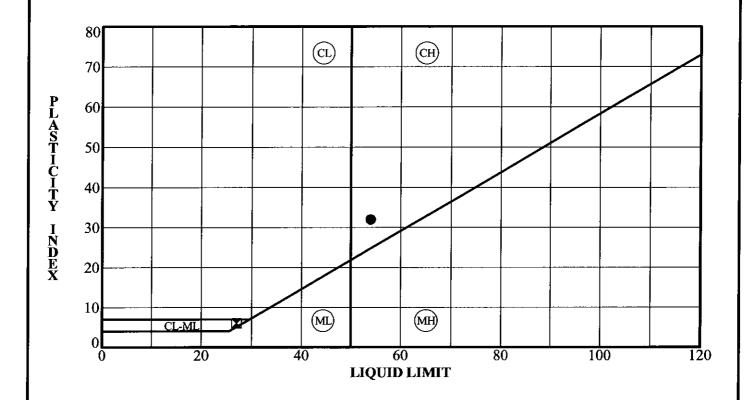

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-32	52.3	27	9	0.578	23		CL
×	BH-32	66.8	36	18	0.300	23		CL
								 -
								<u> </u>
								

PREPO BY:	PLASTICITY CHART AND DATA	FIGURE
APPOBY: Y, D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-17
OWG FILE:	San Jose, California	PROJECT No.
		204104.10

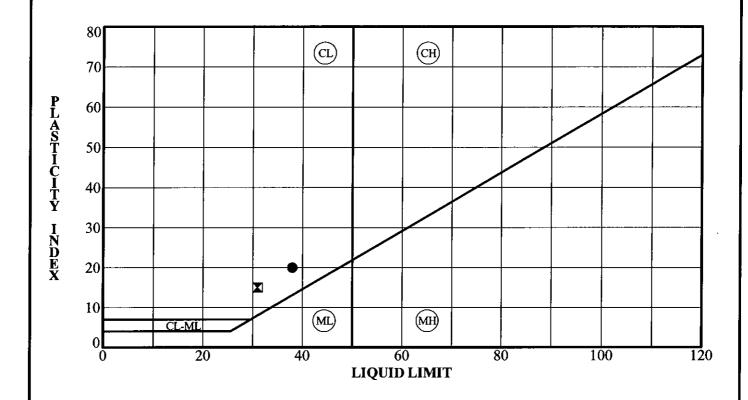
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-33	54.4	31	7	0.100	25		ML
X	BH-33	110.0	33	14	0.393	25		CL
	•							


	PREPID BY:	PLASTICITY CHART AND DATA	FIGURE
	APPDBY: Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-18
	DWG FILE:	San Jose, California	PROJECT No.
			204104.10

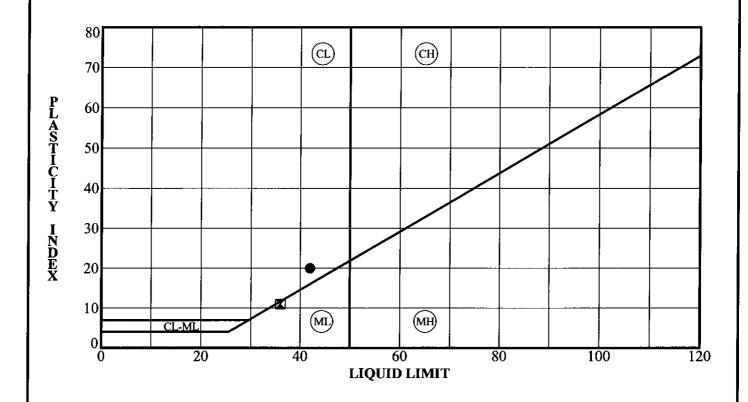
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-36	32.5	50	31	0.297	28		CL/CH
×	BH-36	42.5	32	13	0.515	26		CL
A	BH-36	67.5	37	18	0.278	24		CL
							:	
			- -					


PREPOBY: APPOBY: Y, D, Wang	PLASTICITY CHART AND DATA	FIGURE
DATE: 17/6/05	SVRT DOWNTOWN	A12-19
DWG FILE	San Jose, California	PROJECT No.
		204104.10

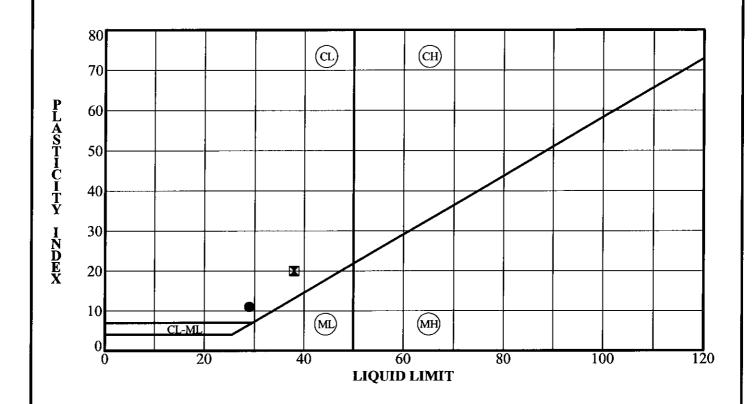
04104 06 20 2005.GPJ VERSION-042904.GDT 17/6/05


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-38	31.3	45	27	0.370	28		CL
X	BH-38	71.0	33	16	0.225	21		CL
A	BH-38	95.0	27	6	-0.150	20		CL-ML
					···			
		<u> </u>	-		<u> </u>			
						-		
	· 							

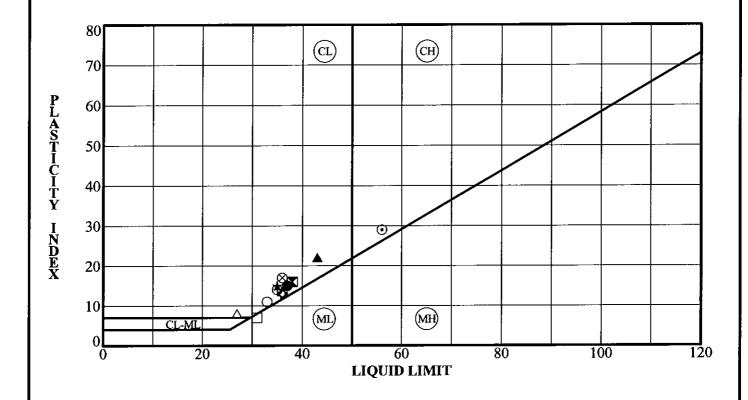
PREPOBY:	PLASTICITY CHART AND DATA	FIGURE
APPDBY: Y. D. Wang DATE: 17/6/05		A12-20
DWG FILE	SVRT DOWNTOWN San Jose, California	PROJECT No. 204104.10


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-40	24.3	54	32	0.488	38		СН
×	BH-40	42.5	27	6	0.750	26		CL-ML
								!
:								

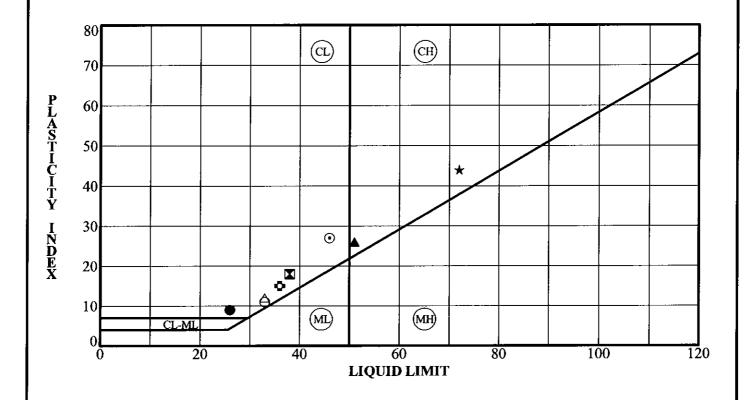
PREPID BY:	PLASTICITY CHART AND DATA	FIGURE
APPO BY: Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-21
DWG FILE:	San Jose, California	PROJECT No.
		204104.10


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-42	50.9	38	20	0.425	27		CL
	BH-42	62.5	31	15	0.267	20		CL
							·	
				-				
·	-							
				i				
<u> </u>								

PREPO BY:	PLASTICITY CHART AND DATA	FIGURE
APPD BY: Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-22
DWG FILE:	San Jose, California	PROJECT No.
		204104.10

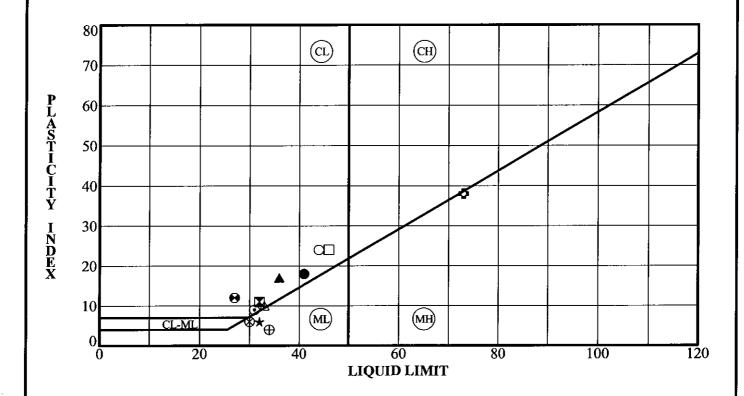

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-46	22.5	42	20	0.395	30		CL
X	BH-46	52.5	36	11	0.418	30		ML/CL
							•	

PREPD 8Y:	PLASTICITY CHART AND DATA	FIGURE
APPDBY: Y. D. Wang		│ A12-23 │
17/6/05 DWG FILE:	SVRT DOWNTOWN	AIZ-ZO
DWG FILE	San Jose, California	PROJECT No.
	,	204104.10


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-48	40.0	29	11	0.109	19		CL
X	BH-48	77.5	38	20	0.295	24		CL
			····					
								~~~~
				·-···				

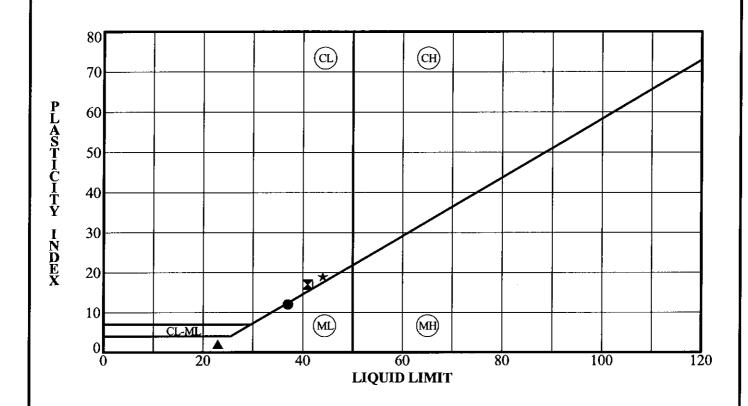
PREPID BY:	PLASTICITY CHART AND DATA	FIGURE
APPD 8Y: Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-24
DWG FILE:	San Jose, California	PROJECT No.
	San Jose, California	PROJECT No. 204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-50	6.8	37	15	0.027	22	,	CL
	BH-50	12.2	38	16	0.556	31		CL
<b>A</b>	BH-50	16.4	43	22	0.100	23		CL
*	BH-50	32.5	35	15	0.740	31		CL
•	BH-50	37.2	56	29	0.490	41		СН
0	BH-50	52.5	36	13	0.654	32	·	CL
0	BH-50	101.2	33	11	0.118	23		CL
Δ	BH-50	111.4	27	8	0.388	22		CL
8	BH-50	120.5	36	17	0.359	25	91	CL
Φ	BH-50	140.5	35	14	0.357	26	94	CL
	BH-50	150.5	31	7	-0.086	23	80	ML

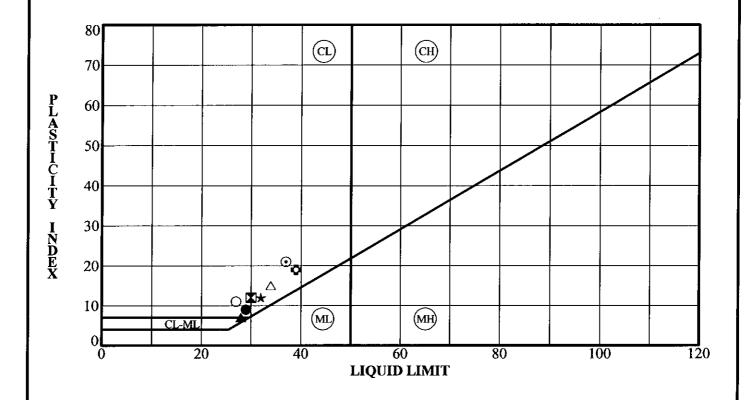
PREPD BY:	PLASTICITY CHART AND DATA	FIGURE
APP0 BY: Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-25
DWG FILE	San Jose, California	PROJECT No.
		204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-52	19.5	26	9	0.111	18		CL
	BH-52	31.9	38	18	0.572	30		CL
<b>A</b>	BH-52	36.6	51	26	0.681	43		CH
*	BH-52	39.1	72	44	0.266	40		CH
•	BH-52	41.4	46	27	0.241	26		CL
٥	BH-52	46.7	36	15	0.493	28		CL
0	BH-52	56.7	33	11	0.527	28	53	CL/SC
Δ	BH-52	116.5	33	12	0.025	21	73	CL

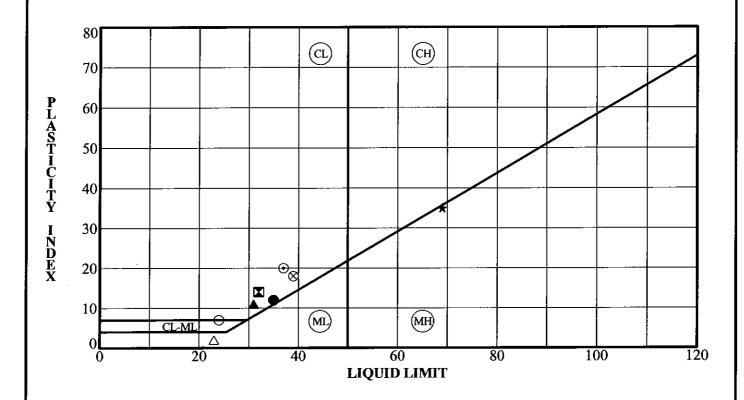
PREPDBY:	PLASTICITY CHART AND DATA	FIGURE
Y. D. Wang OATE: 17/6/05	SVRT DOWNTOWN	A12-26
ÓWÖ FILE:	San Jose, California	PROJECT No.
		204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-53	4.9	41	18	-0.106	21		CL
	BH-53	12.2	32	11	0.518	27		CL
<b>A</b>	BH-53	17.0	36	17	0.118	21		CL
*	BH-53	25.0	32	6	1.200	33		ML
•	BH-53	27.2	31	9	0.300	25		CL
٥	BH-53	37.5	73	38	0.624	59		мн/сн
0	BH-53	42.2	44	24	0.150	24		CL
Δ	BH-53	47.5	33	10	0.570	29		CL
8	BH-53	54.2	30	6	-0.050	24	78	ML
Ф	BH-53	57.3	34	4	-0.175	29		ML
	BH-53	100.5	46	24	0.308	29		CL
8	BH-53	116.5	27	12	0.442	20	45	SC

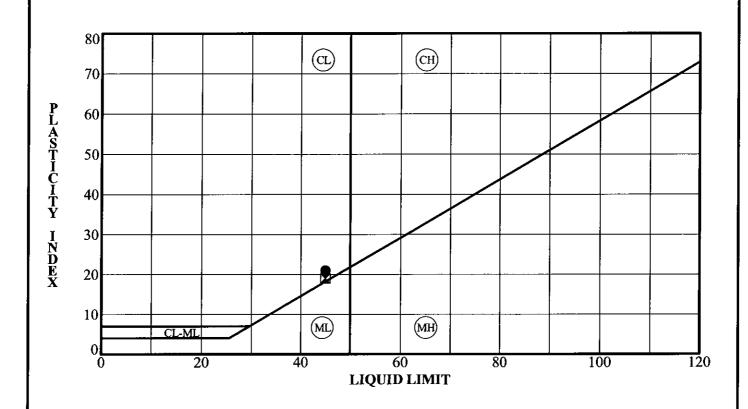
APPOBY: Y. D. Wang	PLASTICITY CHART AND DATA	FIGURE
DATE: 17/6/05 DWG PILE:	SVRT DOWNTOWN San Jose, California	A12-27-1  PROJECT No. 204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-53	125.2	37	12	0.542	32		ML
×	BH-53	136.5	41	17	0.018	24		CL
<b>A</b>	BH-53	141.4	23	2	1.300	24	79	ML
*	BH-53	149.0	44	19	0.374	32		CL
	-							

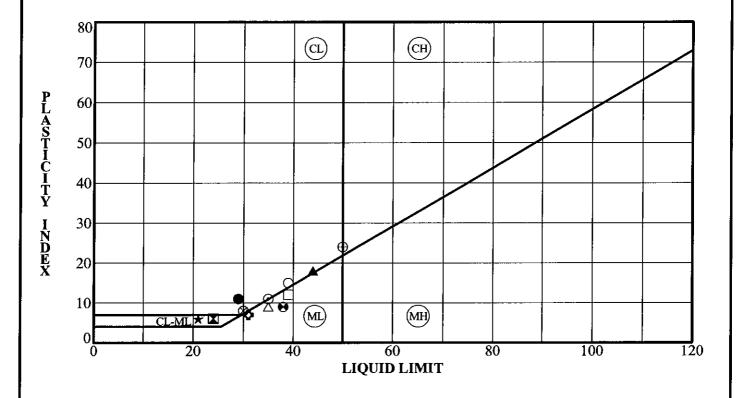
	PREPOBY:	PLASTICITY CHART AND DATA	FIGURE	
	APPOBY: Y. D. Wang		A42 27 2	
	DATE 17/6/05	SVRT DOWNTOWN	<b>A12-27-2</b>	
	DWG FILE:	San Jose, California	PROJECT No.	
			204104.10	




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-54	11.6	29	9	1.267	31	97	CL
×	BH-54	17.0	30	12	0.300	22		CL
<b>A</b>	BH-54	22.5	28	7	0.971	28	69	CL-ML
*	BH-54	32.0	32	12	0.625	28	85	CL
•	BH-54	42.5	37	21	0.300	22	76	CL
٥	BH-54	52.5	39	19	0.163	23	88	CL
0	BH-54	62.5	27	11	0.327	20		CL
Δ	BH-54	91.0	34	15	0.440	26	85	CL
-						:		

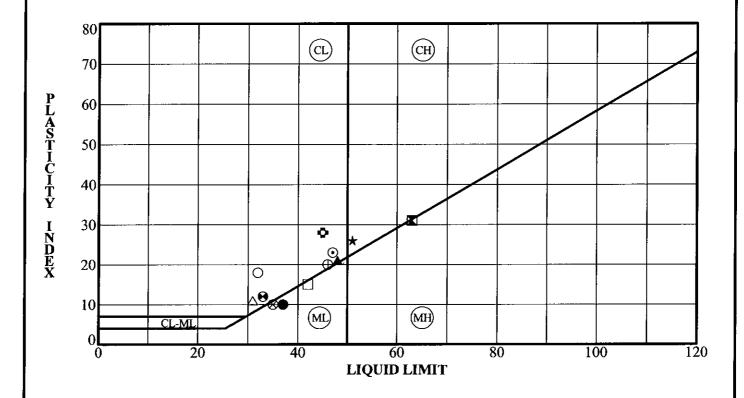
	PREPD BY:	PLASTICITY CHART AND DATA	FIGURE
	Y. D. Wang DATE: 17/6/05 DWG FILE	SVRT DOWNTOWN	A12-28
		San Jose, California	PROJECT No.
			204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-55	12.4	35	12	-0.617	16		CL
X	BH-55	16.9	32	14	0.257	22	60	CL
<b>A</b>	BH-55	26.7	31	11	0.655	27		CL
*	BH-55	37.5	69	35	0.357	47		MH/CH
•	BH-55	45.0	37	20	0.340	24		CL
٥	BH-55	47.5	35	12	0.542	30		CL
0	BH-55	62.5	24	7	0.314	19	· · ·	CL-ML
Δ	BH-55	71.6	23	2	1.100	23	67	ML
8	BH-55	136.5	39	18	0.100	23		CL
<u></u>		<del></del>						

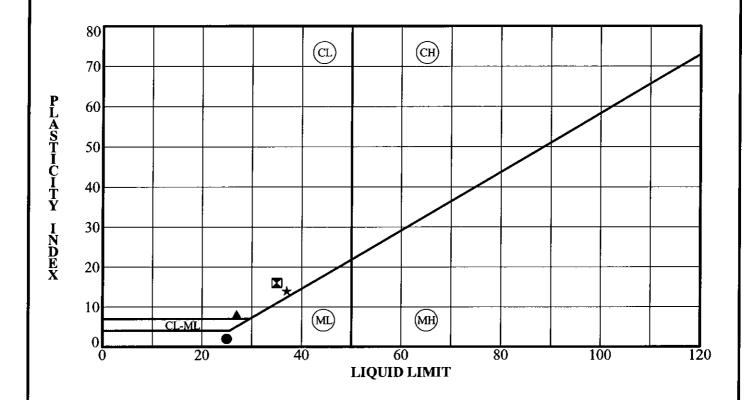
PREPDSY:	PLASTICITY CHART AND DATA	FIGURE
APPD 8Y: Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-29
DWGFILE	San Jose, California	PROJECT No.
		204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-56	17.3	45	21	0.195	28		CL
×	BH-56	32.3	45	19	0.395	34		CL
							<del></del>	
<del></del>								

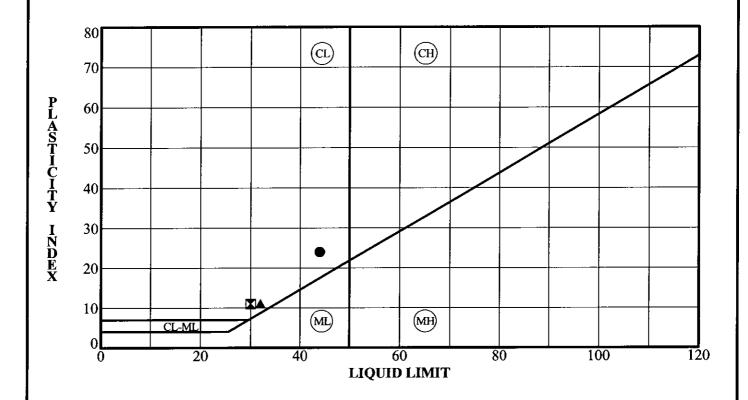
	PREPOBY:	PLASTICITY CHART AND DATA	FIGURE	
	APPOBY: Y. D. Wang	TEAGLIGHT GILLING MAD DATA	A40.00	
	DATE: 17/6/05 OWG FILE:	SVRT DOWNTOWN	A12-30	
		San Jose, California	PROJECT No.	
		<del></del>	204104.10	




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-58	7.4	29	11	0.382	22		CL
X	BH-58	9.5	24	6	1.433	27		CL-ML
<b>A</b>	BH-58	12.1	44	18	0.122	28		ML/CL
*	BH-58	17.5	21	6	1.083	22		CL-ML
•	BH-58	20.0	35	11	0.627	31		ML/CL
٥	BH-58	21.5	. 31	7	0.786	30		ML
0	BH-58	24.3	39	15	0.473	31		CL
Δ	BH-58	26.7	35	9				ML
8	BH-58	27.2	30	8	0.563	27		ML
Φ	BH-58	29.7	50	24	0.350	34		CL/CH
	BH-58	31.6	39	12	-0.017	27	·	ML
0	BH-58	34.7	38	9	0.111	30		ML

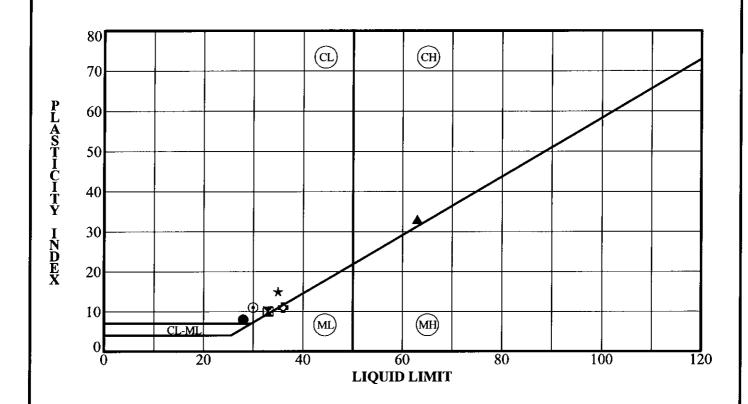
	PREP'D BY:	PLASTICITY CHART AND DATA	FIGURE
	Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-31-1
	DWG FILE:	San Jose, California	PROJECT No.
			204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-58	37.1	37	10	0.470	32		ML
	BH-58	39.6	63	31	0.113	36		МН/СН
<b>A</b>	BH-58	42.0	48	21	0.205	31		ML/CL
*	BH-58	44.4	51	26	0.242	31		СН
•	BH-58	47.2	47	23	0.248	30		CL
¢	BH-58	48.4	45	28	0.179	22		CL
0	BH-58	49.4	32	18	0.233	18		CL
Δ	BH-58	51.8	31	11	0.500	26		CL
8	BH-58	54.3	35	10				ML
<b>⊕</b>	BH-58	57.5	46	20	0.320	32		CL
	BH-58	60.0	42	15	0.173	30		ML
8	BH-58	62.4	33	12	0.650	29		CL

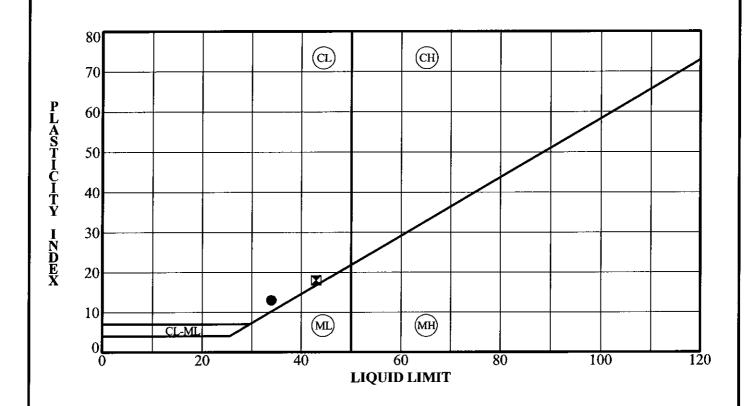
	PREPD BY:	PLASTICITY CHART AND DATA	FIGURE	
	APPD BY: Y. D. Wang	TEACHOLL CHARLAND BATA	A12-31-2	
	DATE: 17/6/05 DWG FILE	SVRT DOWNTOWN	A12-31-2	
		San Jose, California	PROJECT No.	
			204104.10	




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-58	64.5	25	2	1.450	26		ML
×	BH-58	67.5	35	16	0.463	26		CL
<b>A</b>	BH-58	70.0	27	8	0.350	22		CL
*	BH-58	116.3	37	14	0.071	24	1	CL
				· · · · · · · · · · · · · · · · · · ·				
		.,						

	PREPOBY:  APPOBY:  Y. D. Wang	PLASTICITY CHART AND DATA	FIGURE	
	OATE: 17/6/05	SVRT DOWNTOWN	A12-31-3	
	OWG FILE:	San Jose, California	PROJECT No.	
			204104.10	




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-59	30.5	44	24	0.333	28		CL
X	BH-59	60.5	30	11	0.273	22	_	CL
<b>A</b>	BH-59	160.5	32	11	0.091	22		CL
			-	;				······································
							1	•
	:						4	

P	PREPO BY:	PLASTICITY CHART AND DATA	FIGURE
	Y, D, Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-32
	DWG FILE:	San Jose, California	PROJECT No.
			204104.10



Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-60	10.0	28	8	1.413	31		CL
×	BH-60	32.5	33	10	0.110	24		ML/CL
<b>A</b>	BH-60	42.4	63	33	0.121	34		CH
*	BH-60	62.5	35	15	0.267	24		CL
•	BH-60	75.0	30	11	0.409	24		CL
٥	BH-60	92.0	36	11	0.118	26		ML

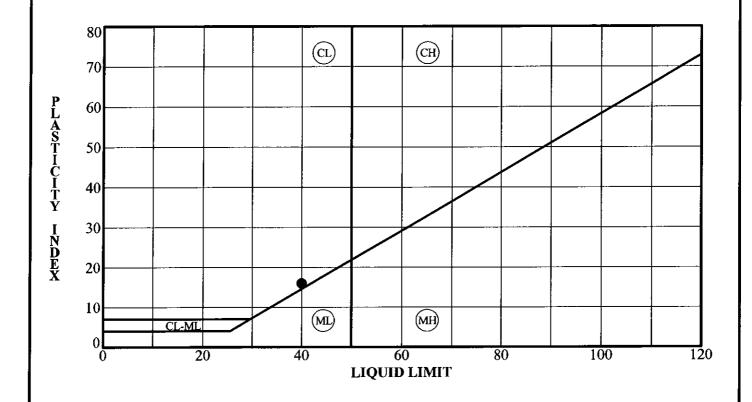
	PREPID BY:	PLASTICITY CHART AND DATA	FIGURE	
	APPDBY: Y. D. Wang	TENOTION TO MINICIPALITY	A12-33	
	OATE: 17/6/05 DWG FILE:	SVRT DOWNTOWN		
		San Jose, California	PROJECT No.	
			204104.10	



Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-61	72.4	34	13	0.131	23		CL
×	BH-61	91.9	43	18	0.133	27		CL
							<del></del>	
							_	
		· · · · ·						
							• •	

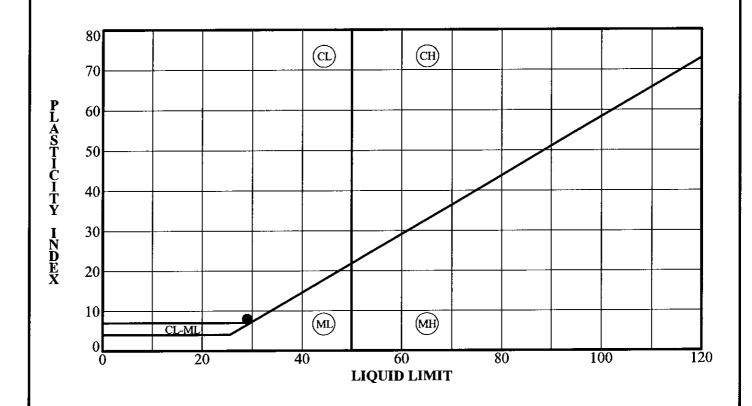
	<b>①</b>
Ų	

	APP'D BY:
	Y. D. Wang
	DATE:
	17/6/05
	DWG FILE:
- 1	


PREPDBY:

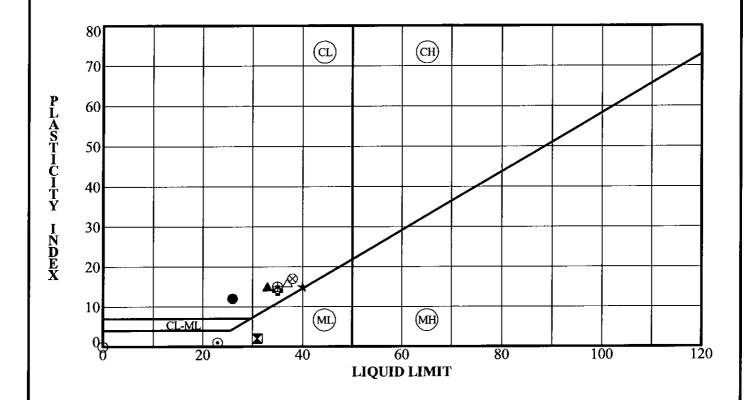
PLASTICITY CHART AND DATA

SVRT DOWNTOWN
San Jose, California


FIGURE
A12-34
PROJECT No.

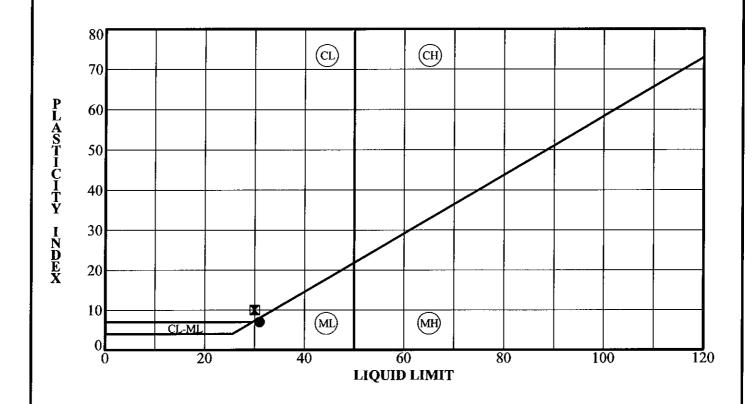
204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-62	82.2	40	16	0.294	29	98	CL
								<del></del>
	<u> </u>							-

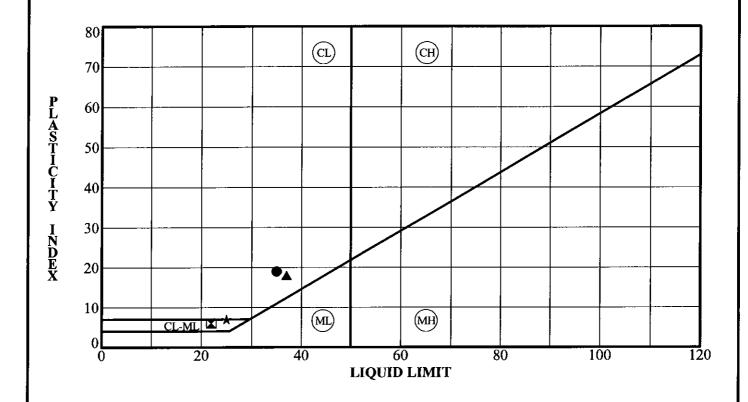
PREP'D BY:	PLASTICITY CHART AND DATA	FIGURE
APPOBY: Y. D. Wang	TEASTICITY CHART AND DATA	440.05
DATE: 17/6/05	SVRT DOWNTOWN	A12-35
DWG FILE:	San Jose, California	PROJECT No.
	Can obbe, Can obbe,	204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-63	91.3	29	8	-0.288	19		CL-ML
								<del></del>
				-				

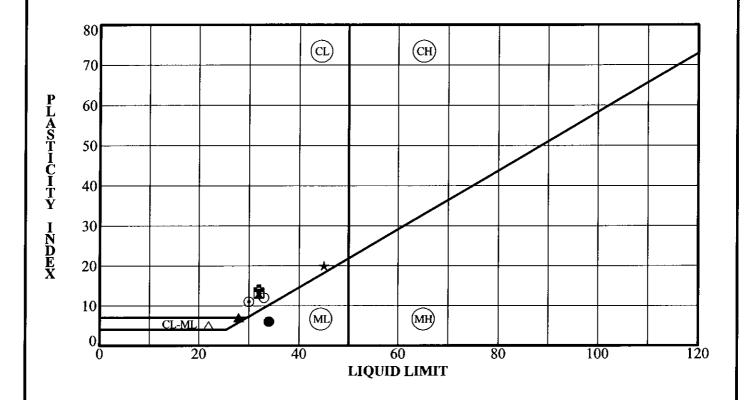
PREPD BY:	PLASTICITY CHART AND DATA	FIGURE	
APPD BY: Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-36	
OWG FILE:	San Jose, California	PROJECT No.	
		204104.10	




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-64	3.8	26	12	-0.092	13		CL
×	BH-64	12.3	31	2	1.250	32		ML
<b>A</b>	BH-64	24.8	33	15	0.567	27		CL
*	BH-64	32.5	40	15	0.840	38		CL
•	BH-64	52.4	23	1	-1.300	21		ML
٥	BH-64	72.5	35	14	0.229	24		CL
0	BH-64	74.0	NP	NP		9		ML
Δ	BH-64	107.1	37	16	0.238	25		CL
8	BH-64	117.4	38	17	0.371	27		CL
Φ	BH-64	136.9	35	15	0.200	23		CL

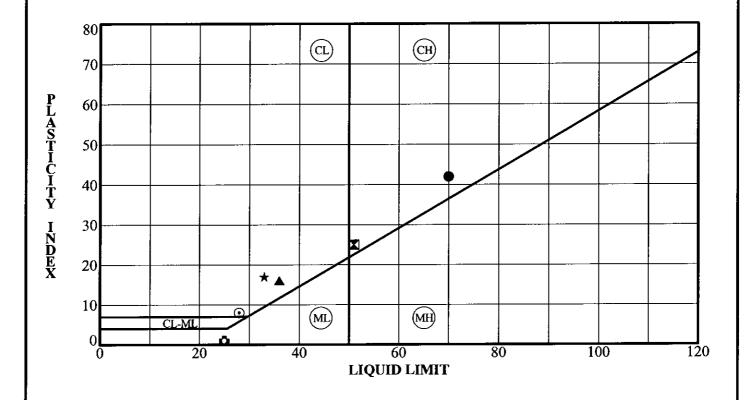
PREPD BY:	PLASTICITY CHART AND DATA	FIGURE	
Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-37	
DWG FILE:	San Jose, California	PROJECT No.	
		204104.10	




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-65	9.5	31	7	0.729	29		ML
	BH-65	32.0	30	10	0.710	27		CL
								•
		-			,			
		1						
							· · · · ·	

APPOBY: Y. D. Wang	PLASTICITY CHART AND DATA	FIGURE
17/6/05 DWG FILE:	SVRT DOWNTOWN San Jose, California	A12-38 PROJECT No.
	oan oose, camorna	204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-66	62.5	35	19	0.479	25		CL
	BH-66	72.5	22	6	0.700	20		CL-ML
<b>A</b>	BH-66	112.5	37	18	0.289	24		CL
*	BH-66	128.4	25	7	0.143	19		CL-ML
· · · · · · · · · · · · · · · · · · ·								
							1.	

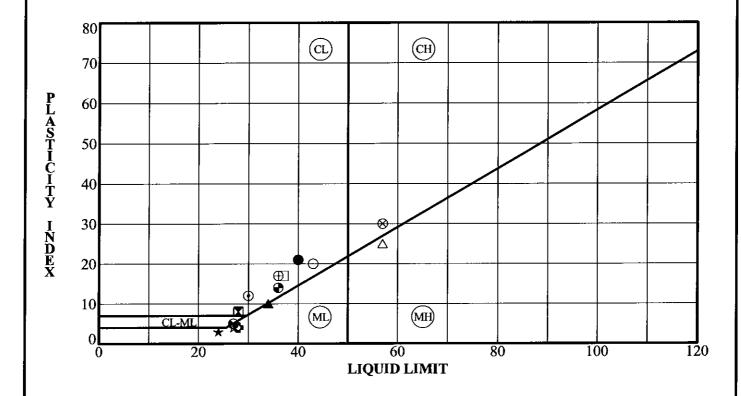
	PREPOBY: Y. D. Wang DATE 17/6/05 OWG FILE	PLASTICITY CHART AND DATA	FIGURE
		SVRT DOWNTOWN San Jose, California	A12-39
			PROJECT No.
			204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-70	21.6	34	6	0.850	33		ML
X	BH-70	25.0	32	13	0.115	21		CL
<b>A</b>	BH-70	26.3	28	7	0.286	23		CL-ML
*	BH-70	44.0	45	20	0.085	27		CL
0	BH-70	45.0	30	11	0.364	23		CL
٥	BH-70	47.5	32	14	0.571	26		CL
0	BH-70	60.0	33	12	-0.083	20		CL
Δ	BH-70	69.3	22	5	0.460	19		CL-ML

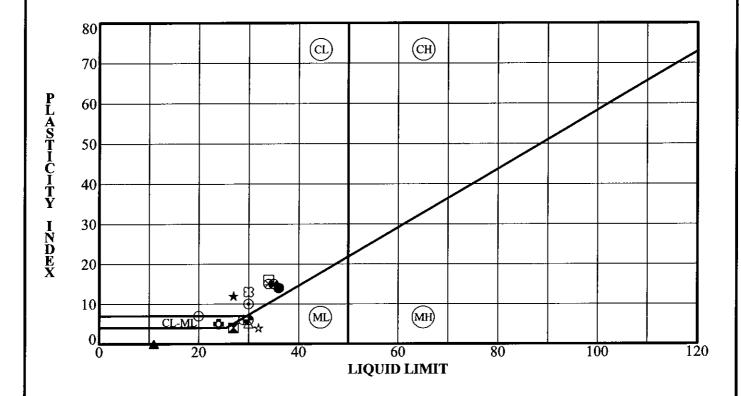
PREPOBY:  APPYOBY:  Y. D. Wang	PLASTICITY CHART AND DATA	FIGURE
OATE 17/6/05 DWG FILE:	SVRT DOWNTOWN San Jose, California	A12-40 PROJECT No.
	San Jose, Camorna	204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-71	21.0	70	42	0.269	39		ОН
×	BH-71	42.0	51	25	0.408	36		CH
<b>A</b>	BH-71	62.5	36	16	0.369	26		CL
*	BH-71	99.5	33	17				CL
•	BH-71	125.5	28	8	0.263	22		CL
٥	BH-71	135.2	25	1	11.200	35		ML
				- te -				

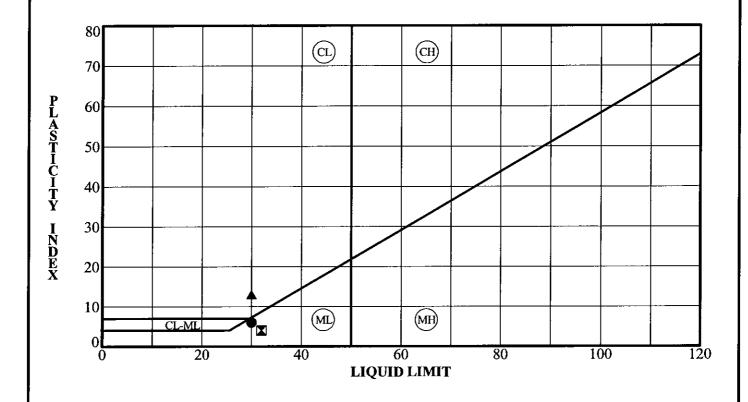
PREPD BY:	PLASTICITY CHART AND DATA	FIGURE
Y. D. Wang DATE: 17/6/05	SVRT DOWNTOWN	A12-41
DWG FILE:	San Jose, California	PROJECT No. 204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-73	81.7	29	4	2.200	34		ML
X	BH-73	112.3	22	1	0.100	21		ML
						·		-4
<u>.</u>								
								<u> </u>
							<del></del>	

PREPD BY:  APPD BY:  Y, D, Wang	PLASTICITY CHART AND DATA	FIGURE	
DATE: 17/6/05	SVRT DOWNTOWN	A12-42	
DWG FILE:	San Jose, California	PROJECT No.	
		204104.10	

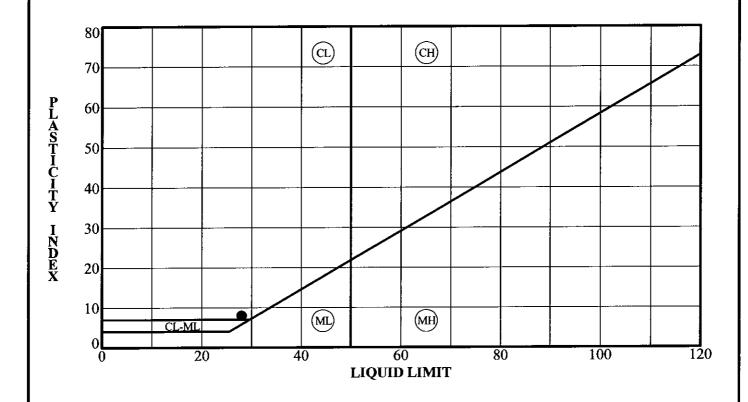



Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-74	9.4	40	21	0.333	26	<del></del>	CL
×	BH-74	11.9	28	8	-0.125	19		CL
<b>A</b>	BH-74	15.0	34	10	0.110	25		ML/CL
*	BH-74	17.0	24	3	0.000	21		ML
•	BH-74	19.8	30	12	0.500	24		CL
٥	BH-74	22.4	28	4	0.000	24		ML
0	BH-74	24.8	43	20	0.200	27		CL
Δ	BH-74	26.5	57	25	0.068	34		MH
8	BH-74	27.5	57	30	0.200	33		СН
<b>⊕</b>	BH-74	29.3	36	17	0.353	25		CL
	BH-74	31.5	37	17	0.265	25		CL
8	BH-74	34.4	27	5	-0.200	21		CL-ML

APPDBY: Y. D. Wang	PLASTICITY CHART AND DATA	FIGURE
DATE: 17/6/05 DWG FLE:	SVRT DOWNTOWN San Jose, California	A12-43-1 PROJECT No.
		204104.10

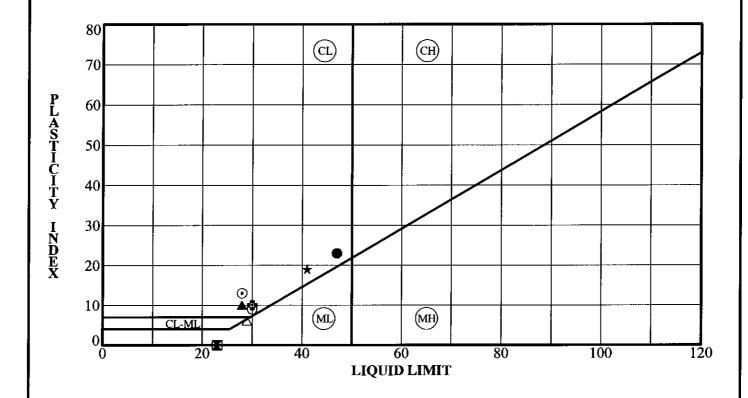


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-74	37.2	36	14	0.429	28		CL
×	BH-74	39.8	27	4	-0.575	21		ML
<b>A</b>	BH-74	42.2	11	NP		26		ML
*	BH-74	44.7	27	12	0.500	21		CL
•	BH-74	47.5	30	10	0.500	25		CL
•	BH-74	49.0	24	5	-2.400	7		CL-ML
0	BH-74	50.0	20	7	1.000	20		CL-ML
Δ	BH-74	51.5	30	5	0.000	25		ML
8	BH-74	52.5	34	15	0.400	25		CL
0	BH-74	55.0	29	6	0.667	27		ML
	BH-74	57.3	34	16	0.125	20		CL
•	BH-74	60.0	35	15	0.333	25		CL


	APPDBY: Y. D. Wang	PLASTICITY CHART AND DATA	FIGURE	
	DATE: 17/6/05	SVRT DOWNTOWN	A12-43-2	
	OWG FILE:	San Jose, California	PROJECT No.	
			204104.10	

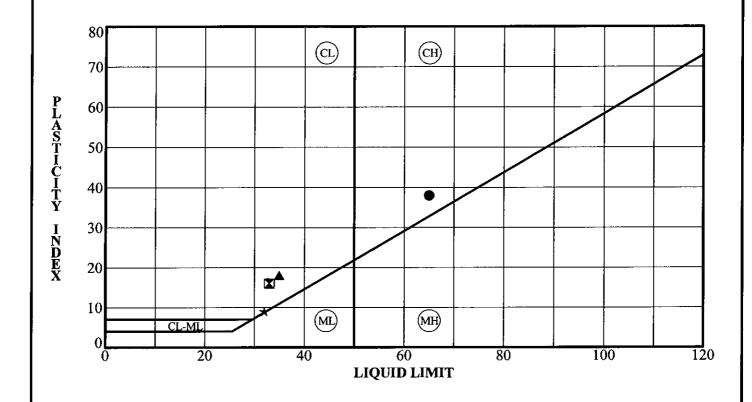


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-74	62.4	30	6	-0.833	19		ML
X	BH-74	63.6	32	4	0.825	31		ML
<b>A</b>	BH-74	77.4	30	13	0.462	23		CL
•								
		<u></u>						


PREPID BY:	PLASTICITY CHART AND DATA	FIGURE
Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-43-3
DWG FILE:	San Jose, California	PROJECT No.
		204104.10

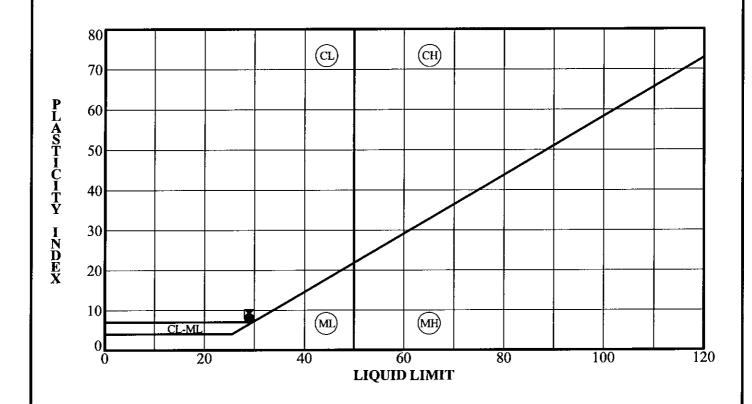
104 06 20 2005.GPJ VERSION-042904.GDT 17/6/05




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-76	87.5	28	8	0.100	21		CL
					-	-		
		177		-				
						<u></u>		
	·							

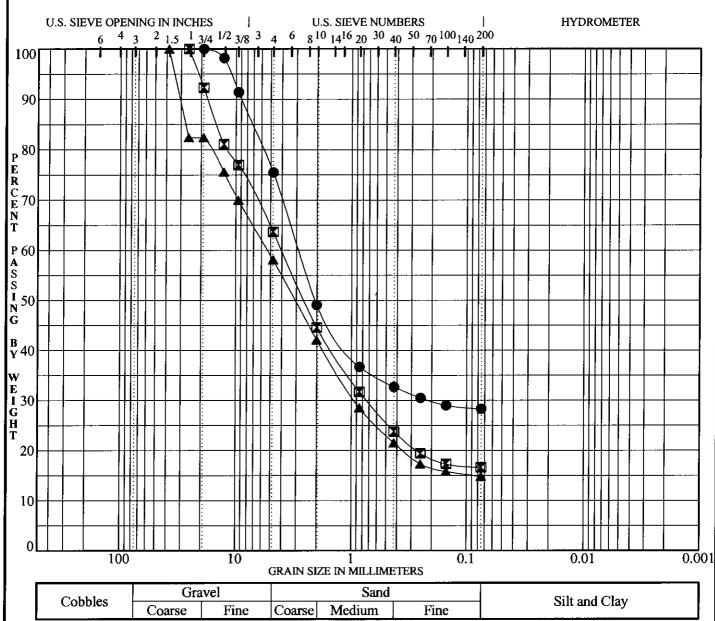
PREPO BY:	PLASTICITY CHART AND DATA	FIGURE
Y, D. Wang — DATE: 17/6/05 DWGFILE:	SVRT DOWNTOWN San Jose, California	PROJECT No. 204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-77	11.0	47	23	0.730	41		CL
	BH-77	16.5	23	NP		26		ML
<b>A</b>	BH-77	28.0	28	10	0.310	21		CL
*	BH-77	33.0	41	19	0.484	31		CL
•	BH-77	40.5	28	13	0.215	18		CL
٥	BH-77	71.6	30	10	-0.030	20		CL
0	BH-77	102.0	30	9	0.667	27		CL
Δ	BH-77	132.5	29	6	-1.250	16		ML
-								

PREPD BY: APPOBY: Y. D. Wang	PLASTICITY CHART AND DATA	FIGURE
DATE: 17/6/05 OWG FILE:	SVRT DOWNTOWN	A12-45
	San Jose, California	204104.10




Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-79	22.5	65	38	0.282	38		СН
X	BH-79	62.4	33	16	0.519	25		CL
<b>A</b>	BH-79	82.5	35	18	0.344	23		CL
*	BH-79	132.3	32	9	0.200	25		ML/CL
	~							
	*							
							··-	

PREPD 8Y:	PLASTICITY CHART AND DATA	FIGURE
Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-46
DWG FILE:	San Jose, California	PROJECT No.
	·	204104.10

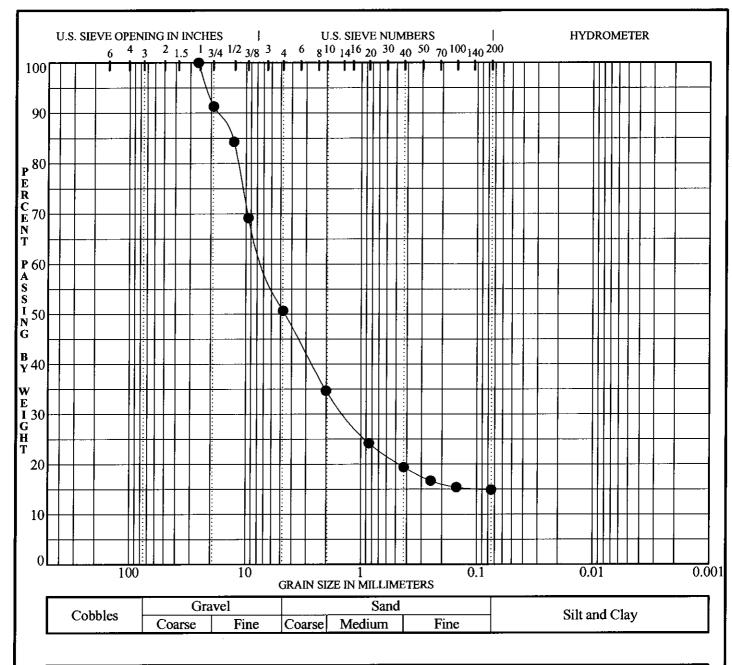


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit	Plasticity Index	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-80	50.2	29	8	0.400	24		CL
X	BH-80	68.5	29	9	0.300	23		CL
		,						<del>.</del>
	-				-			
	:							<del></del>

$\overline{\mathbf{a}}$	APPOBY: Y, D. Wang	PLASTICITY CHART AND DATA	FIGURE
	DATE: 17/6/05 DWG FILE:	SVRT DOWNTOWN San Jose, California	A12-47 PROJECT No.
			204104.10



Cobbles	Gra	vel		Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-01	46.8	28	76	Clayey SAND with gravel (SC)	SC
	BH-01	51.3	17	64	Clayey SAND with gravel (SC)	SC
<b>A</b>	BH-01	60.9	15	58	Clayey SAND with gravel (SC)	SC
						,



PREPD 8Y:	Į
APP'D BY: Y. D. Wang	L
DATE: 17/6/05	
OWG FILE:	1

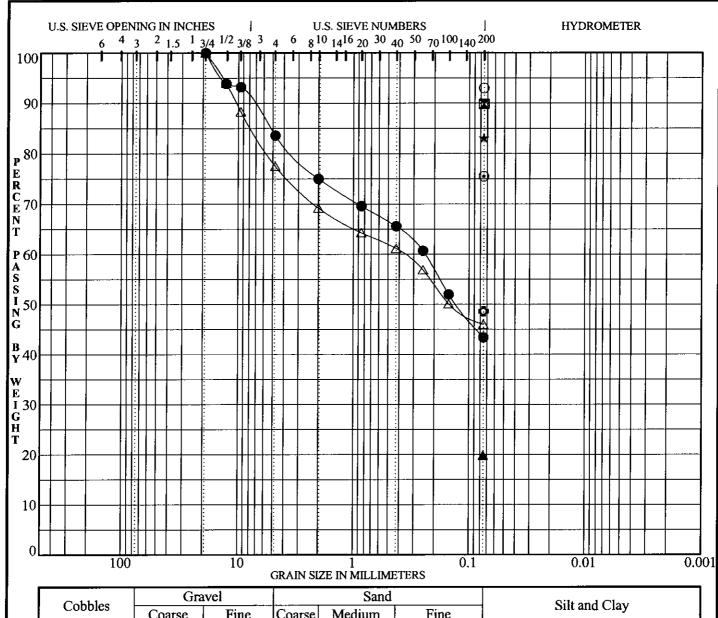
**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-48



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-02	51.8	15	51	Clayey GRAVEL with sand (GC)	GC




PREPO BY:	
APPOBY: Y. D. Wang	1
DATE: 17/6/05	1
DWG FILE:	7

SVRT DOWNTOWN

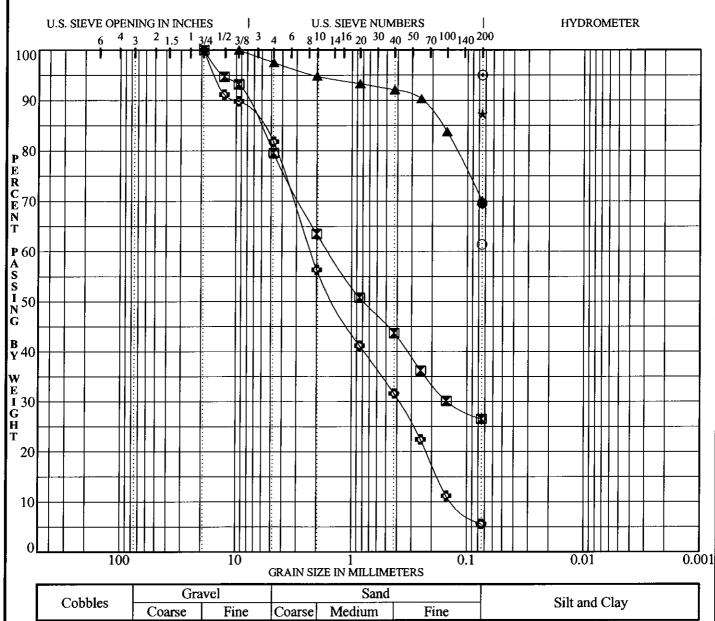
San Jose, California

A12-49

**FIGURE** 



Coarse Fine Coarse Medium Fine	Cobblog	Gra	vel	Sand		Silt and Clay	
	Cobbles	Coarse			Medium	Fine	Sin and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-03	37.5	43	84	Clayey SAND with gravel (SC)	SC
×	BH-03	49.4	90		Lean CLAY (CL)	CL
<b>A</b>	BH-03	49.9	20		Silty SAND with gravel (SM)	SM
*	BH-03	54.0	83		Lean CLAY with sand (CL)	CL
•	BH-03	56.3	76		Lean CLAY with sand (CL)	CL
٥	BH-03	57.0	49		Clayey SAND to Sandy Lean CLAY (SC/CL)	SC/CL
0	BH-03	58.0	93		Lean CLAY (CL)	CL
Δ	BH-03	59.5	46	78	Clayey SAND with gravel (SC)	SC



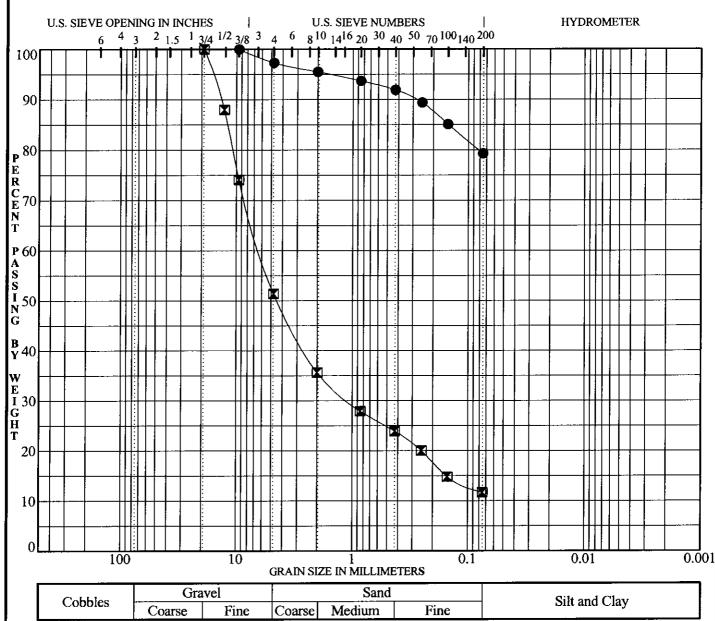
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
APP'D BY:	1
Y. D. Wang	H
DATE	1
17/6/05	1
OWG FILE:	1
	ı
	1

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-50-1



Cobbles	Gravel		Sand			Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-03	64.0	70		Silty CLAY with sand (CL-ML)	CL-ML
×	BH-03	64.5	27	80	Silty SAND with gravel (SM)	SM
<b>A</b>	BH-03	65.0	70	98	Silty CLAY with sand (CL-ML)	CL-ML
*	BH-03	66.9	87		Silty CLAY (CL-ML)	CL-ML
•	BH-03	69.3	95		Silty CLAY (CL-ML)	CL-ML
٥	BH-03	74.8	6	82	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
0	BH-03	89.8	61		Sandy SILT (ML)	ML

4		
	<i>[</i>	

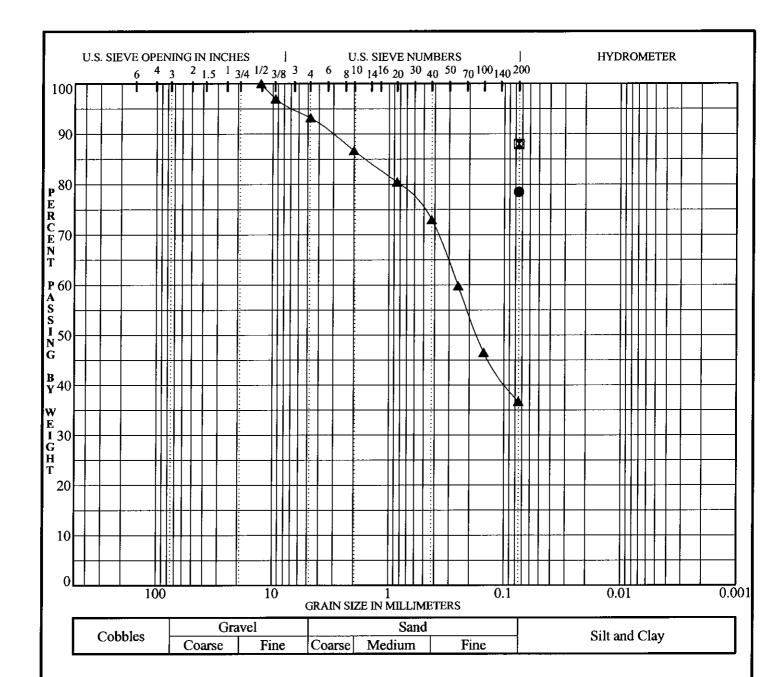
HEPUBI:	ı
APPOBY: Y. D. Wang	L
DATE:	ſ
17/6/05 DWG FILE:	ł

**SVRT DOWNTOWN** San Jose, California

FIGURE	
12-50-2	



Cakklas	Gravel			Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Sift and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-04	50.5	79	97	Fat CLAY with sand (CH)	CH
×	BH-04	81.2	12	51	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
				<del></del>		
						-,-



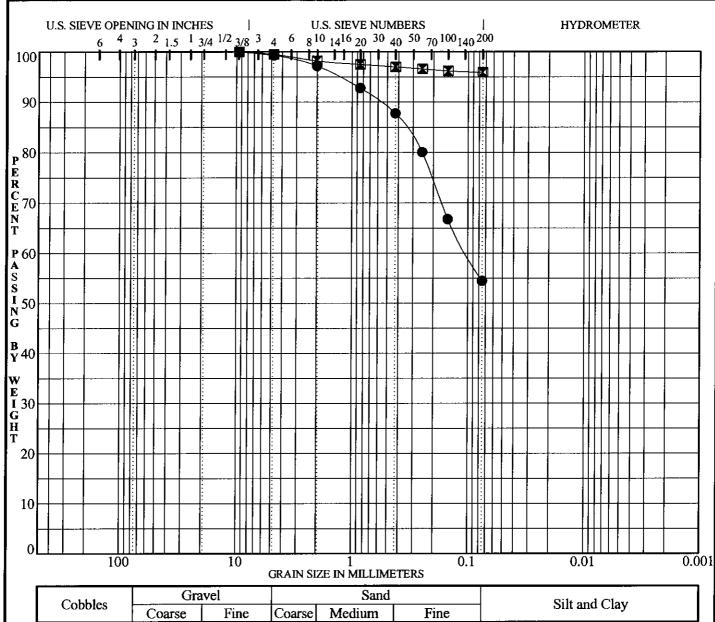
PREPD BY:	
APPOBY: Y. D. Wang	L
DATE: 17/6/05	1
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-51



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-05	47.5	79		Lean CLAY with sand (CL)	CL
×	BH-05	62.5	88		Lean CLAY (CL)	CL
<b>A</b>	BH-05	67.3	37	93	Clayey SAND (SC)	SC
<b></b>						


	10
Į	

PREPO BY:	GRADATION TEST DATA
Y. D. Wang	
DATE: 17/6/05	SVRT DOWNTOWN
DWG FILE:	• • • • • • • • • • • • • • • • • • • •
	San Jose, California

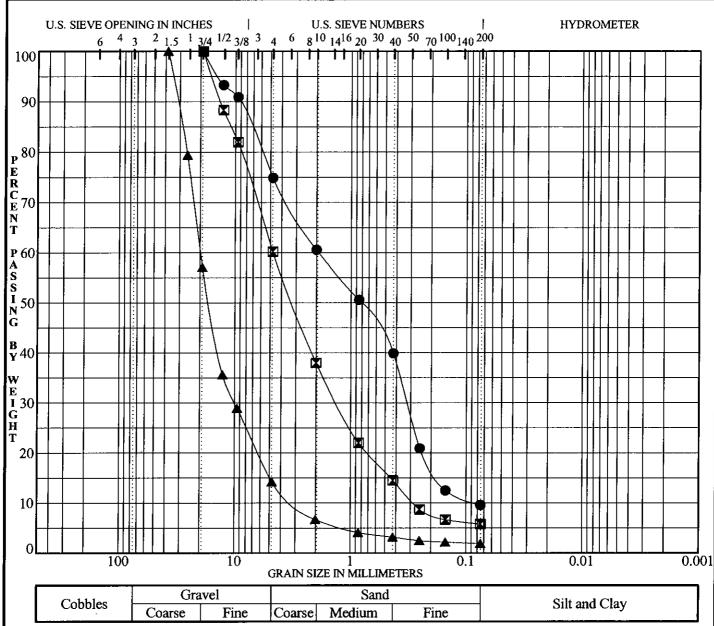
FIGURE **A12-52** 

PROJECT No. 204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



Cobbles	Gravel			Sand		Silt and Clay
	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Desestiption	USCS
•	BH-06	52.3	55	99	Sandy SILT (ML)	ML
<b>X</b>	BH-06	77.0	96	100	Silty CLAY (CL-ML)	CL-ML
		14				



PREPUSY:	
APPDBY: Y. D. Wang	
DATE:	Г
17/6/05 DWG FILE:	

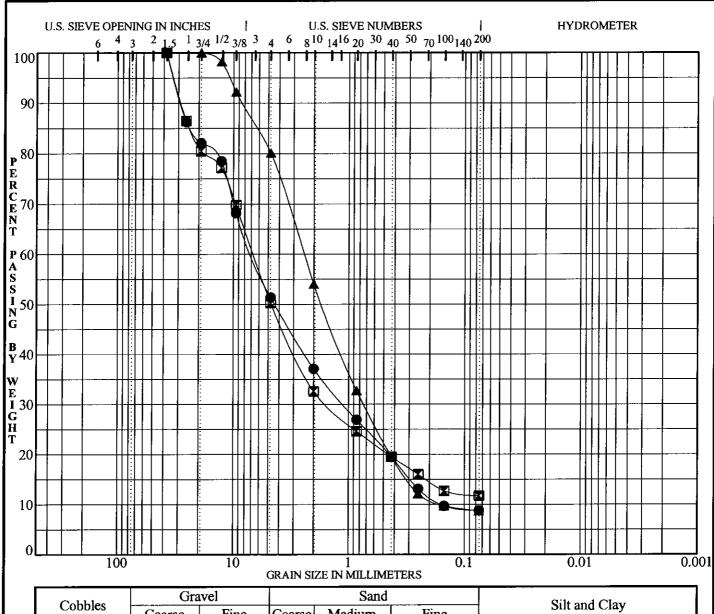
**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-53



Cobbles		Coarse	e Fine	Coarse	Medium	Fine	Silt and Clay	
Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description		USCS	
	BH-07	65.5	10	75	Poorly-grad	led SAND with	silt and gravel (SP-SM)	SP-SM

Symbol	No.	(Feet)	200 Sieve	4 Sieve	Sample Descsription	USCS
•	BH-07	65.5	10	75	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
	BH-07	70.5	6	60	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
<b>A</b>	BH-07	80.8	2	14	Well-graded GRAVEL (GW)	GW
						1
			-			


	I L	•
Y		

ı	PREPDBY:	
	APPOBY: Y, D. Wang	
	DATE	
	17/6/05 DWG FILE:	
	Direct II, L	

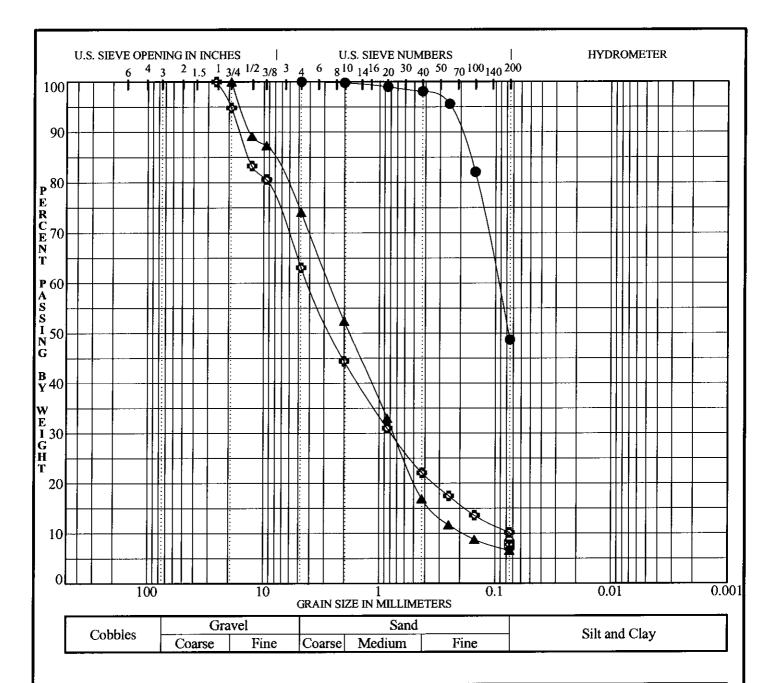
SVRT DOWNTOWN
San Jose, California

A12-54
PROJECT No.

204104.10



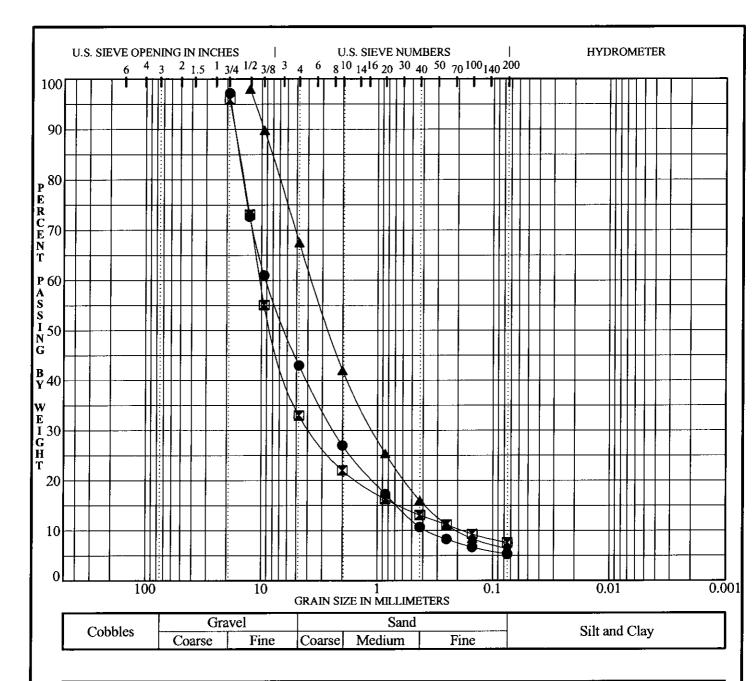
Cobbles	Gravel		Sand			Gilt and Clay
	Coarse	Fine	Coarse	2 4 11	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-08	76.2	9	51	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
<b>X</b>	BH-08	81.2	12	50	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
<b>A</b>	BH-08	85.8	9	80	Well-graded SAND with silt and gravel (SW-SM)	SW-SM



7125 551.	Ĺ
APP'D BY:	ł
Y. D. Wang	L
DATE	1
17/6/05	l
DWG FILE:	1

**SVRT DOWNTOWN** San Jose, California


**FIGURE** A12-55

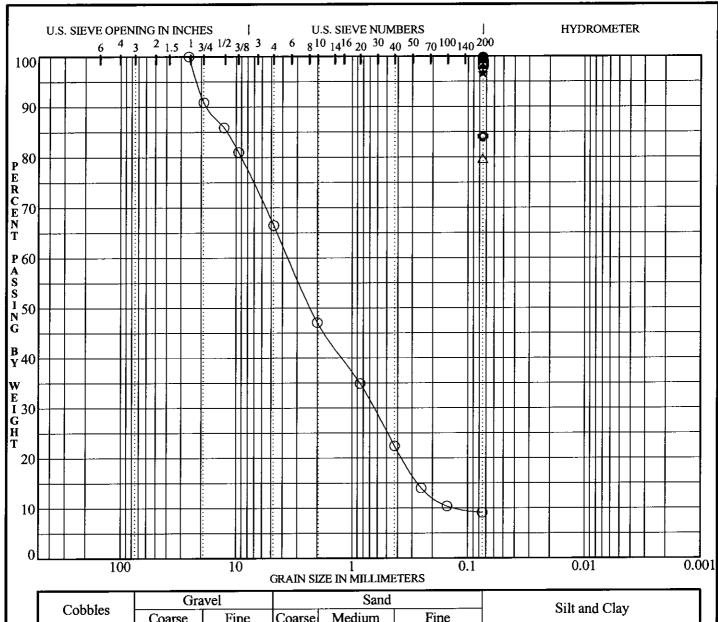


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-09	66.0	49	100	Silty SAND to Sandy SILT (SM/ML)	SM/ML
X	BH-09	71.3	8		Well-graded SAND with silt and gravel (SW-SM)	SW-SM
<b>A</b>	BH-09	75.8	7	74	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
*	BH-09	81.0	7		Well-graded SAND with silt and gravel (SW-SM)	SW-SM
•	BH-09	86.0	7		Well-graded SAND with silt and gravel (SW-SM)	SW-SM
٥	BH-09	90.8	10	63	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
0	BH-09	96.0	8		Well-graded SAND with silt and gravel (SW-SM)	SW-SM

GRADATION_B 204104_06_20_2005.GPJ STD.GDT 17/6/05

PREPD BY:	GRADATION TEST DATA	FIGURE
Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-56
DWG FILE:	San Jose, California	PROJECT No.
		204104.10




Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-10	69.5	5	43	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
X	BH-10	79.5	8	33	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
<b>A</b>	BH-10	89.8	6	68	Well-graded SAND with silt and gravel (SW-SM)	SW-SM



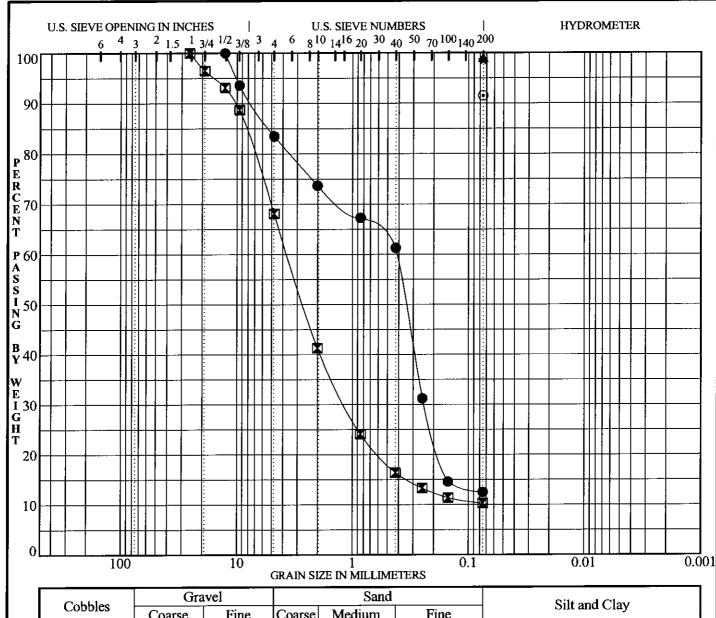
1	CEPUAT:	
	≁osy: ′. D. Wang	
	ITE:	
DV	17/6/05 VG FILE:	
1		l

**SVRT DOWNTOWN San Jose, California** 

FIGURE **A12-57** 



Cobbles	Gravel		Sand			Silt and Clay
	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-11	52.0	100		Fat CLAY (CH)	CH
X	BH-11	62.0	99		Lean CLAY (CL)	CL
•	BH-11	69.5	100		Lean CLAY (CL)	CL
*	BH-11	71.5	97	·	Lean CLAY (CL)	CL
•	BH-11	74.5	98		Lean CLAY (CL)	CL
٥	BH-11	76.5	84		Lean CLAY with sand (CL)	CL
0	BH-11	78.8	9	67	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
Δ	BH-11	86.0	80		Sandy Lean CLAY (CL)	CL

	9
·	

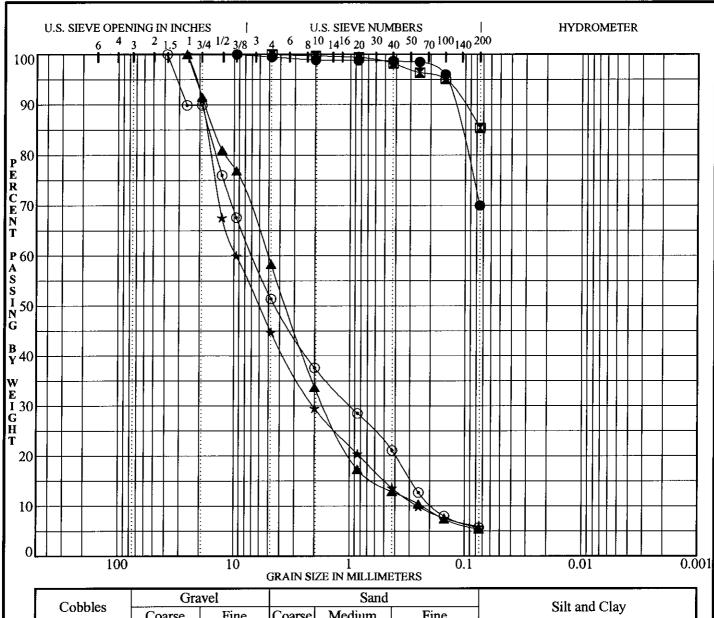
FREED BI.	
APP'O BY:	ł
Y. D. Wang	⊢
DATE	]
17/6/05	ļ.
DWG FILE:	
1	ı

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-58-1



Cabbles	Gravel		Sand			Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Sitt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-11	88.3	13	84	Silty SAND with gravel (SM)	SM
	BH-11	93.5	10	68	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
<b>A</b>	BH-11	99.5	99		Lean CLAY (CL)	CL
*	BH-11	102.0	99		Lean CLAY (CL)	CL
•	BH-11	105.0	92		SILT (ML)	ML
				··········		



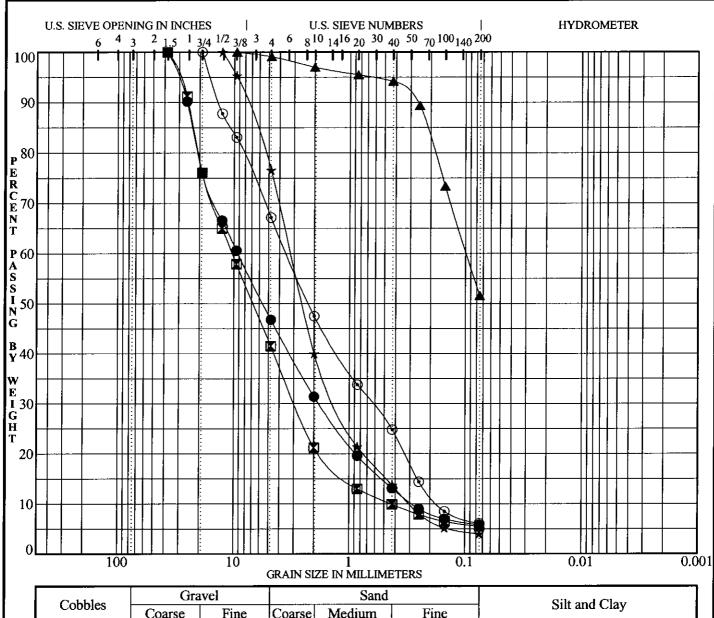
PREPUBY:	
APPDBY:	1
Y. D. Wang	╀
17/6/05 DWG FILE:	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-58-2



Cobbles	Gravel		Sand			Silt and Clay
Coboles	Coarse	Fine	Coarse	Medium	Fine	Silt alld Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-12	42.4	70	100	Sandy SILT to Sandy Lean CLAY (ML/CL)	ML/CL
×	BH-12	71.2	85	100	SILT with sand to Lean CLAY with sand (ML/CL)	ML/CL
<b>A</b>	BH-12	79.8	5	58	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
*	BH-12	94.8	6	45	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
•	BH-12	104.7	6	51	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM



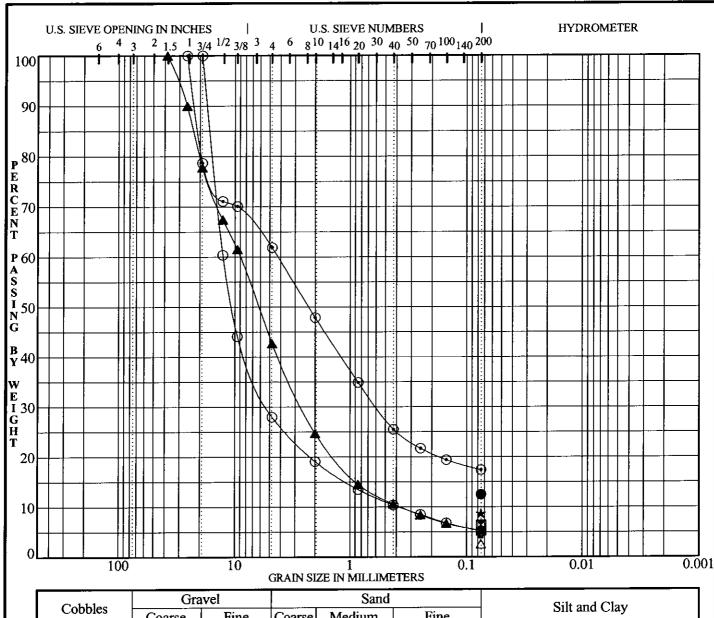
PREPDSY:	
Y. D. Wang	1
DATE: 17/6/05	
OWG FILE:	7

**SVRT DOWNTOWN** San Jose, California

FIGU	RE.
A12-	59



Cobbles	Gravel			Sand		Silt and Clay
Coodles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-13	76.0	6	47	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
X	BH-13	91.3	6	42	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
<b>A</b>	BH-13	101.5	52	99	Sandy SILT to Silty SAND (ML/SM)	ML/SM
*	BH-13	111.5	4	77	Well-graded SAND with gravel (SW)	SW
•	BH-13	125.6	6	67	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
i						

_

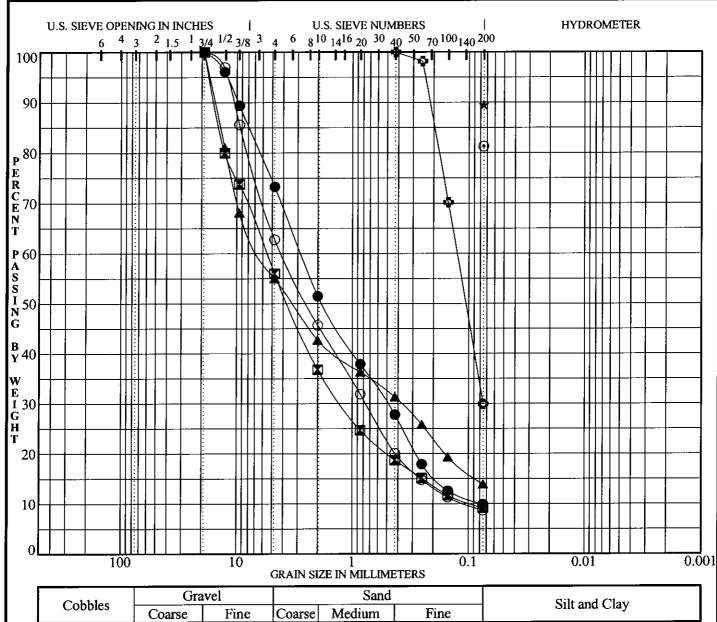
PREPID BY:	
APPOBY: Y. D. Wang	L
DATE: 17/6/05	
OWG FILE:	1

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-60



Coorse Fine Coarse Medium Fine	Cabbles	Gravel		 Sand		Silt and Clay
	Cobbles	Coarse	Fine	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-14	71.3	13		Clayey SAND (SC)	SC
	BH-14	81.0	6		Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
<b>A</b>	BH-14	90.7	5	43	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
*	BH-14	95.8	9		Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
•	BH-14	100.8	17	62	Silty SAND with gravel (SM)	SM
٥	BH-14	105.5	5		Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
0	BH-14	110.6	5	28	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
Δ	BH-14	115.3	3		Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM



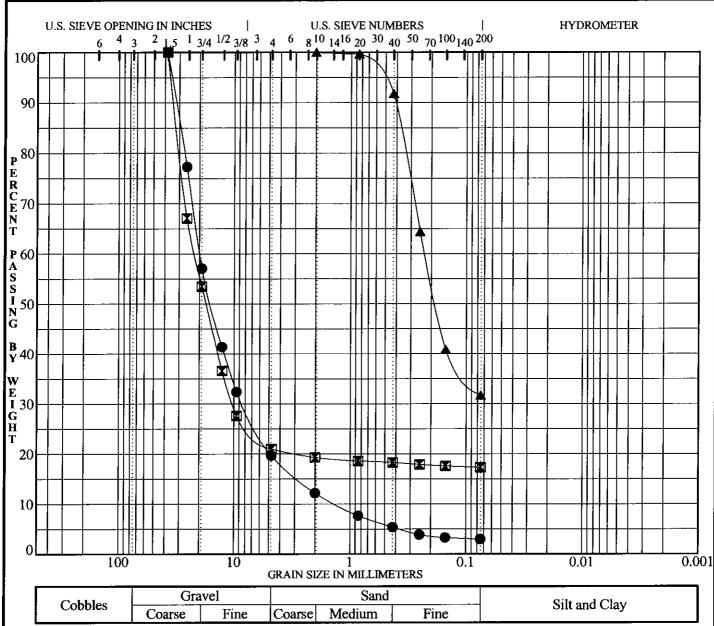
PREPD BY:	
APP'O BY:	
Y. D. Wang	9 –
DATE: 17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California A12-61

**FIGURE** 



Cabbles	Gra	vel		Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	
•	BH-15	73.5	10	73	Well-graded SAND with clay and gravel (SW-SC)	SW-SC
×	BH-15	80.8	9	56	56 Well-graded SAND with clay and gravel (SW-SC)	
<b>A</b>	BH-15	100.8	14	55	Clayey GRAVEL with sand (GC)	GC
*	BH-15	108.0	90	_	SILT (ML)	ML
•	BH-15	109.0	81		SILT with sand (ML)	ML
٥	BH-15	116.5	30		Silty SAND (SM)	SM
0	BH-15	123.2	9	63	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
:					<u></u> -	



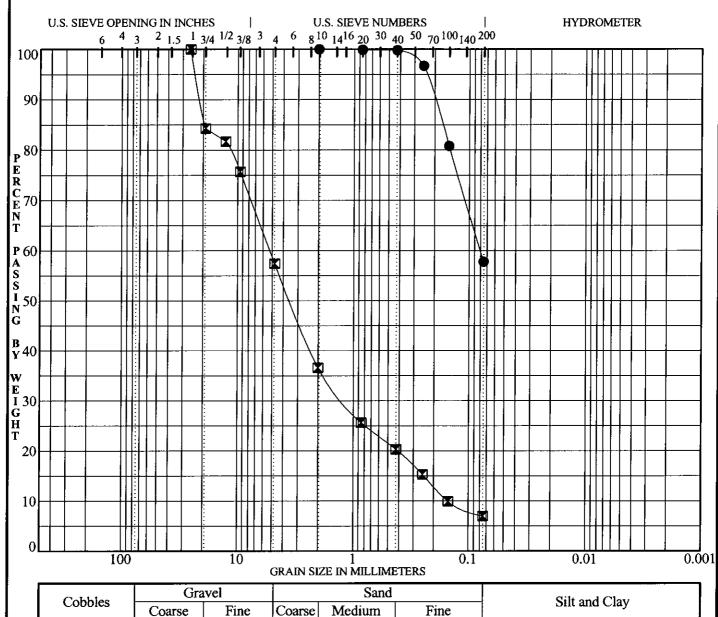
PREPOBY:	
APPO BY:	
Y. D. Wang	
DATE	
17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-62



Cabbles	Gravel		Sand			Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-16	75.8	3	20	Well-graded GRAVEL with sand (GW)	GW
×	BH-16	90.7	17	21	Clayey GRAVEL (GC)	GC
<b>A</b>	BH-16	116.5	32		Silty SAND (SM)	SM



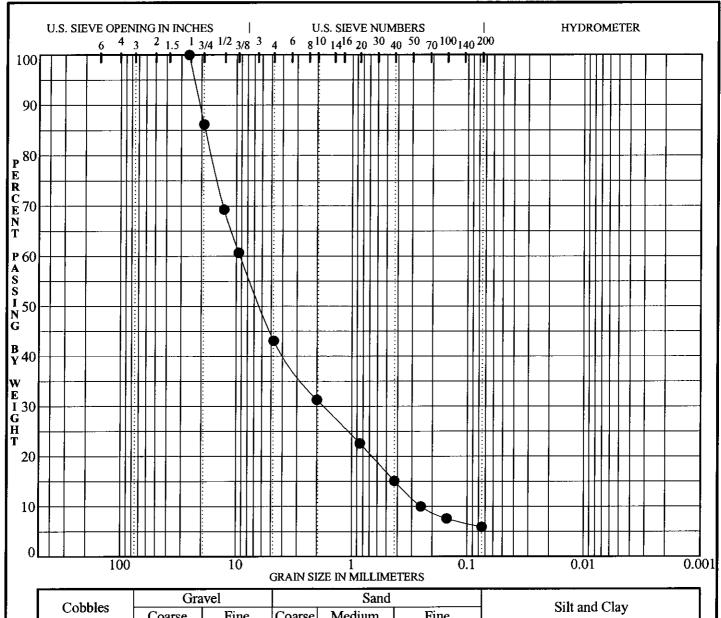
PAGEP D BY:	
APPD BY:	l
Y. D. Wang	⊢
DATE: 17/6/05	l
OWG FILE	
DWG FILE	1

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-63



Cobbles	Gra	vel		Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-17	57.5	58		Sandy SILT (ML)	ML
×	BH-17	66.0	7	57	Well-graded SAND with clay and gravel (SW-SC)	SW-SC
						.,,



PREFUSI.	l
APP'D BY:	
Y. D. Wang	H
DATE:	
17/6/05	
OWG FILE:	

**SVRT DOWNTOWN** San Jose, California

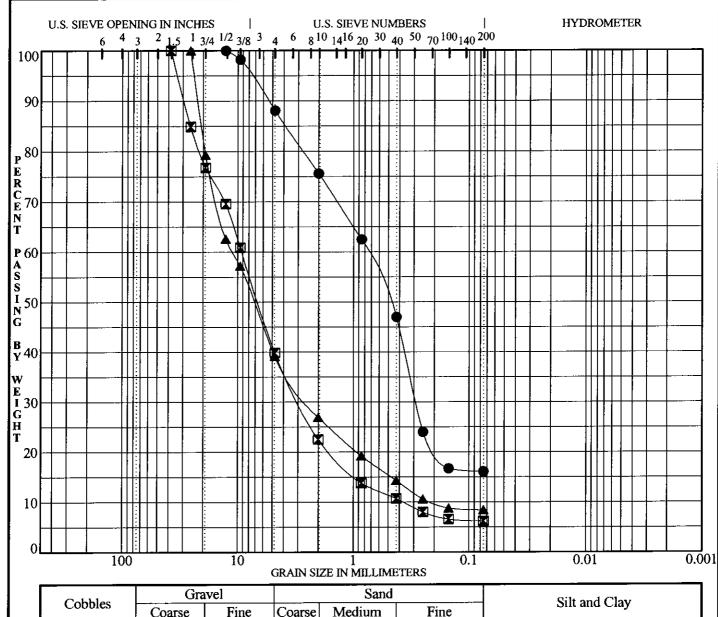
**FIGURE** A12-64



Cobbles	Gra	vel	Sand			Silt and Clay
Copples	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-18	67.0	6	43	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
- <del></del>						




PREPUBI.	١
APPOBY:	1
Y. D. Wang	ł
17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-65

PROJECT No. 204104.10

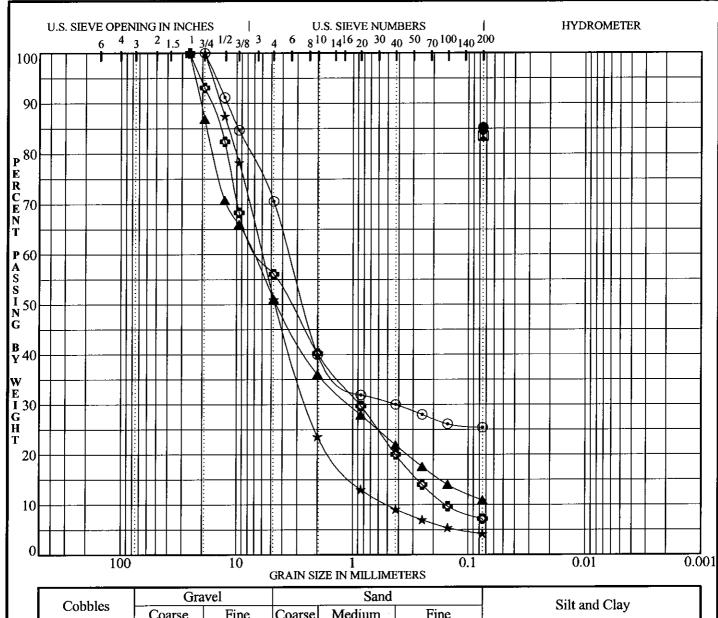
GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



Cabbles	Gra	vel	Sand			Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt allu Ciay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-19	61.4	16	88	Silty SAND (SM)	SM
	BH-19	66.0	6	40	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
<b>A</b>	BH-19	85.8	8	39	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC




1		
7	VPPDBY:	ı
1	Y. D. Wang	ŀ
ī	DATE	ı
1	17/6/05	ı
1	DWG FILE:	ı
1		ı
- 1		ı

**SVRT DOWNTOWN** San Jose, California

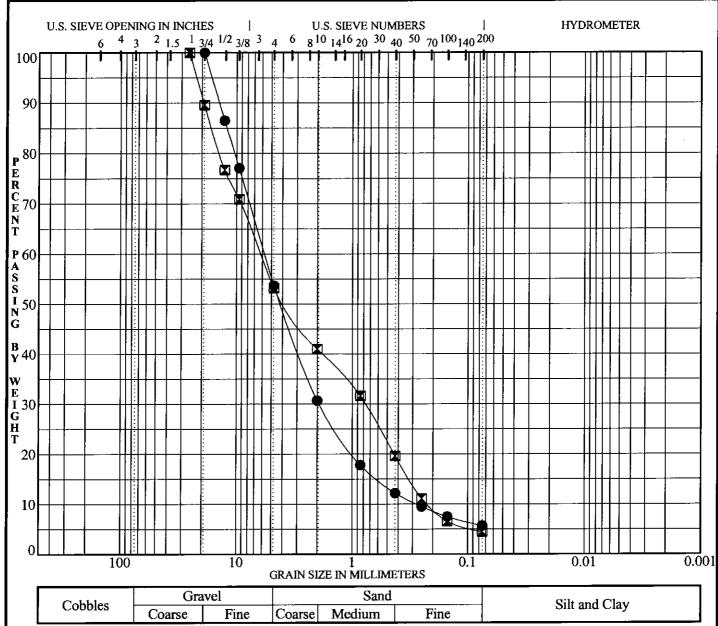
**FIGURE** A12-66

PROJECT No. 204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



Cabbles	Gra	vel		Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-20	51.2	85		Fat CLAY with sand (CH)	CH
X	BH-20	54.4	84		Lean CLAY with sand (CL)	CL
<b>A</b>	BH-20	55.3	11	51	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
*	BH-20	67.8	4	51	Well-graded GRAVEL with sand (GW)	GW
•	BH-20	72.5	25	71	Silty SAND with gravel (SM)	SM
٥	BH-20	81.0	7	56	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM



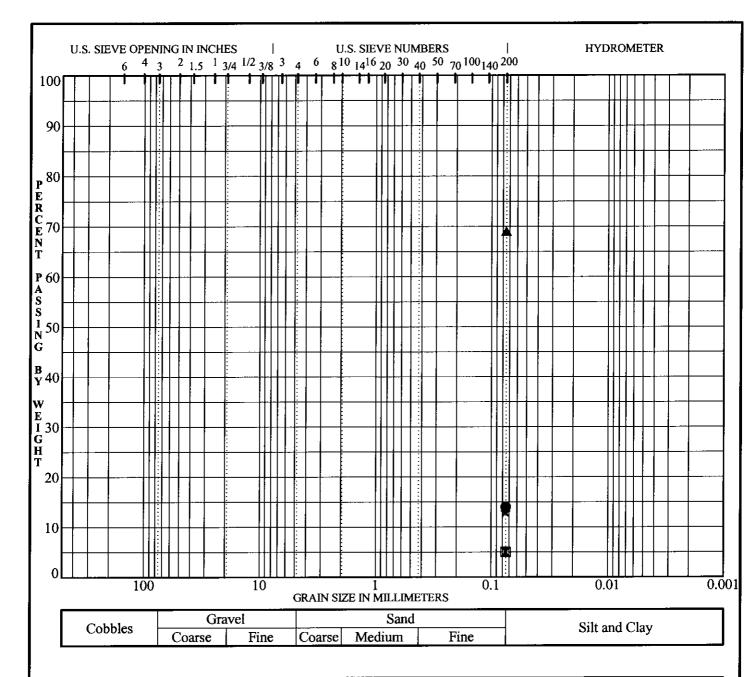
PREPUSY:	
APP'O BY:	
Y, D. Wang	_
DATE:	
17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

FIGURE
A12-67



Cobbles	Gra	vel		Sand		Silt and Clay	
Coodles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay	
		•					


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-21	60.0	6	54	Well-graded SAND with clay and gravel (SW-SC)	SW-SC
×	BH-21	65.1	5	53	Poorly-graded SAND with gravel (SP)	SP

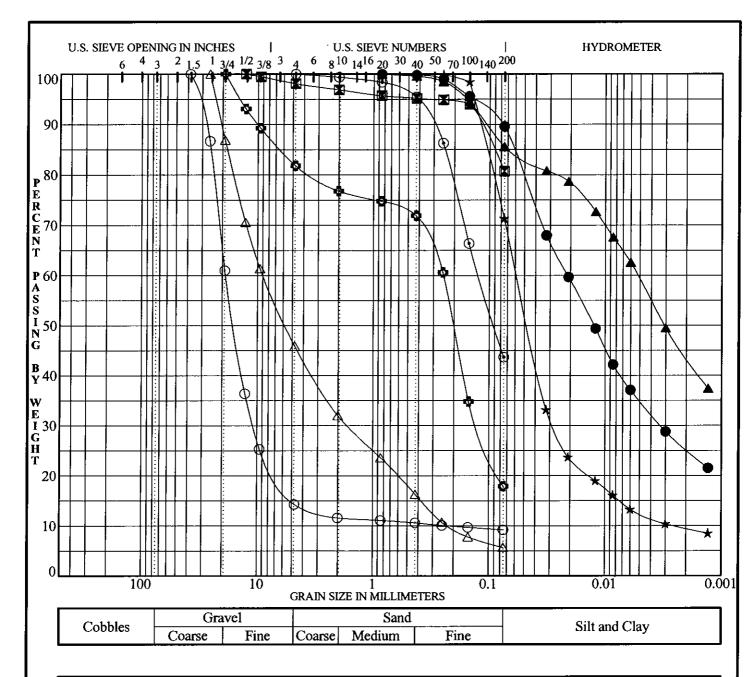


PREPUBI:	ı
APPOBY: Y. D. Wang	1
DATE:	┨
17/6/05 OWG FILE:	4

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-68




Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
BH-23	76.3	14		Silty SAND with gravel (SM)	SM
BH-23	86.3	5		Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
BH-23	117.3	69		Sandy Lean CLAY (CL)	CL
BH-23	121.3	13		Silty SAND (SM)	SM
	·				
	No. BH-23 BH-23	No. (Feet) BH-23 76.3 BH-23 86.3 BH-23 117.3	No.     (Feet)     200 Sieve       BH-23     76.3     14       BH-23     86.3     5       BH-23     117.3     69	No.       (Feet)       200 Sieve       4 Sieve         BH-23       76.3       14         BH-23       86.3       5         BH-23       117.3       69	No. (Feet) 200 Sieve 4 Sieve Sample Description  BH-23 76.3 14 Silty SAND with gravel (SM)  BH-23 86.3 5 Poorly-graded GRAVEL with silt and sand (GP-GM)  BH-23 117.3 69 Sandy Lean CLAY (CL)



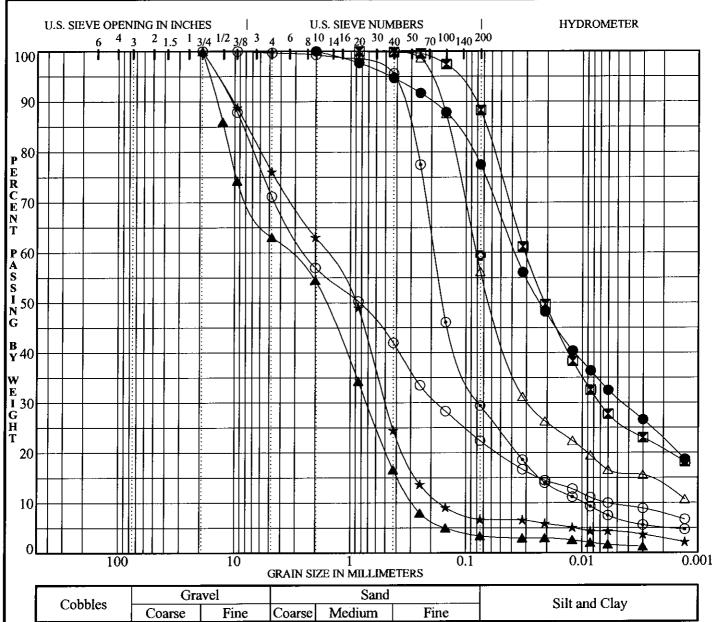
PREPUBI:
APPD BY:
Y. D. Wang
DATE: 17/6/05
DWG FILE:

SVRT DOWNTOWN
San Jose, California

FIGURE **A12-69** 



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-24	15.0	90		Lean CLAY (CL)	CL
×	BH-24	20.0	81	98	SILT with sand (ML)	ML
<b>A</b>	BH-24	27.5	86		Lean CLAY (CL)	CL
*	BH-24	32.4	71		Sandy SILT (ML)	ML
•	BH-24	40.0	44	100	Silty SAND (SM)	SM
٥	BH-24	40.5	18	82	Silty SAND with gravel (SM)	SM
0	BH-24	43.8	9	14	Poorly-graded GRAVEL with silt (GP-GM)	GP-GM
Δ	BH-24	46.3	6	46	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM


	-
•	
•	

PREPID BY:	
APP'D BY:	1
Y. D. Wang	┞
DATE	1
17/6/05	
DWG FILE:	1
i	

SVRT DOWNTOWN
San Jose, California

FIGURE
A12-70-1
PROJECT No.

204104.10



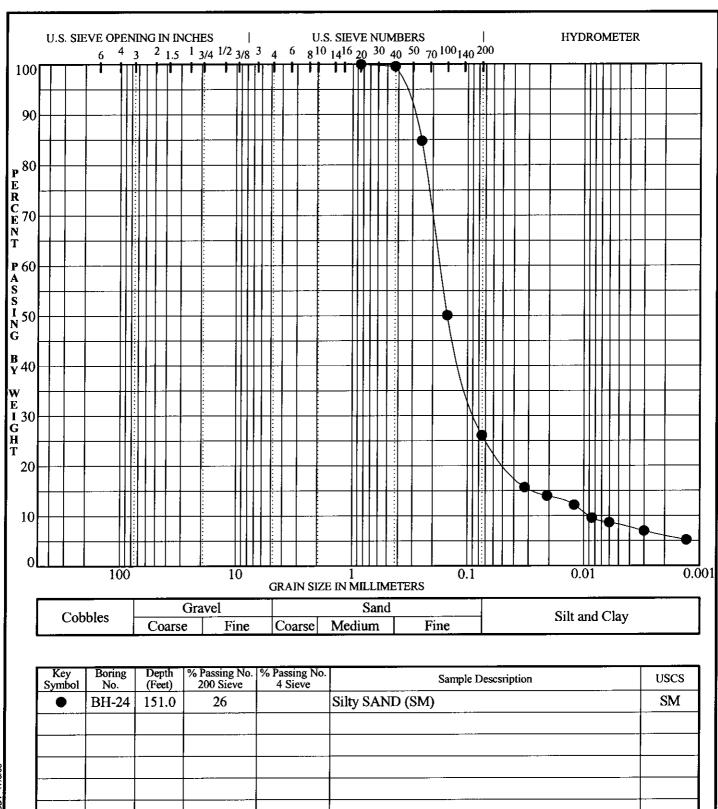
Coarse   Fine   Coarse   Medium   Fine	Cobbles	Gra	vel	Sand	 Silt and Clay
		Coarse	Fine		Sift and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-24	55.0	78		Silty CLAY with sand (CL-ML)	CL-ML
	BH-24	65.0	88		Lean CLAY (CL)	CL
<b>A</b>	BH-24	81.0	3	63	Poorly-graded SAND with gravel (SP)	SP
*	BH-24	90.5	7	76	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
•	BH-24	100.9	29	100	Silty SAND (SM)	SM
٥	BH-24	111.0	59		Sandy Lean CLAY (CL)	CL
0	BH-24	121.0	22	71	Silty SAND with gravel (SM)	SM
Δ	BH-24	141.0	56		Sandy, Silty CLAY (CL-ML)	CL-ML



TRG 001:	
APPO BY:	ı
Y. D. Wang	ŀ
DATE	ı
17/6/05	
DWG FILE:	ĺ
	l
	APPOBY: Y. D. Wang DATE: 17/6/05

**SVRT DOWNTOWN** 


San Jose, California

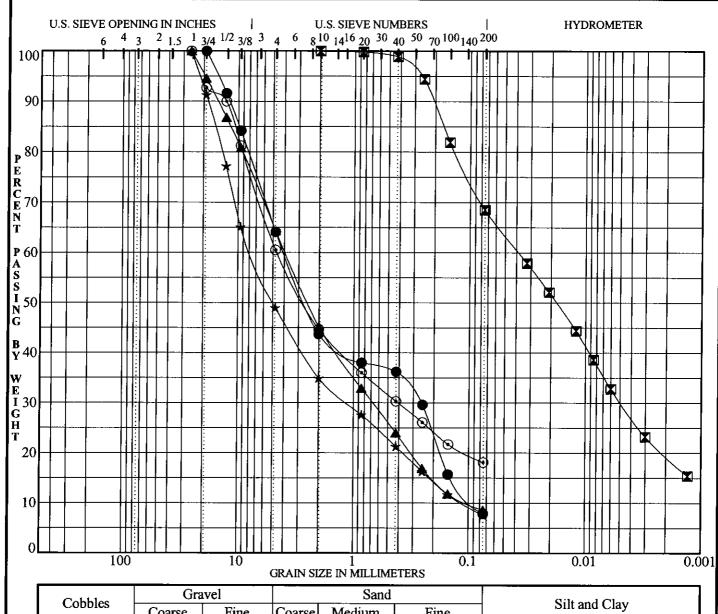
A12-70-2

**FIGURE** 

PROJECT No. 204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05




Symbol	No.	(Feet)	200 Sieve	4 Sieve	Sample Descsription	USCS
•	BH-24	151.0	26		Silty SAND (SM)	SM



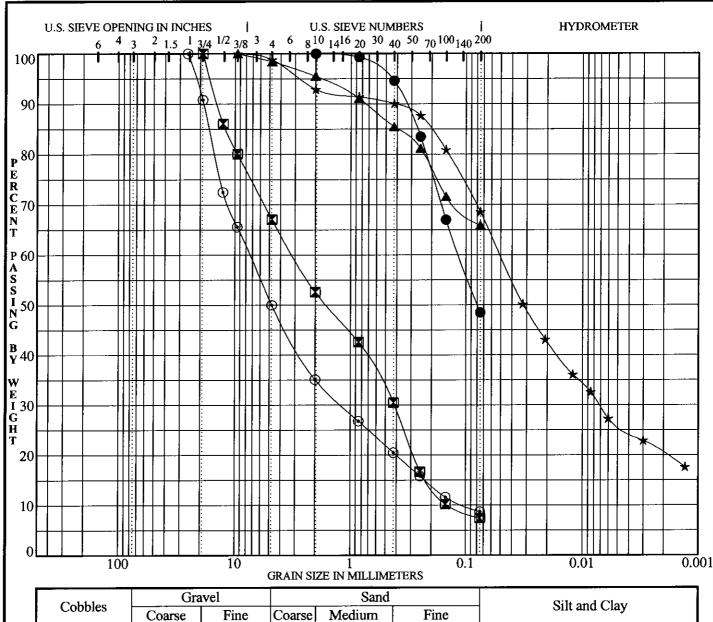
PREPDBY:
APPD BY:
Y. D. Wang
DATE:
17/6/05
DWG FILE:

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-70-3



Cobbles	Gra	vel		Sand		Silt and Clay
Copples	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-25	52.8	8	64	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
×	BH-25	71.0	69		Sandy Lean CLAY (CL)	CL
<b>A</b>	BH-25	81.5	9	64	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
*	BH-25	121.5	8	49	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
•	BH-25	142.0	18	61	Clayey SAND with gravel (SC)	SC



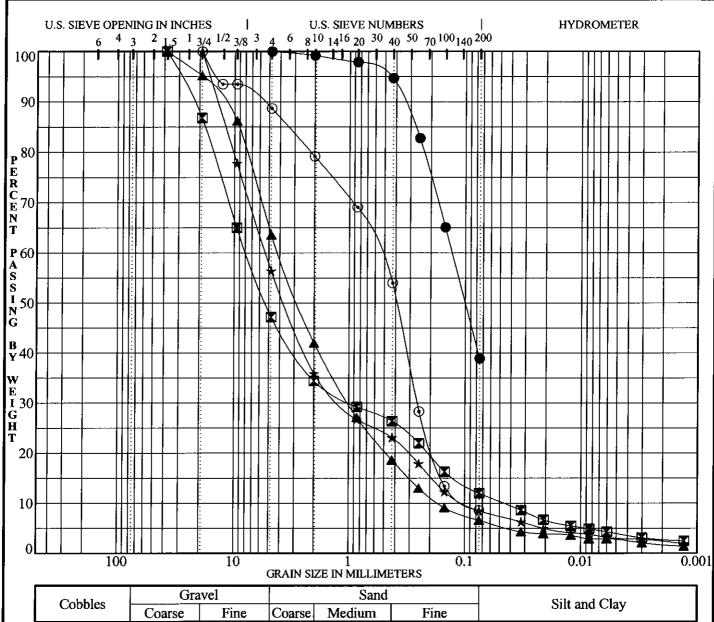
	PREPD BY:	
	APPD BY: Y, D, Wang	
	DATE:	
i	17/6/05	
	OWG FILE:	

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-71



Cabbles	ravel		Sand		Silt and Clay
Cobbles Coarse	Fine	Coarse	3 5 44	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-26	32.3	49		Clayey SAND to Sandy Lean CLAY (SC/CL)	SC/CL
	BH-26	56.3	7	67	Poorly-graded SAND with clay and gravel (SP-SC)	SP-SC
<b>A</b>	BH-26	91.0	66	98	Sandy Lean CLAY (CL)	CL
*	BH-26	111.5	69	99	Sandy Lean CLAY (CL)	CL
•	BH-26	125.7	9	50	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
****						
			.,			
		· · · ·				



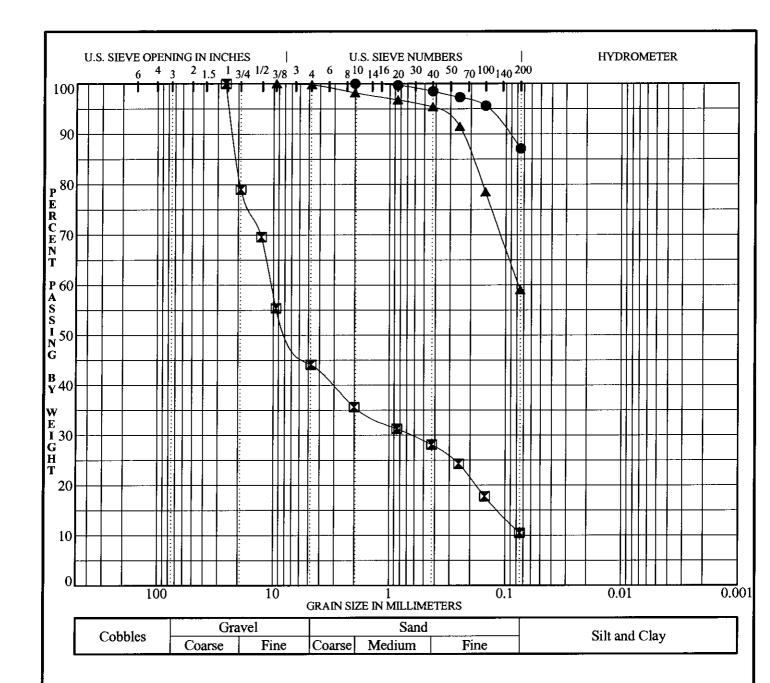
PREPDBY:	
APP'D BY:	
Y. D. Wang	H
DATE	ĺ
17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

FIGURE	
A12-72	

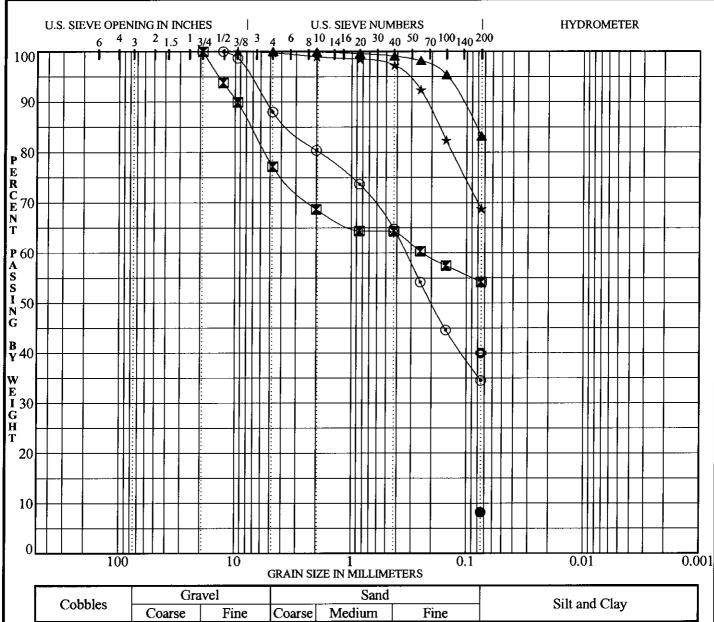


Coorse Fine Coarse Medium Fine Silt and Clay	Cobbles	Gravel		Sand			Silt and Clay
Coatbe The Coatbe Median The	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-27	22.5	39	100	Silty SAND (SM)	SM
X	BH-27	41.1	12	47	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
<b>A</b>	BH-27	51.1	7	64	Well-graded SAND with clay and gravel (SW-SC)	SW-SC
*	BH-27	68.0	9	56	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
•	BH-27	74.7	9	89	Poorly-graded SAND with silt (SP-SM)	SP-SM



	PREPOBY:	
	APPOBY:	
	Y. D. Wang	Ļ.
	DATE:	
	17/6/05	
i	DWG FILE:	


**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-73

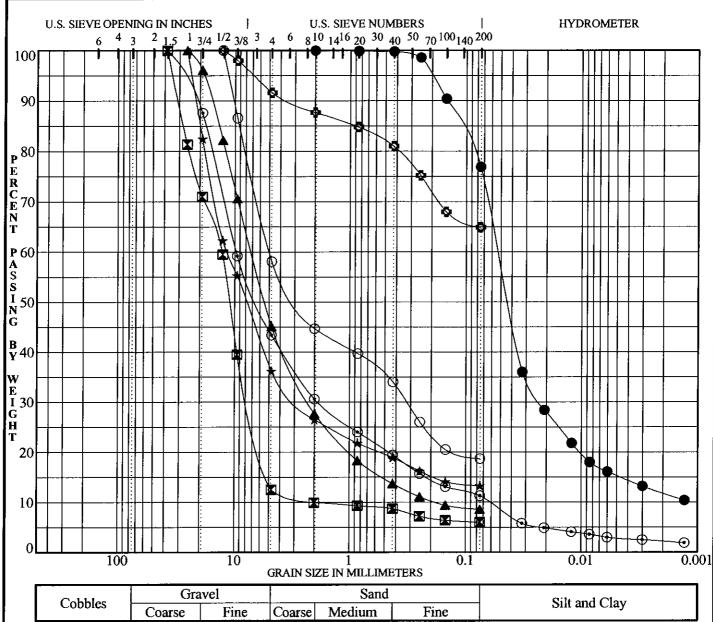


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-28	26.5	87		Silty CLAY (CL-ML)	CL-ML
X	BH-28	40.7	11	44	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
<b>A</b>	BH-28	77.0	59	100	Sandy Lean CLAY (CL)	CL
,						
						ı

APPOBY:  Y. D. Wang	GRADATION TEST DATA	FIGURE
DATE: 17/6/05	SVRT DOWNTOWN	A12-74
DWG FILE:	San Jose, California	PROJECT No.
		204104.10



Cobbles	Gra	vel		Sand		Silt and Clay
Coddles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-29	61.5	8		Well-graded SAND with Silt (SW-SM)	SW-SM
×	BH-29	65.5	54	77	Sandy Lean CLAY with gravel (CL)	CL
<b>A</b>	BH-29	76.5	83	100	Lean CLAY with sand (CL)	CL
*	BH-29	86.5	69	100	Sandy Lean CLAY (CL)	CL
•	BH-29	95.8	35	88	Clayey SAND (SC)	SC
٥	BH-29	102.0	40		Silty SAND (SM)	SM



PREPUBL.	
APPDBY:	1
Y. D. Wang	⊦
CATE:	1
17/6/05	ı
OWG FILE:	1

GRADATION	TEST	DATA

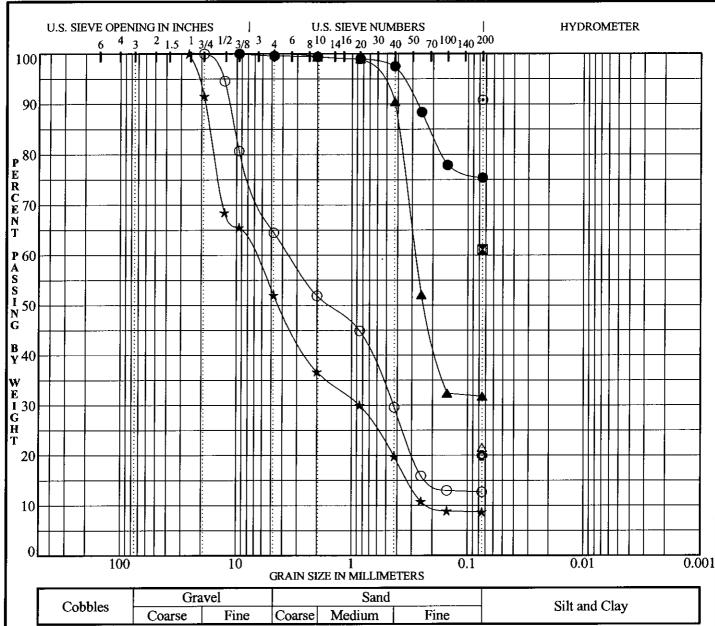
۲	K	غل	JK.	ᆫ	
_	_				
٩	1	2	-7	'5	



Coarse   Fine   Coarse   Medium   Fine	Cobbles	Gra	vel		Sand		Silt and Clay
	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-30	56.5	77		SILT with sand (ML)	ML
×	BH-30	59.3	6	13	Well-graded GRAVEL with clay (GW-GC)	GW-GC
<b>A</b>	BH-30	69.5	9	45	Poorly-graded GRAVEL with clay and sand (GP-GC)	GP-GC
*	BH-30	84.4	13	36	Clayey GRAVEL with sand (GC)	GC
•	BH-30	89.8	11	43	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
٥	BH-30	94.5	65	92	Sandy SILT (ML)	ML
0	BH-30	105.0	19	58	Silty GRAVEL with sand (GM)	GM




PREPOBY:	
APPOBY: Y. D. Wang	1
DATE: 17/6/05	┪
OWG FILE:	┨

**SVRT DOWNTOWN** San Jose, California

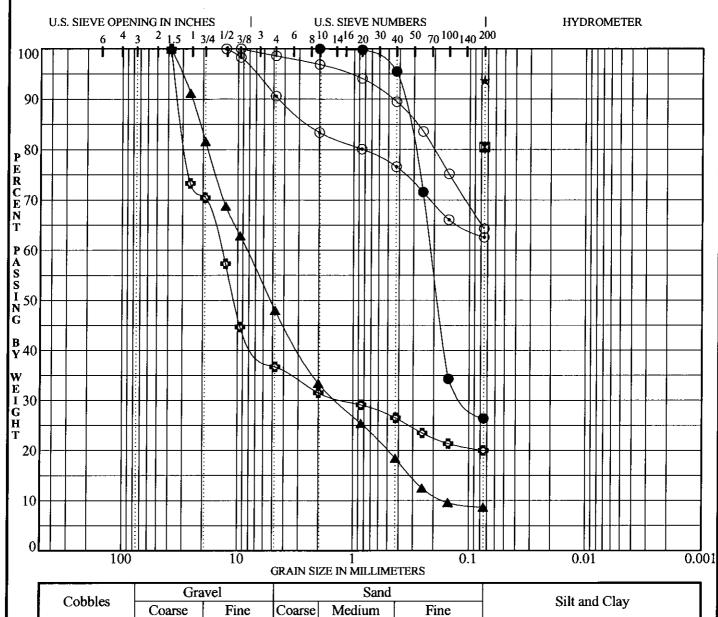
FIGURE	
A12-76	
PROJECT No.	

204104.10

06 20 2005.GPJ STD.GDT 17/6/05



	<del></del>					
Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-31	40.7	75	100	Lean CLAY with sand (CL)	CL
×	BH-31	50.5	61		Sandy Lean CLAY (CL)	CL
	DIT 11	55.3	22	100	Classes CANTO (CC)	S.C.


•	BH-31	40.7	75	100	100 Lean CLAY with sand (CL)	
	BH-31	50.5	61		Sandy Lean CLAY (CL)	CL
<b>A</b>	BH-31	55.3	32	100	Clayey SAND (SC)	SC
*	BH-31	58.3	9	52	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
•	BH-31	76.5	91		Lean CLAY with sand (CL)	CL
٥	BH-31	86.0	20		Clayey SAND with gravel (SC)	SC
0	BH-31	88.8	13	65	Clayey SAND with gravel (SC)	SC
Δ	BH-31	94.4	22		Clayey SAND with gravel (SC)	SC

4	77	7
	I L	
~		

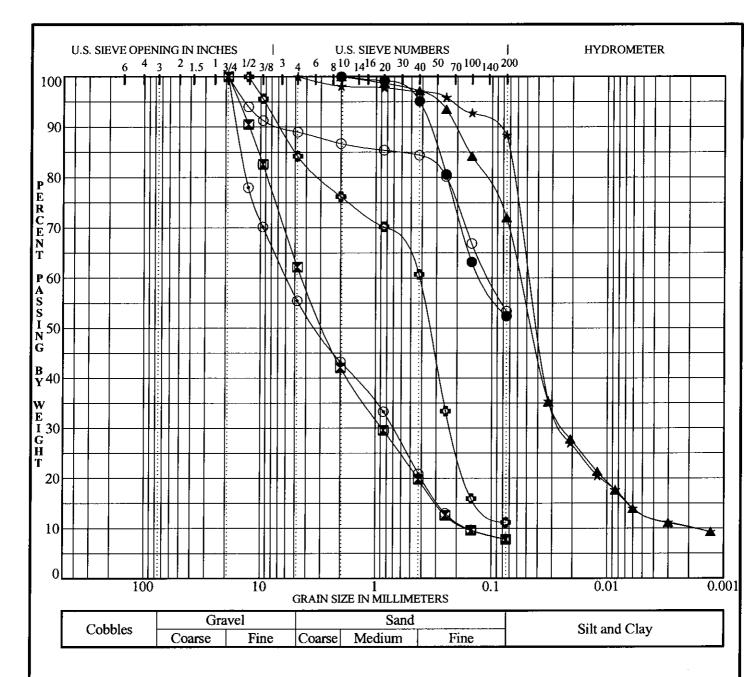
APP'D BY:	1
Y. D. Wang	⊢
DATE	1
17/6/05	L
DWG FILE:	1

SVRT DOWNTOWN San Jose, California

FIGURE **A12-77** 



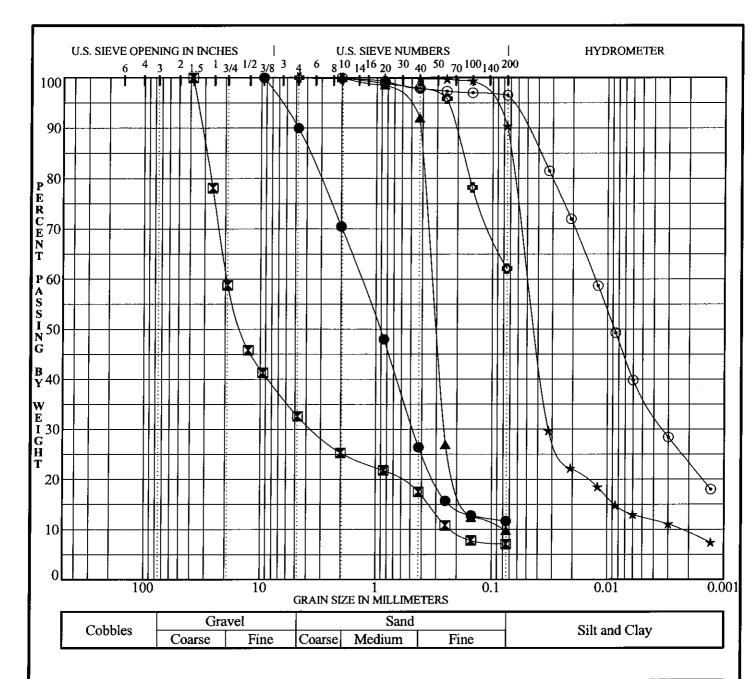
Cobbles	Gravel		Sand			Silt and Clay
	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Desestription	USCS
•	BH-32	42.0	26		Silty SAND (SM)	SM
×	BH-32	52.3	81		Lean CLAY with sand (CL)	CL
•	BH-32	60.8	9	48	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
*	BH-32	66.8	94		Lean CLAY (CL)	CL
•	BH-32	71.5	63	91	Sandy Lean CLAY (CL)	CL
٥	BH-32	80.5	20	37	Clayey GRAVEL with sand (GC)	GC
0	BH-32	92.5	64	99	Sandy SILT (ML)	ML



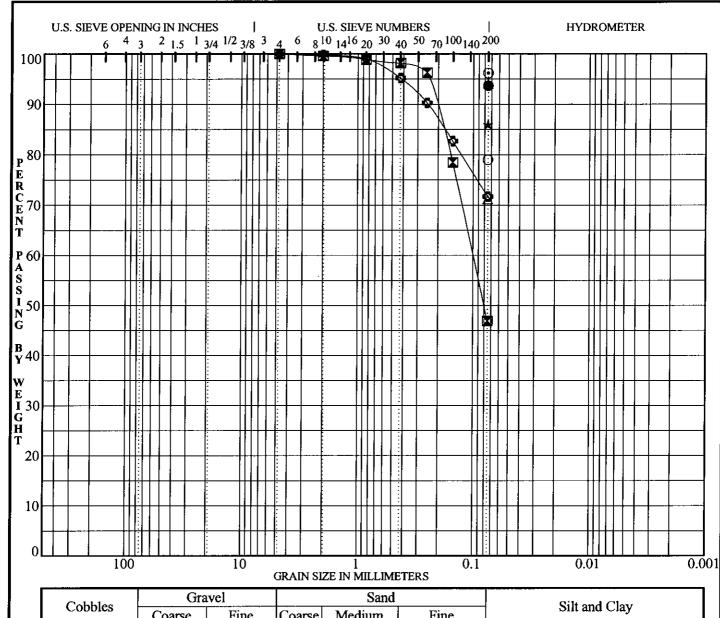
PREPUBIT:	
APP D 8Y:	1
Y. D. Wang	⊢
DATE	1
17/6/05	
DWG FILE:	1
	ŀ

**SVRT DOWNTOWN** San Jose, California


**FIGURE** A12-78



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-33	20.0	52		Sandy Lean CLAY (CL)	CL
×	BH-33	41.3	8	62	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
<b>A</b>	BH-33	71.0	72		Sandy Lean CLAY (CL)	CL
*	BH-33	82.5	88	100	Lean CLAY (CL)	CL
•	BH-33	91.0	8	56	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
•	BH-33	116.1	11	84	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
0	BH-33	148.3	53	89	Sandy Lean CLAY (CL)	CL


PREPOBY:	GRADATION TEST DATA	FIGURE	
Y. D. Wang  CATE: 17/6/05	SVRT DOWNTOWN	A12-79	
DWG FILE:	San Jose, California	PROJECT No. 204104.10	

TION B 204104 06 20 2005.GPJ STD.GDT 17/6/05

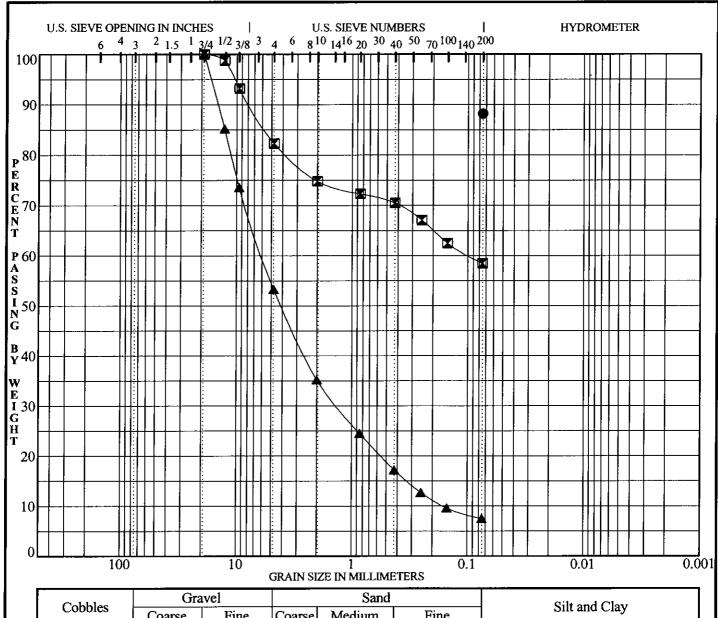


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-34	80.8	12	90	Well-graded SAND with silt (SW-SM)	SW-SM
×	BH-34	90.8	7	33	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
<b>A</b>	BH-34	100.8	10		Poorly-graded SAND with silt (SP-SM)	SP-SM
*	BH-34	111.3	90		SILT (ML)	ML
•	BH-34	127.2	97		Lean CLAY (CL)	CL
٥	BH-34	150.8	62	100	Sandy SILT (ML)	ML
			·	***************************************		

PREPDBY:  APPDBY: Y. D. Wang	GRADATION TEST DATA	FIGURE
DATE: 17/6/05	SVRT DOWNTOWN	A12-80
DWG FILE:	San Jose, California	PROJECT No.
		204104.10



Cobbles	Gravel			Sand		Silt and Clay
	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-35	49.2	94		Lean CLAY (CL)	CL
X	BH-35	49.7	47	100	Silty SAND to Sandy SILT (SM/ML)	SM/ML
<b>A</b>	BH-35	51.5	94		Lean CLAY (CL)	CL
*	BH-35	54.3	86		Lean CLAY (CL)	CL
•	BH-35	59.4	96		Lean CLAY (CL)	CL
٥	BH-35	59.9	72	100	Sandy Lean CLAY (CL)	CL
0	BH-35	61.0	79		Lean CLAY with sand (CL)	CL
Δ	BH-35	61.5	71		Sandy Lean CLAY (CL)	CL



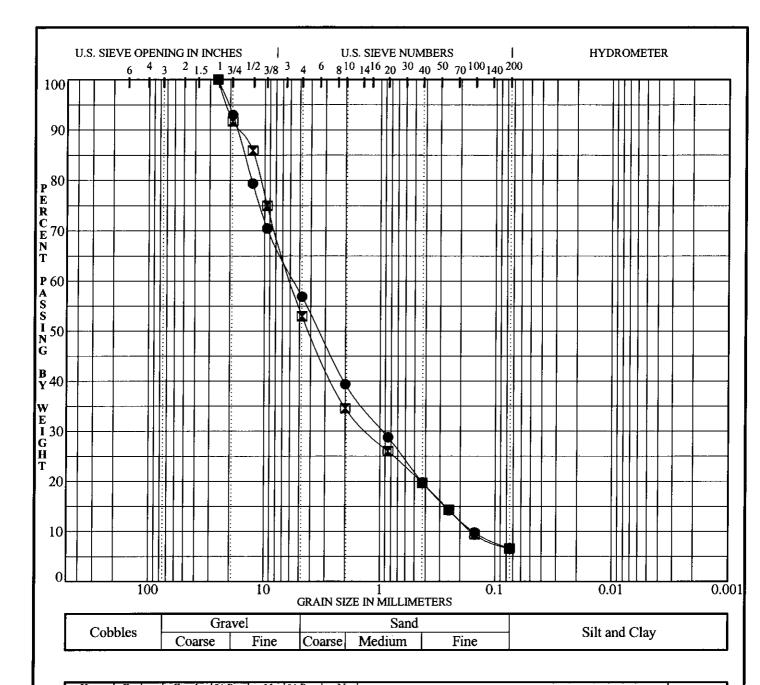
	l
APPOBY:	1
Y. D. Wang	ŀ
DATE	1
17/6/05	l
DWG FILE:	1
	ł

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-81-1



C-1	-1-1				Cilt and Clay		10.11	
Cot	obles	Coars	e Fine	Coarse	Medium	Fine	Silt and Clay	
		_						
Key	Boring	Depth	% Passing No.	% Passing No.	<del>1</del>			
Symbol	No.	(Feet)	200 Sieve	4 Sieve		Sample D	escsription	USCS
	BH-35	64.8	88		Lean CLA	V (CL)		Cī


Symbol	No.	(Feet)	200 Sieve	4 Sieve	Sample Descsription	USCS
•	BH-35	64.8	88		Lean CLAY (CL)	CL
X	BH-35	67.5	59	82	Sandy Lean CLAY with gravel (CL)	CL
<b>A</b>	BH-35	72.5	8	53	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
			,,,,			

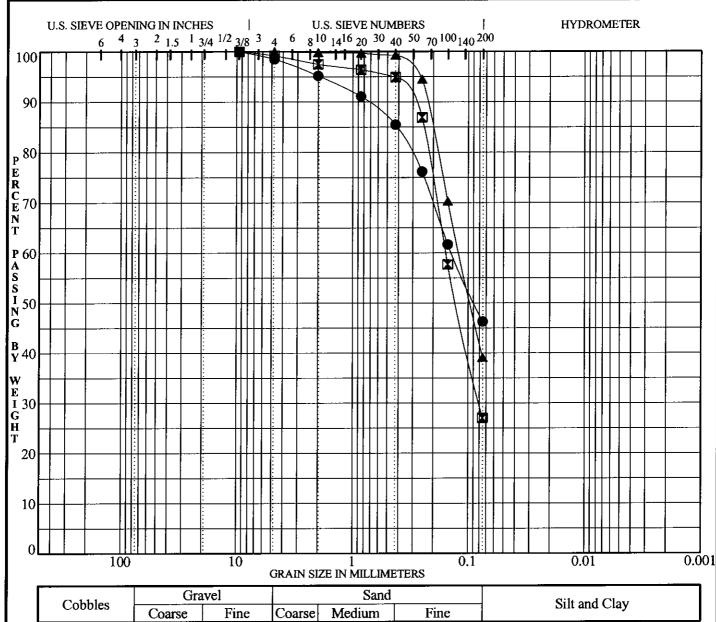


PREPO BY:	
APPOBY: Y. D. Wang	7
DATE: 17/6/05	1
OWG FILE:	1

SVRT DOWNTOWN
San Jose, California

FIGURE **A12-81-2** 




Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-36	51.0	7	57	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
×	BH-36	81.0	7	53	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
					·	
				· · · · · · · · · · · · · · · · · · ·		

San Jose, California

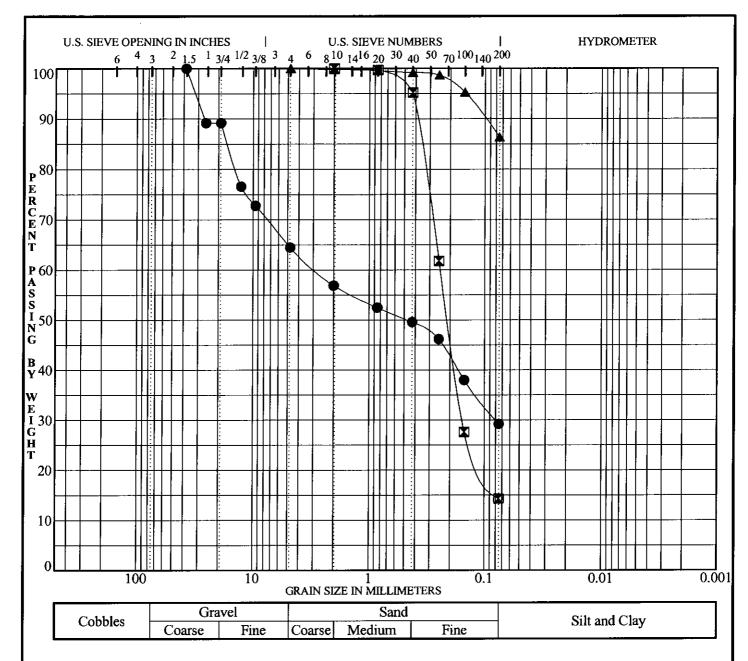
	• 1
	~ /
	_4
Z	

APPD BY:	GRADATION TEST DATA
17/6/05 DWG FILE	SVRT DOWNTOWN

FIGURE **A12-82** 



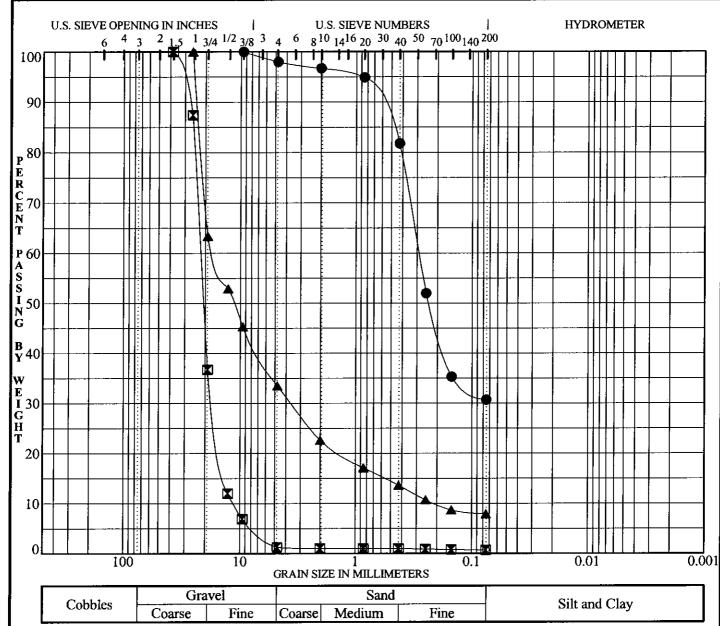
C-1-1-1	Gravel		Sand			Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Sili and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-37	35.9	46	99	Clayey SAND to Sandy Lean CLAY (SC/CL)	SC/CL
×	BH-37	56.4	27	99	Silty SAND (SM)	SM
<b>A</b>	BH-37	66.2	39	100	Silty SAND (SM)	SM
				-		-



неговт:	
APPOBY: Y. D. Wang	
DATE: 17/6/05	
OWG FILE:	

GRADAT	ION	TEST	DATA


אות	JUKE	
Δ1	2-83	



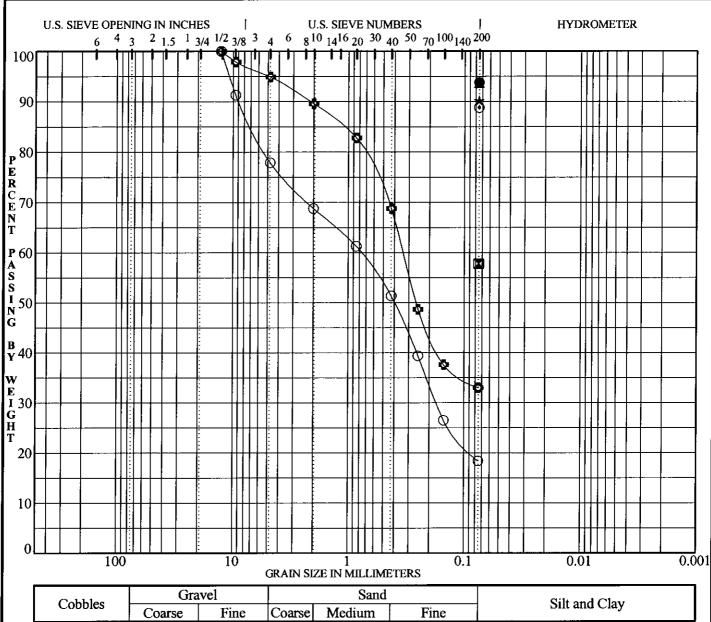
Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-38	40.0	29	65	Silty GRAVEL with sand (GM)	GM
×	BH-38	55.3	14		Silty SAND (SM)	SM
<b>A</b>	BH-38	78.8	86	100	Lean CLAY with sand (CL)	CL
				J. 700		

	PREPD BY:	GRADATION TEST DATA	FIGURE
	Y. D. Wang OATE: 17/6/05	SVRT DOWNTOWN	A12-84
	DWG FILE:	San Jose, California	PROJECT No.
			204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



Cobbles	Gravel			Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-39	39.3	31	98	Silty SAND (SM)	SM
X	BH-39	54.3	1	1	Poorly-graded GRAVEL (GP)	GP
<b>A</b>	BH-39	64.5	8	34	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
					4010	
			l			

	77	<u> </u>
		4
Ų		

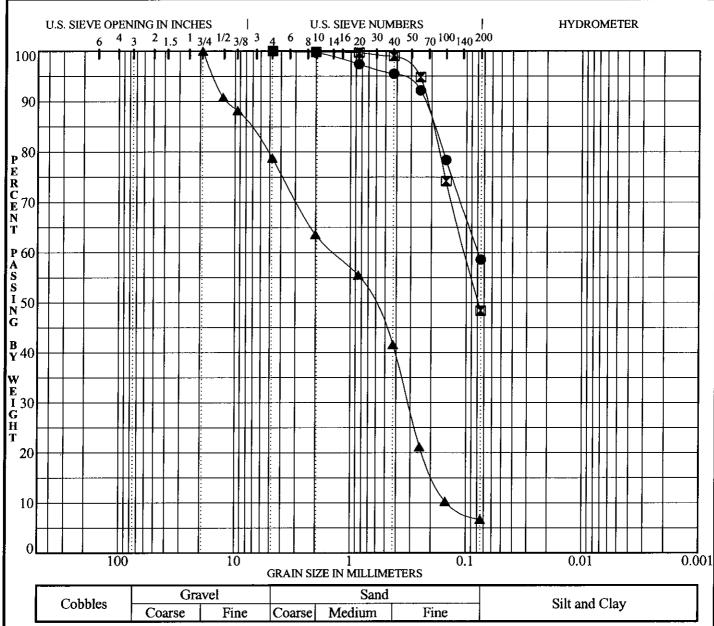
PREPUBI.	ŀ
APPOBY:	1
Y. D. Wang	⊢
DATE	1
17/6/05	
DWG FILE:	1

**SVRT DOWNTOWN** San Jose, California

FIGURE
A12-85



Cobbles	Gra	vel		Sand		Gilt and Glass
	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descaription	USCS
•	BH-40	52.5	94		Lean CLAY (CL)	CL
×	BH-40	56.5	58		Sandy Lean CLAY (CL)	CL
<b>A</b>	BH-40	57.5	94		Lean CLAY (CL)	CL
*	BH-40	60.0	90		Lean CLAY (CL)	CL
•	BH-40	62.4	89		Lean CLAY (CL)	CL
٥	BH-40	64.0	33	95	Silty SAND (SM)	SM
0	BH-40	65.8	18	78	Silty SAND with gravel (SM)	SM
-						



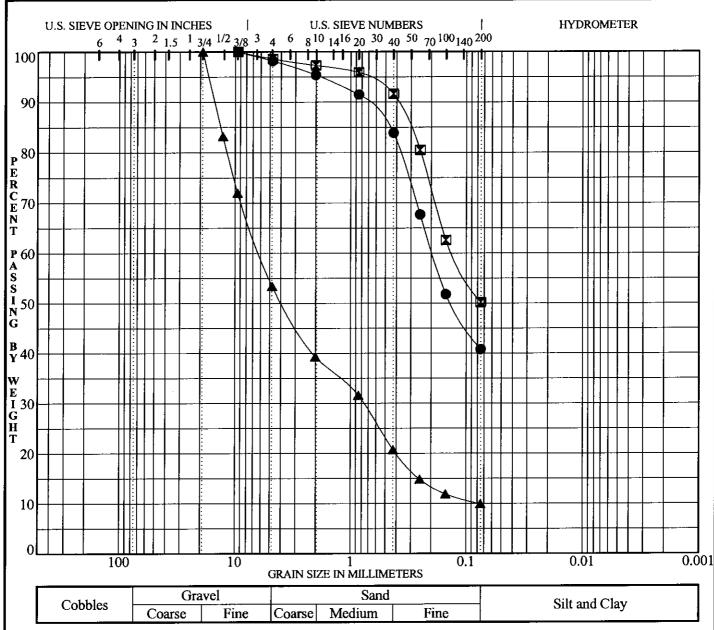
PREPOBY:	1
APPO BY:	┨
Y. D. Wang	┢
17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-86



	Cobbles		,	J14. V1		Duila		Silt and Clay	
			Coarse	Fine	Coarse	Medium	Fine	Silt and Clay	
•					_				
ı	Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve		Sample D	escsription	USCS


Symbol	No.	(Feet)	200 Sieve	4 Sieve	Sample Description	USCS
•	BH-41	32.3	59	100	Sandy Lean CLAY (CL)	CL
×	BH-41	41.5	48	100	Clayey SAND to Sandy Lean CLAY (SC/CL)	SC/CL
<b>A</b>	BH-41	46.3	7	79	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM

_		
		•
		1
	I L	
-		,
•		

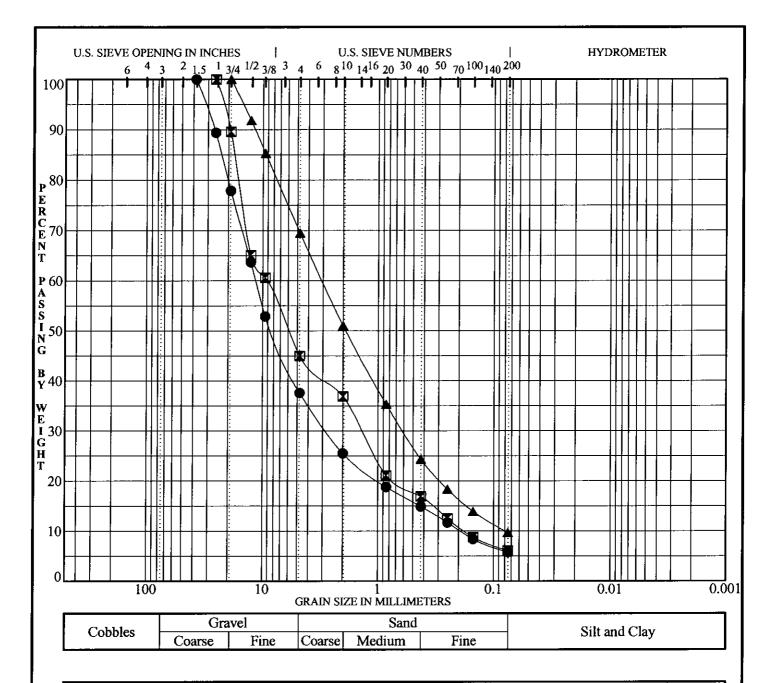
PREPUBI.	ı
APPD BY:	
Y. D. Wang	H
DATE:	
17/6/05	
DWG FILE:	

GRADA [*]	TION	TEST	DATA

H	JUKE	
41	2-87	



Cabbles	Gra	vel		Sand Coarse Medium Fine		Silt and Clay
Cobbles	Coarse	Fine	Coarse			Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-42	6.0	41	98	Silty SAND (SM)	SM
X	BH-42	42.3	50	99	Sandy Lean CLAY to Clayey SAND (CL/SC)	CL/SC
<b>A</b>	BH-42	45.8	10	53	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
			,			
			"-			

	T /	
		~_
Y		

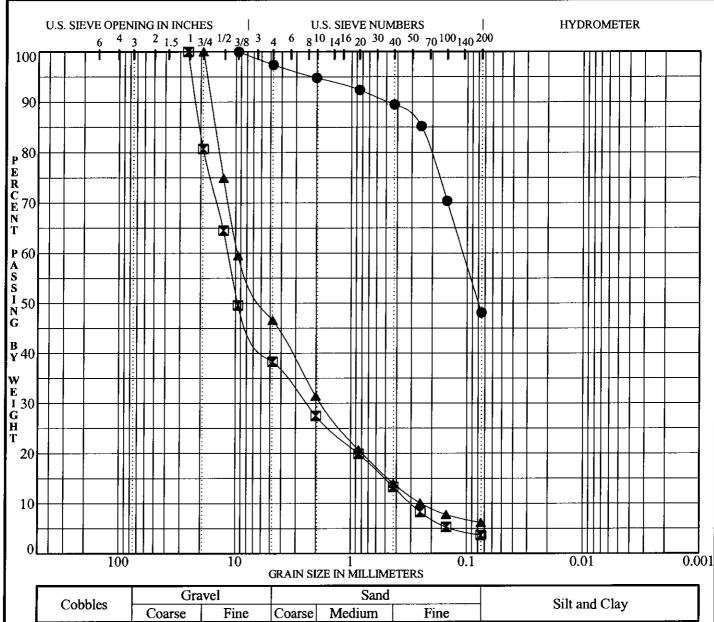
17000	
APPO BY:	1
Y. D. Wang	H
DATE	7
17/6/05	Т
DWG FILE:	1
	П

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-88



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-43	33.7	6	38	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
×	BH-43	40.4	6	45	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
<b>A</b>	BH-43	48.0	10	70	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
· ·						
			[			



APPDay: Y, D, Wang	GRADATION TEST DATA
DATE: 17/6/05	SVRT DOWNTOWN
DWG FILE:	San Jose, California

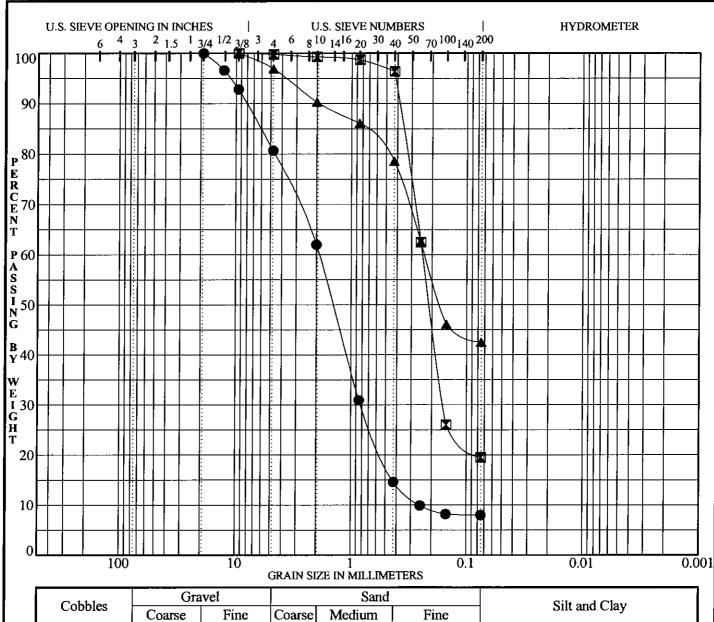
FIGURE

A12-89

PROJECT No.
204104.10



Cabbles	Gra	vel		Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-44	11.2	48	97	Clayey SAND to Sandy Lean CLAY (SC/CL)	SC/CL
×	BH-44	44.3	4	38	Well-graded GRAVEL with sand (GW)	GW
<b>A</b>	BH-44	50.8	6	47	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
	1.00					

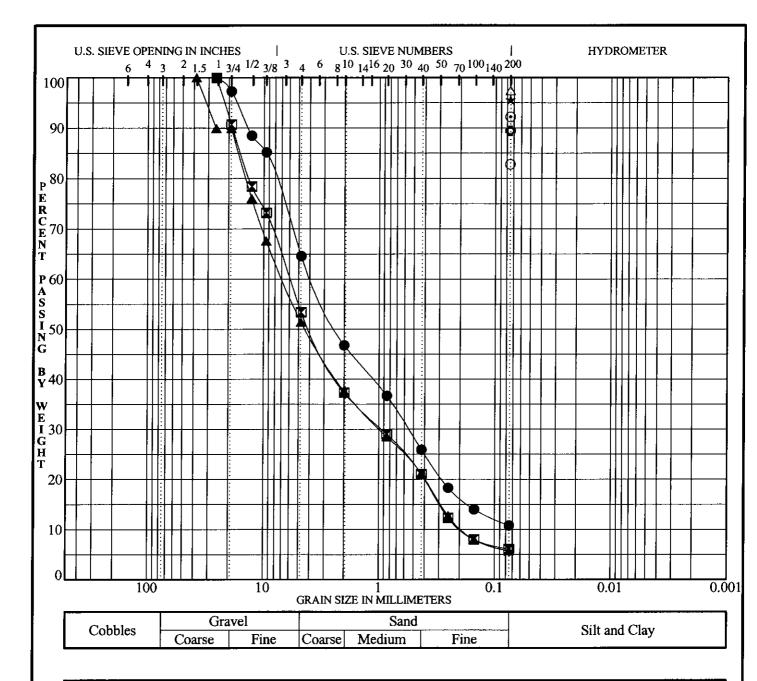


1143 551.	
APPOBY: Y. D. Wang	1
DATE	-[
17/6/05	╛
DWG FILE:	1

GRADATION	TEST	DATA

	<b>5</b> U.	
41	2-	90

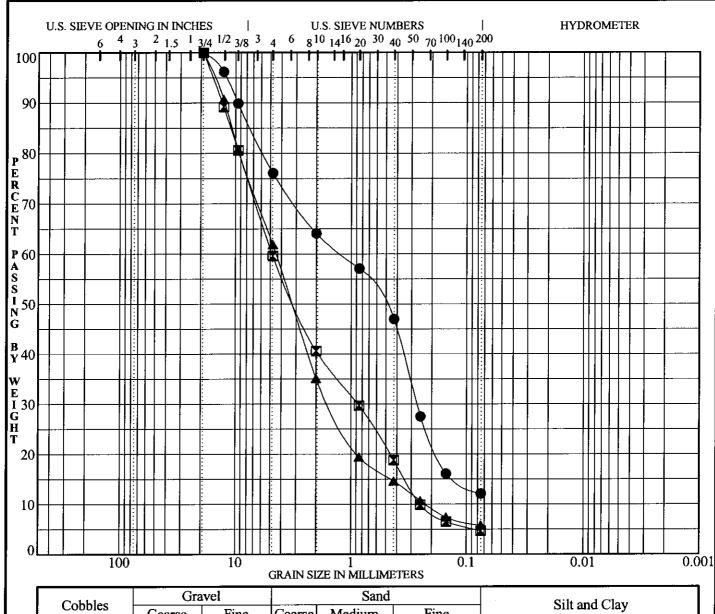



Cobbles	Gravel		Sand			Silt and Clay
	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-45	54.2	8	81	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
×	BH-45	76.2	20	100	Silty SAND (SM)	SM
•	BH-45	80.3	43	97	Silty SAND (SM)	SM
-						
·						

	I I ~ A
1	
•	

FREEFO	or.	
APP'D B'	v:	
Y. D.	Wang	
DATE	<u>-</u>	
17/	6/05	
DWG FIL	.E:	


GRADATION TEST DATA
---------------------



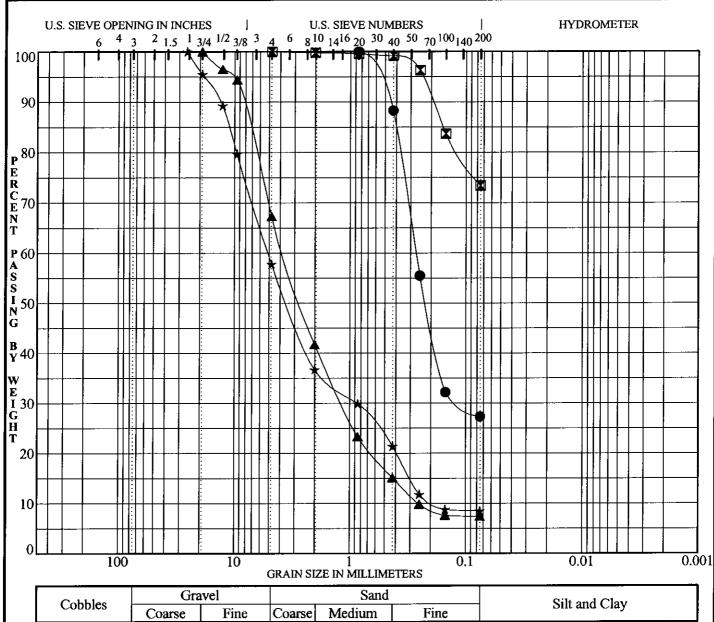
Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-46	31.0	11	65	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
×	BH-46	41.1	6	53	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
<b>A</b>	BH-46	46.0	6	51	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
*	BH-46	52.0	96		SILT to Lean CLAY (ML/CL)	ML/CL
•	BH-46	52.5	92		SILT to Lean CLAY (ML/CL)	
٥	BH-46	56.0	89		SILT to Lean CLAY (ML/CL)	ML/CL
0	BH-46	57.0	83		Lean CLAY with sand (CL)	
Δ	BH-46	60.0	97		Silty CLAY (CL-ML)	CL-ML

PREPOBY:	GRADATION TEST DATA	FIGURE
Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-92
DWG FILE:	San Jose, California	PROJECT No.
		204104.10

ATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



Cobblog	Gra	vel		Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-47	6.0	12	76	Silty SAND with gravel (SM)	SM
	BH-47	35.8	5	60	Poorly-graded SAND with gravel (SP)	SP
<b>A</b>	BH-47	45.8	6	62	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
		•				

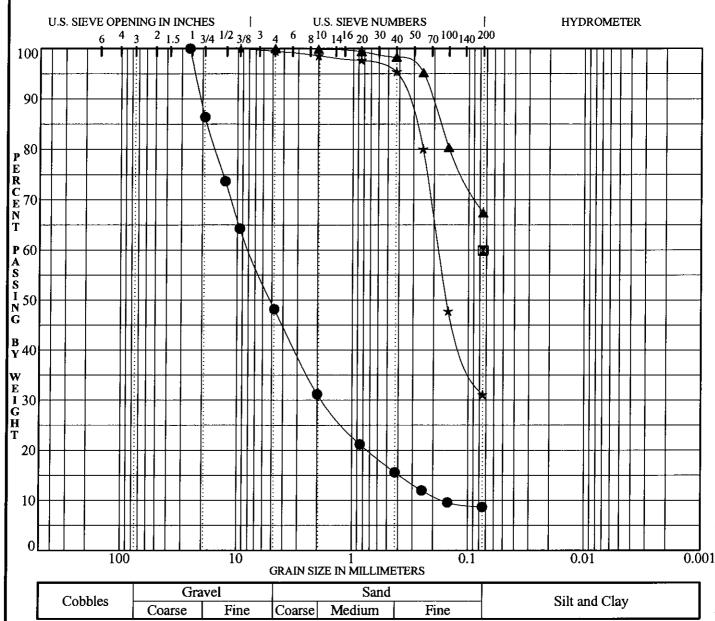


PREPOBY:	
APP D BY:	
Y. D. Wang	⊦
DATE:	
17/6/05	l
DWG FILE:	1

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-93




Cobbles	Gra	vel		Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-48	44.0	27		Silty SAND (SM)	SM
X	BH-48	54.0	73	100	Sandy Lean CLAY (CL)	CL
<b>A</b>	BH-48	66.5	7	67	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
*	BH-48	70.7	9	58	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
		<del></del>				
					·	
	1		1			

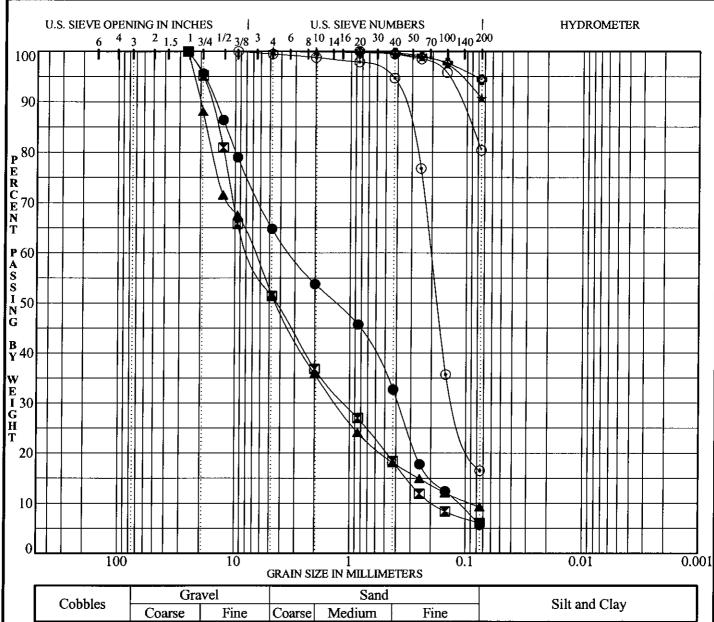


	PREPUBI.	
	APPD BY:	
	Y. D. Wang	Г
į	17/6/05	
i	DWG FILE	

FIGURE	
A12-94	



Course Fine Course Medium Fine Silt and Clay	Cobbles	Gra	vel		Sand		Silt and Clay
Coarse Time Coarse Mediani Time	Copples	Coarse	Fine	Coarse	Medium	Fine	•


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-49	30.4	9	48	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
×	BH-49	35.5	60		Sandy SILT (ML)	ML
<b>A</b>	BH-49	47.1	67	100	Sandy SILT (ML)	ML
*	BH-49	52.0	31	100	Silty SAND (SM)	SM
						i



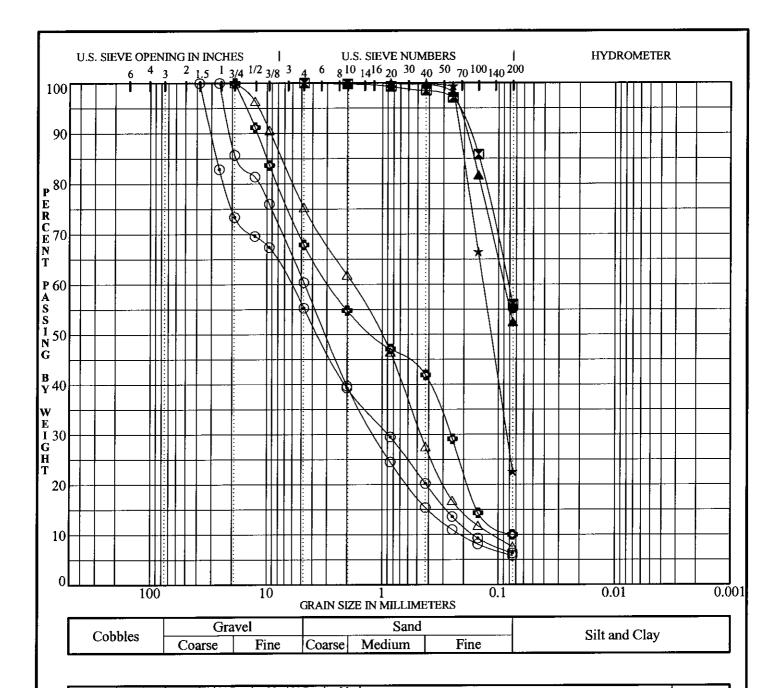
PAGPUBI:	
APPD 8Y:	
Y. D. Wang	
17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-95



Cobbles	Gra	vel		Sand		Silt and Clay
Coobles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-50	61.1	6	65	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
<b>X</b>	BH-50	80.5	6	51	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
<b>A</b>	BH-50	90.0	9	52	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
*	BH-50	120.5	91	100	Lean CLAY (CL)	CL
•	BH-50	130.5	17	100	Silty SAND (SM)	SM
٥	BH-50	140.5	94	•	Lean CLAY (CL)	CL
0	BH-50	150.5	80		SILT with sand (ML)	ML



PREPUBY:	
APPOBY: Y, D, Wang	L
DATE: 17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-96



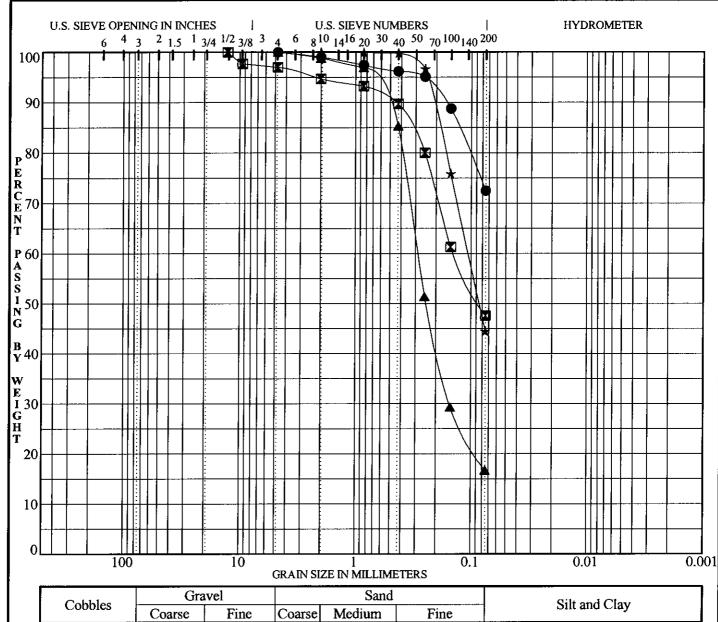
Key Symbol	Boring No.	Depth (Feet)_	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-52	26.9	55		Sandy Lean CLAY (CL)	CL
×	BH-52	54.5	56	100	Sandy SILT (ML)	ML
<b>A</b>	BH-52	56.7	53		Sandy Lean CLAY to Clayey SAND (CL/SC)	CL/SC
*	BH-52	61.0	23		Silty SAND (SM)	SM
•	BH-52	65.8	6	55	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
٥	BH-52	75.2	10	68	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
0	BH-52	84.9	6	60	Well-graded SAND with silt and gravel (SW-SM)	SW-SM

75

	PREPD BY:	GRADATION TEST DATA	FIGURE
	APPDBY: Y. D. Wang  DATE: 17/6/05	SVRT DOWNTOWN	A12-97-1
	DWG FILE:	San Jose, California	PROJECT No.
			204104.10

Well-graded SAND with silt and gravel (SW-SM)

SW-SM


GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05

BH-52

Δ

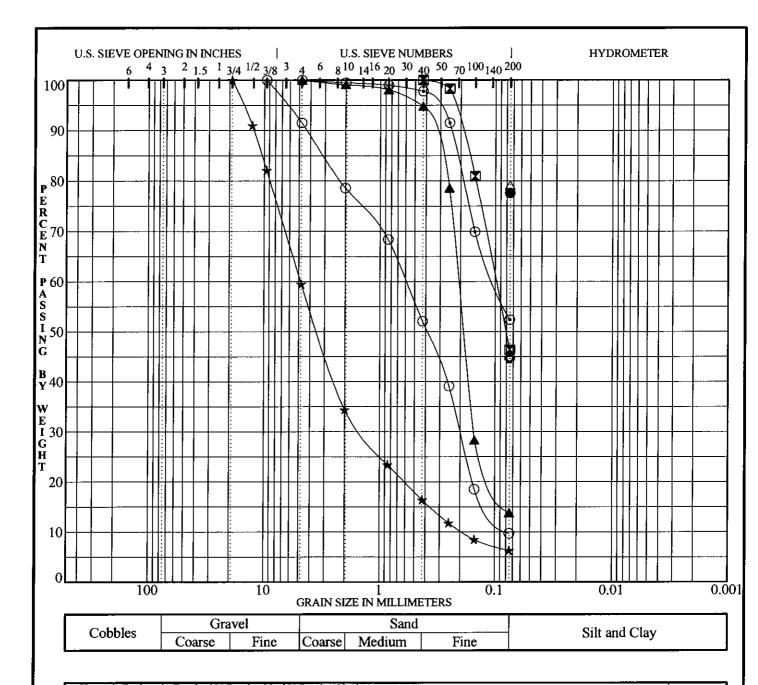
90.1

8



Cobbles	Gravel		Sand			Silt and Clay
	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay

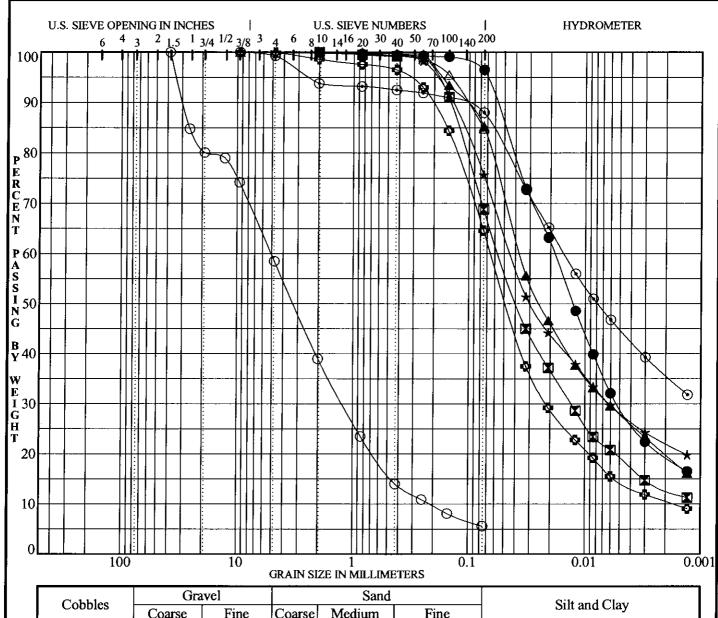
Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-52	116.5	73	100	Sandy Lean CLAY (CL)	CL
×	BH-52	121.5	48	97	Clayey SAND to Sandy Lean Clay (SC/CL)	SC/CL
<b>A</b>	BH-52	130.3	17	100	Silty SAND (SM)	SM
*	BH-52	150.3	45		Silty SAND to Sandy SILT (SM/ML)	SM/ML
	ĺ					




APPOBY: Y. D. Wang DATE 17/6/05 DWG FILE:

**GRADATION TEST DATA** 

**SVRT DOWNTOWN** San Jose, California


**FIGURE** A12-97-2



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-53	54.2	78		SILT with sand (ML)	ML
	BH-53	66.5	46		Silty SAND to Sandy SILT (SM/ML)	SM/ML
<b>A</b>	BH-53	76.3	14	100	Silty SAND (SM)	SM
*	BH-53	81.0	6	60	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
•	BH-53	110.5	52	100	Sandy Lean CLAY to Clayey SAND (CL/SC)	CL/SC
٥	BH-53	116.5	45		Clayey SAND (SC)	SC
0	BH-53	120.2	10	92	Poorly-graded SAND with silt (SP-SM)	SP-SM
Δ	BH-53	141.4	79		SILT with sand (ML)	ML

	PREPOBY:  APPOBY:  Y. D. Wang	GRADATION TEST DATA	FIGURE
	17/6/05 DWG-FILE:	SVRT DOWNTOWN	A12-98
		San Jose, California	PROJECT No.
			204104.10

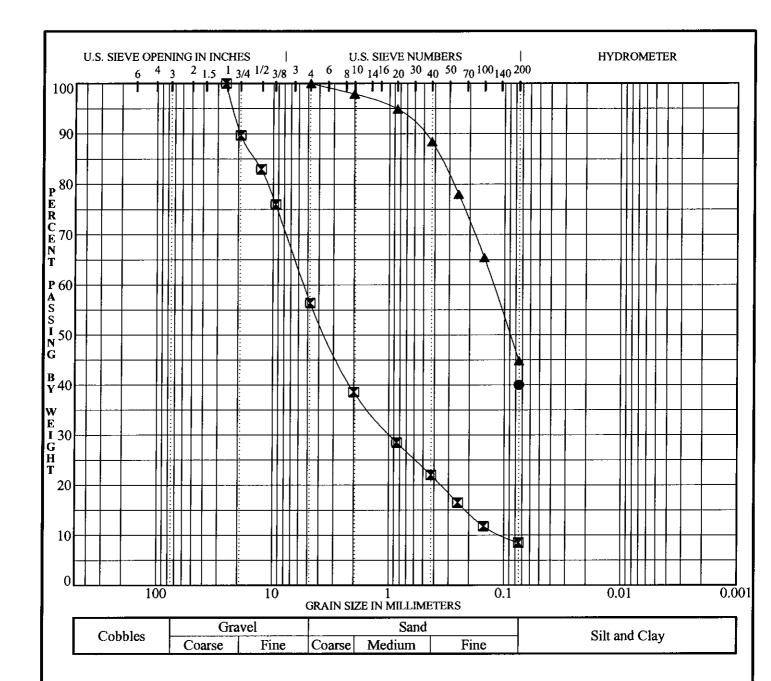
ATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



Cobbles	Gra	vel		Sand		Silt and Clay
	Coarse	Fine	Coarse	Medium	Fine	Silt alid Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-54	11.6	97		Lean CLAY (CL)	CL
X	BH-54	22.5	69		Sandy, Silty CLAY (CL-ML)	CL-ML
<b>A</b>	BH-54	32.0	85		Lean CLAY with sand (CL)	CL
*	BH-54	42.5	76		Lean CLAY with sand (CL)	CL
•	BH-54	52.5	88	99	Lean CLAY (CL)	CL
٥	BH-54	71.4	65	100	Sandy SILT (ML)	ML
0	BH-54	81.0	6	59	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
Δ	BH-54	91.0	85	100	Lean CLAY with sand (CL)	CL




THE COL.	
APPO BY:	
Y. D. Wang	H
DATE: 17/6/05	
OWG FILE:	

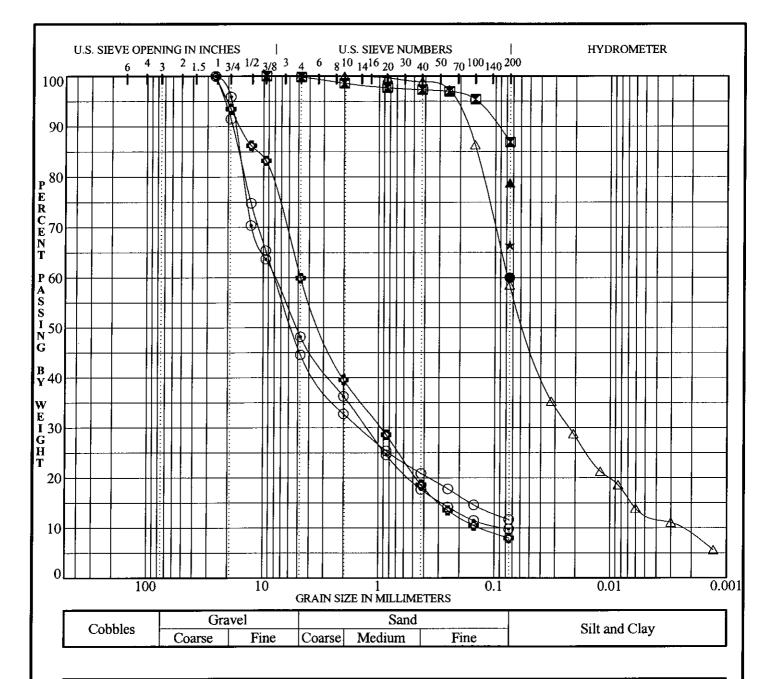
**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-99-1

> PROJECT No. 204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05

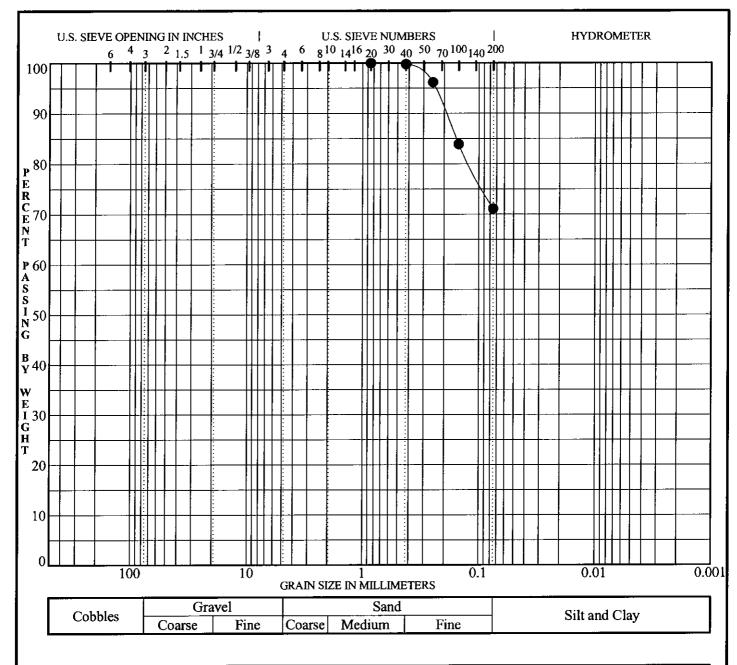



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-54	101.2	40		Silty SAND (SM)	SM
×	BH-54	111.0	9	56	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
<b>A</b>	BH-54	120.8	45	100	Silty SAND to Sandy SILT (SM/ML)	SM/ML
			, ,			



PPDBY: Y. D. Wang	GRADATION TEST DATA					
17/6/05 www.frice:	SVRT DOWNTOWN San Jose, California					

FIGURE
A12-99-2
PROJECT No.

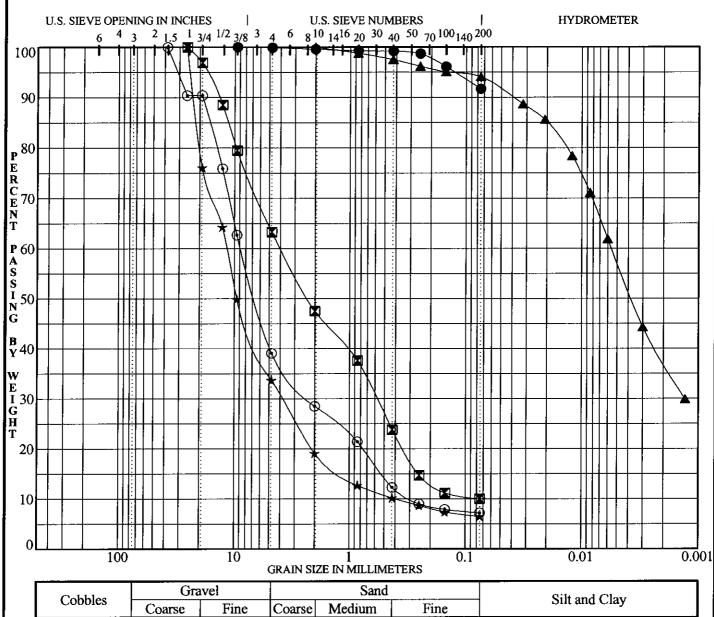

204104.10



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-55	16.9	60		Sandy Lean CLAY (CL)	CL
×	BH-55	21.5	87	100	Lean CLAY (CL)	CL
<b>A</b>	BH-55	57.5	79		Silty CLAY with sand (CL-ML)	CL-ML
*	BH-55	71.6	67		Sandy SILT (ML)	ML
•	BH-55	82.5	10	48	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
٥	BH-55	86.7	8	60	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
0	BH-55	94.5	12	45	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
Δ	BH-55	100.3	59		Sandy SILT (ML)	ML

APPOBY: Y, O. Wang	GRADATION TEST DATA	FIGURE
DATE: 17/6/05 DWG FILE:	SVRT DOWNTOWN San Jose, California	A12-100-1
	· · · · · · · · · · · · · · · · · · ·	204104.10

GRADATION_B 204104 06 20 2005.GPJ STD.GDT 17/6/05




Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-55	147.4	71		Sandy Lean CLAY (CL)	CL
	_					

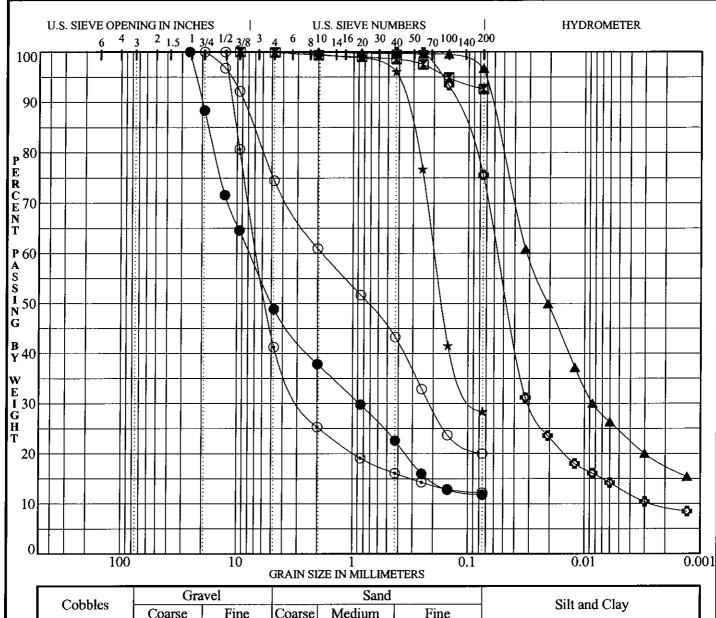


DBY:	GRADATION TEST DATA
. D. Yvang re 17/6/05	SVRT DOWNTOWN

FIGURE **A12-100-2** 



Cobbles	Gra	vel	Sand			Silt and Clay
Coodles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Desestription	USCS
•	BH-58	91.3	92	100	Lean CLAY (CL)	CL
×	BH-58	110.8	10	63	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
<b>A</b>	BH-58	116.3	94		Lean CLAY (CL)	CL
*	BH-58	130.5	7	34	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
•	BH-58	141.0	7	39	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM



PREPUBI.	ľ
APP'D BY:	
Y. D. Wang	H
DATE:	
17/6/05	
DWG FILE:	

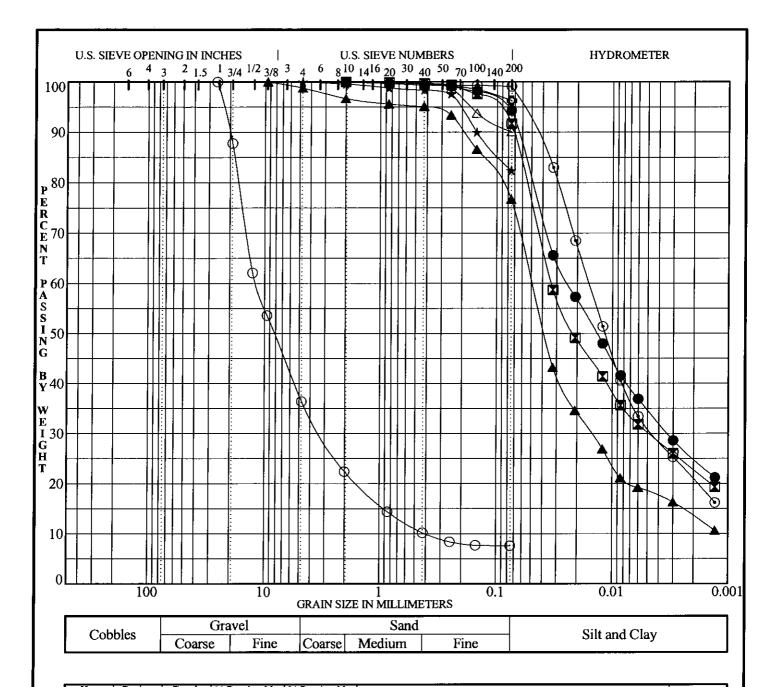
**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-101



	Cobbles	Glavel			Sanu		Silt and Clay	
	Coobles	Coarse	Fine	Coarse	Medium	Fine	Sin and Clay	
		•						
ı	Key Boring		Passing No.	6 Passing No.		Sample Desc	sription	USCS

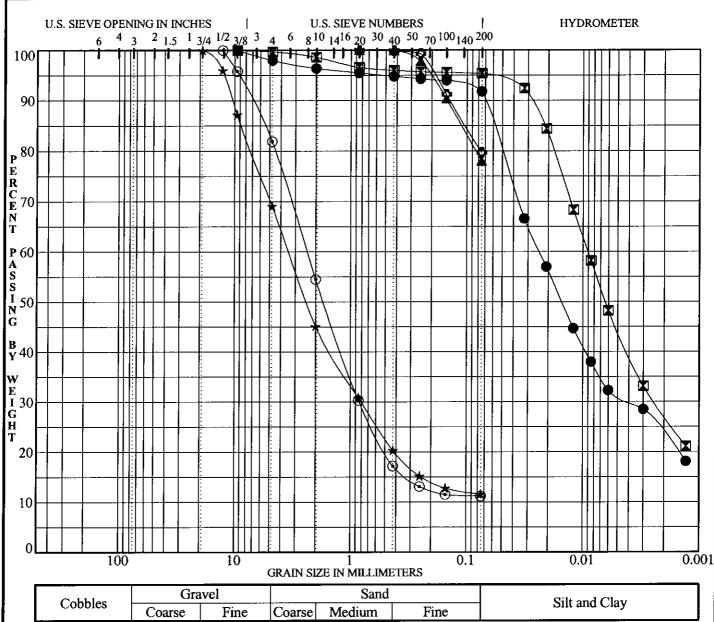
Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-59	68.8	12	49	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
×	BH-59	79.7	93	100	Lean CLAY (CL)	CL
<b>A</b>	BH-59	89.9	97		SILT (ML)	ML
*	BH-59	99.7	28	100	Silty SAND (SM)	SM
•	BH-59	108.7	12	41	Clayey GRAVEL with sand (GC)	GC
٥	BH-59	119.7	76		SILT with sand (ML)	ML
0	BH-59	129.5	20	75	Silty SAND with gravel (SM)	SM




APPD BY:	GRADATION TEST DATA
DATE: 17/6/05	SVRT DOWNTOWN
OWG FILE:	San Jose, California

FIGURE
A12-102

PROJECT No.


204104.10



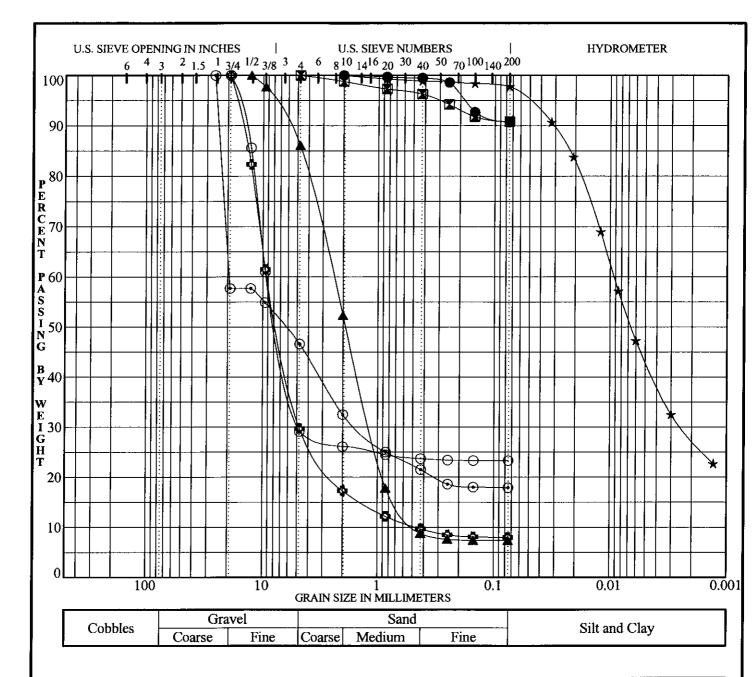
Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-60	62.5	94		Lean CLAY (CL)	CL
	BH-60	75.0	92		Lean CLAY (CL)	CL
<b>A</b>	BH-60	80.3	77	99	SILT with sand (ML)	ML
*	BH-60	80.8	82	100	SILT with sand (ML)	ML
•	BH-60	92.0	99		SILT (ML)	ML
0	BH-60	101.2	96		SILT (ML)	ML
0	BH-60	109.5	8	36	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
Δ	BH-60	125.6	90		SILT (ML)	ML

PREPO BY:	GRADATION TEST DATA	FIGURE
Y. D. Wang  GATE:  17/6/05	SVRT DOWNTOWN	A12-103
DWG FILE:	San Jose, California	PROJECT No. 204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



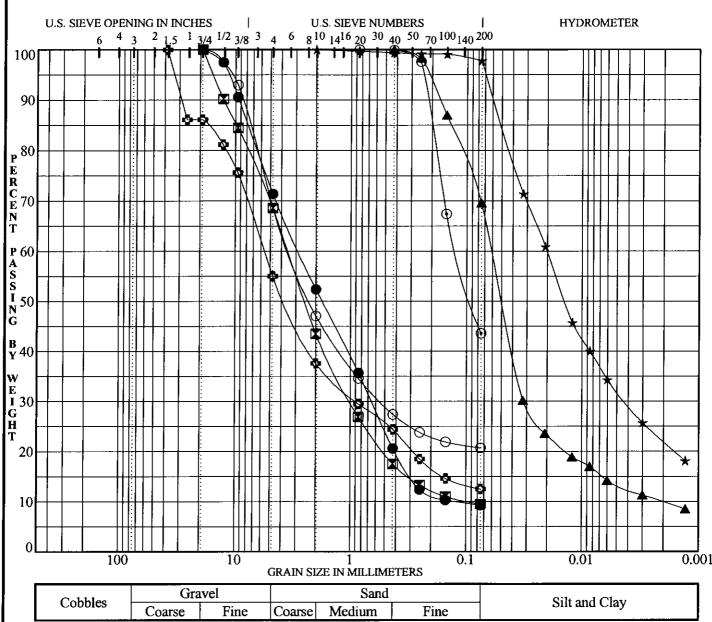
Coarse Fine Coarse Medium Fine	Cobbles	Gravel		Sand			Silt and Clay
		Coarse		Coarse		Fine	· ·


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-61			98	Lean CLAY (CL)	CL
×	BH-61 91.5 95 100 Lean		100	Lean CLAY (CL)	CL	
<b>A</b>	BH-61	101.4	78		SILT with sand (ML)	ML
*	BH-61	110.3	12	69	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
•	BH-61	115.4	11	82	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
٥	BH-61	151.5	80		SILT with sand (ML)	ML
				· · · · · · · · · · · · · · · · · · ·		

Ų	

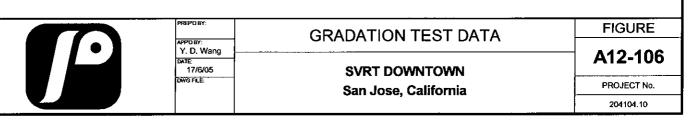
PREPTO BY:	
APPOBY: Y. D. Wang	L
17/6/05	
DWG FILE:	1

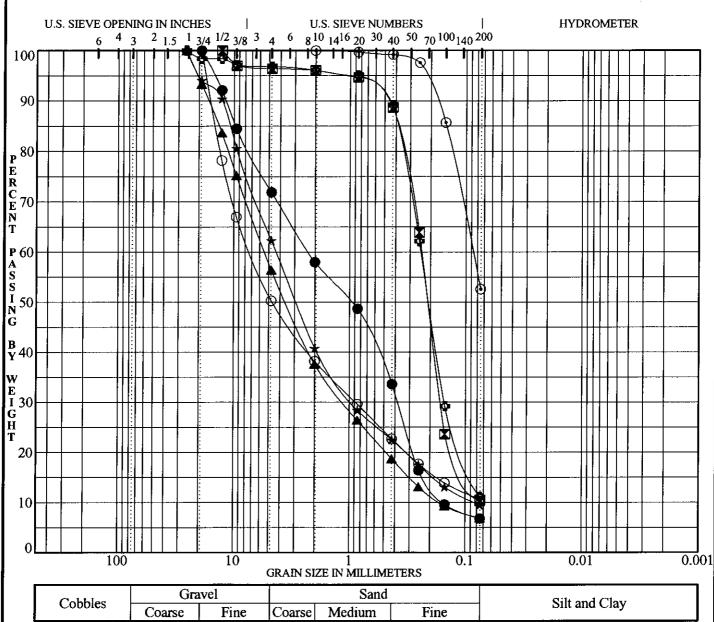
**SVRT DOWNTOWN** San Jose, California


**FIGURE** A12-104



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-62	22.4	91		SILT (ML)	ML
X	BH-62	62.5	91	100	Lean CLAY (CL)	CL
<b>A</b>	BH-62	70.9	7	86	Poorly-graded SAND with silt (SP-SM)	SP-SM
*	BH-62	82.2	98		Lean CLAY (CL)	CL
•	BH-62	110.4	18	47	Clayey GRAVEL with sand (GC)	GC
٥	BH-62	119.8	8	30	Poorly-graded GRAVEL with clay and sand (GP-GC)	GP-GC
0	BH-62	130.0	23	29	Clayey GRAVEL (GC)	GC


PREPD BY:	GRADATION TEST DATA	FIGURE
Y. D. Wang DATE: 17/6/05 DWG FILE:	SVRT DOWNTOWN	A12-105
	San Jose, California	204104.10


GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



Cobbles	Gravel		Sand			Silt and Clare
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-63	66.2	9	71	71 Well-graded SAND with silt and gravel (SW-SM)	
×	BH-63	75.0	10	69	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
<b>A</b>	BH-63	92.8	70		Sandy Silty CLAY (CL-ML)	CL-ML
*	BH-63	100.3	98		SILT (ML)	ML
•	BH-63	110.3	44		Silty SAND (SM)	SM
¢	BH-63	119.5	13	55	Silty GRAVEL with sand (GM)	GM
0	BH-63	124.5	21	69	Clayey SAND with gravel (SC)	SC
					100	





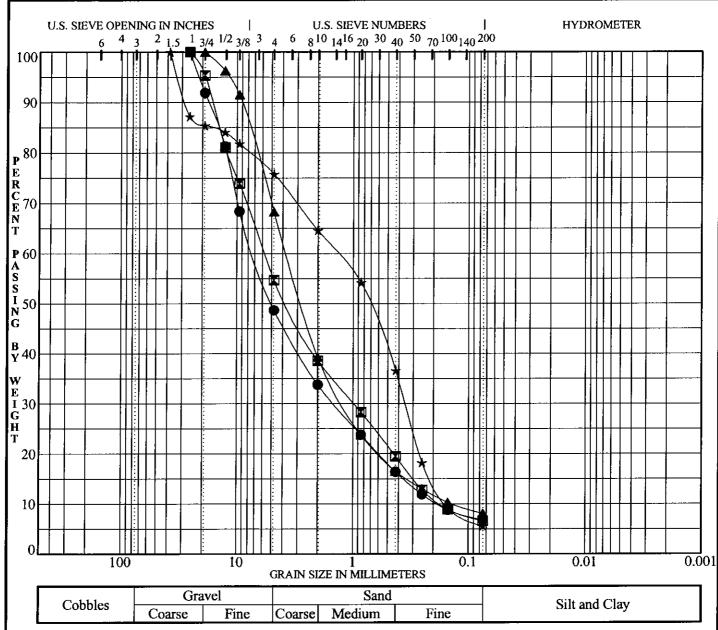
Cobbles	Gra	vel		Sand		Silt and Clay
	Coarse	Fine	Coarse	Medium	Fine	

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-64	45.7	7	72	72 Poorly-graded SAND with silt and gravel (SP-SM)	
×	BH-64	61.0	10	96	Poorly-graded SAND with silt (SP-SM)	SP-SM
<b>A</b>	BH-64	84.3	7	56	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
*	BH-64	90.9	10	62	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
•	BH-64	102.4	53		Sandy SILT to Silty SAND (ML/SM)	ML/SM
٥	BH-64	122.0	11	97	Poorly-graded SAND with silt (SP-SM)	SP-SM
0	BH-64	126.0	11	50	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM



PREPUBY:	
APP'D BY:	
Y. D. Wang	⊢
DATE	1
17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** 


San Jose, California

A12-107

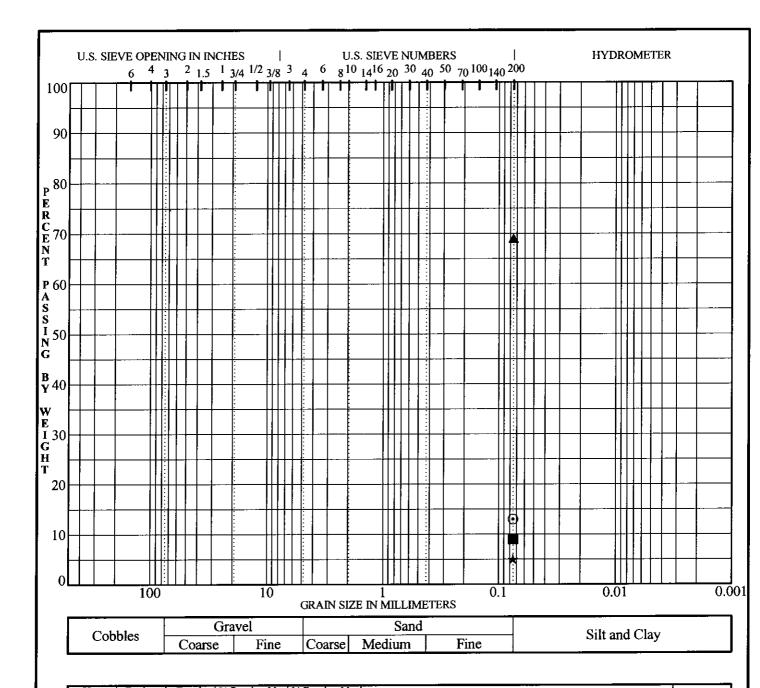
PROJECT No. 204104.10

**FIGURE** 

20 2005.GPJ STD.GDT 17/6/05



Cobbles	Gra	ivel	Sand			Silt and Clay
Coodles	Coarse	Fine	Coarse	Medium	Fine	Sift and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-65	46.0	7	49	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
×	BH-65	76.0	7	55	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
<b>A</b>	BH-65	86.0	8	68	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
*	BH-65	126.2	6	76	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
				·		



PREPOBY:	
APPD BY:	
Y. D. Wang	
17/6/05	
DWG FILE:	l

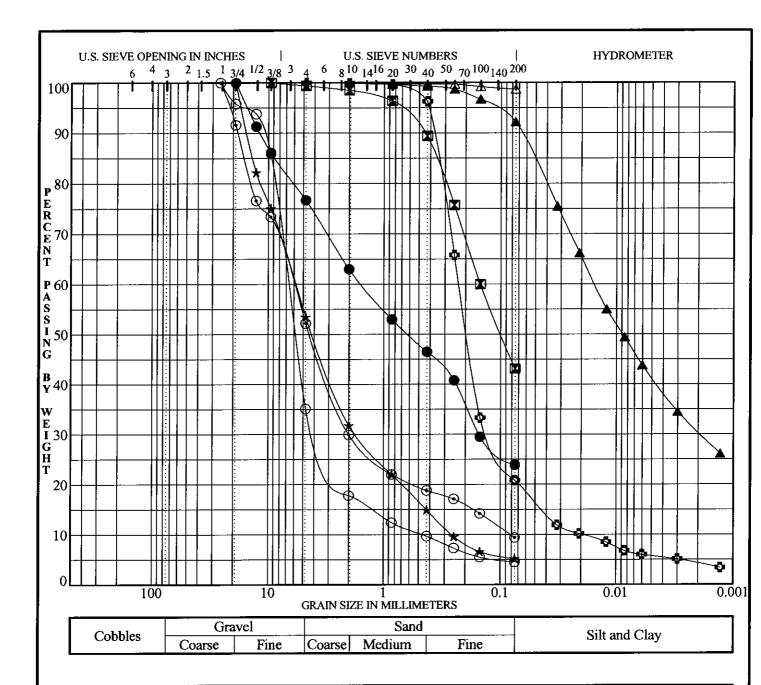
**SVRT DOWNTOWN** San Jose, California

FIGURE A12-108



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-66	35.7	9		Poorly-graded SAND with silt (SP-SM)	SP-SM
×	ВН-66	81.1	9		Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
<b>A</b>	BH-66	101.5	69		Sandy Lean CLAY (CL)	CL
*	BH-66	116.3	5		Poorly-graded GRAVEL (GP)	GP
•	BH-66	120.5	13		Silty SAND with gravel (SM)	SM

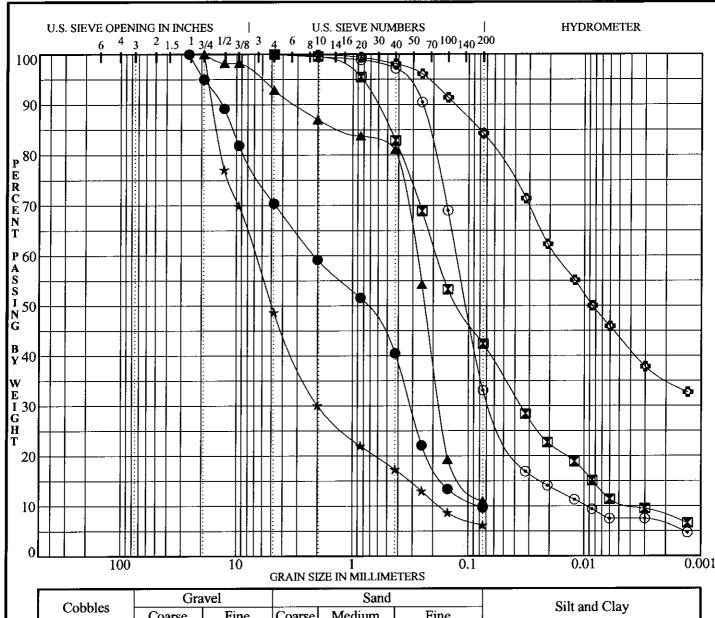
APPOBY: Y. D. Wang
DATE 17/6/05 DWG FILE:


GRADAT	ION	IESI	DATA	

**SVRT DOWNTOWN San Jose, California** 

A12-109	
PROJECT No.	

**FIGURE** 


204104.10



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descaription	USCS
•	BH-68	29.3	24	77	77 Silty SAND with gravel (SM)	
X	BH-68	51.0	43	99	99 Clayey SAND (SC)	
<b>A</b>	BH-68	70.5	92		Lean CLAY (CL)	CL
*	BH-68	79.0	5	54	Well-graded SAND with silt and gravel (SW-SM)	
0	BH-68	119.0	9	52	Poorly-graded GRAVEL with clay and sand (GP-GC)	
•	BH-68	158.8	21	100	Silty SAND (SM)	SM
0	BH-68	169.3	5	35	Poorly-graded GRAVEL with sand (GP)	GP
Δ	BH-68	180.5	99		Fat CLAY (CH)	СН

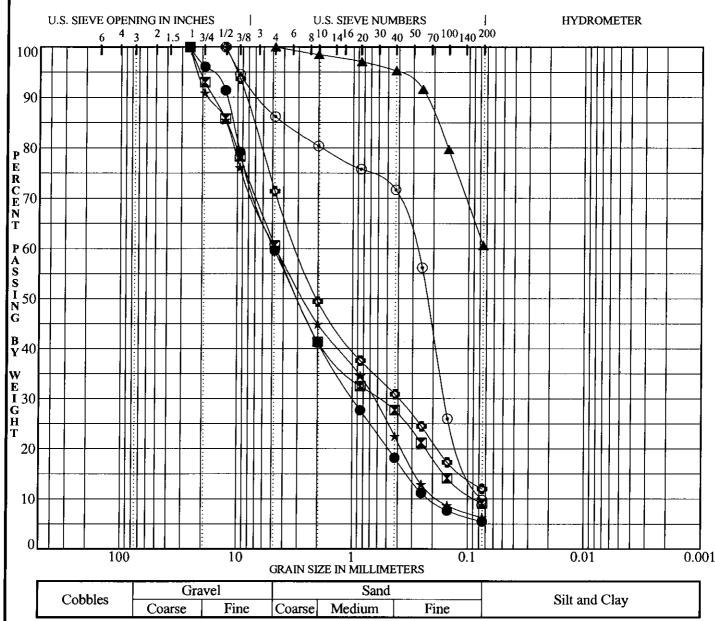
	APPOBY: Y, D. Wang	GRADATION TEST DATA	FIGURE
	17/6/05 DWG FILE:	SVRT DOWNTOWN	A12-110
		San Jose, California	PROJECT No.
		Juli 5555, Julii 511111	204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05



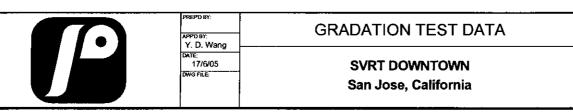
Cabbles	Gra	vel		Sand		Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-70	34.0	10	70	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
×	BH-70	39.0	42	100	Silty SAND (SM)	SM
<b>A</b>	BH-70	51.5	11	93	Poorly-graded SAND with silt (SP-SM)	SP-SM
*	BH-70	80.1	6	49	Poorly-graded GRAVEL with clay and sand (GP-GC)	GP-GC
0	BH-70	110.9	33	100	Silty SAND (SM)	SM
•	BH-70	140.5	84	100	Fat CLAY (CH)	CH




PREPID BY. APPOBY: Y. D. Wang DATE 17/6/05

**GRADATION TEST DATA** 

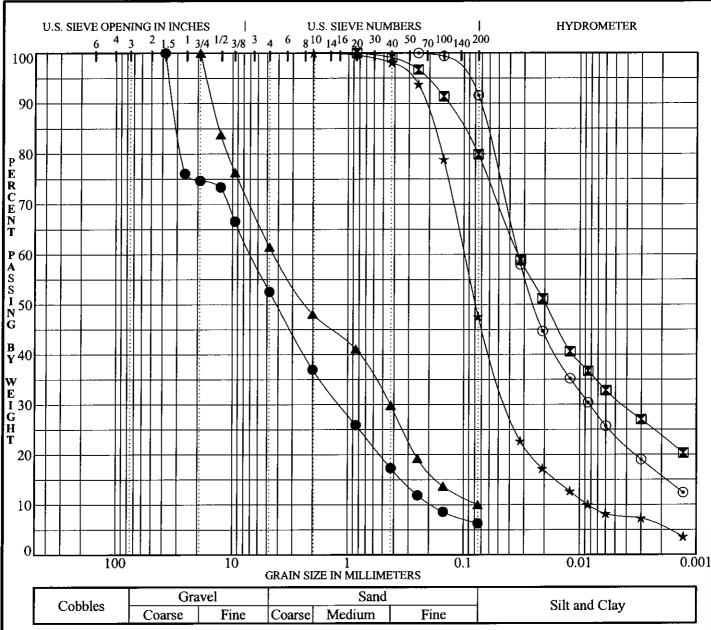

**SVRT DOWNTOWN** San Jose, California

**FIGURE** A12-111



Coarse Fine Coarse Medium Fine	Cobbles	Gra	vel		Sand		Silt and Clay
	Cobbles	Coarse	Fine	Coarse		Fine	Silt and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-71	10.8	6	60	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
	BH-71	51.6	9	61	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
<b>A</b>	BH-71	71.9	61	100	Sandy Lean CLAY (CL)	CL
*	BH-71	79.7	6	60	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
•	BH-71	115.3	10	86	Poorly-graded SAND with silt (SP-SM)	SP-SM
۰	BH-71	147.9	12	71	Poorly-graded SAND with clay and gravel (SP-SC)	SP-SC
	_			_		




GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05

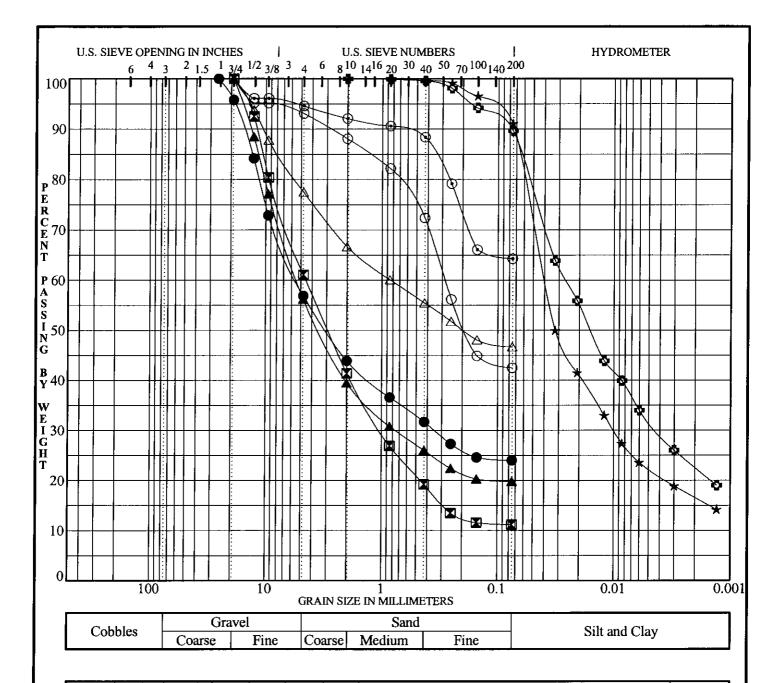
A12-112 PROJECT No.

**FIGURE** 

204104.10



Cobbles	Gra	ivel		Sand		Silt and Clay
Coboles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-72	81.2	6	53	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
X	BH-72	91.5	80		Lean CLAY with sand (CL)	CL
<b>A</b>	BH-72	111.2	10	62	Poorly-graded SAND with clay and gravel (SP-SC)	SP-SC
*	BH-72	129.9	48		Silty SAND to Sandy SILT (SM/ML)	SM/ML
•	BH-72	156.5	92		SILT (ML)	ML
ļ						

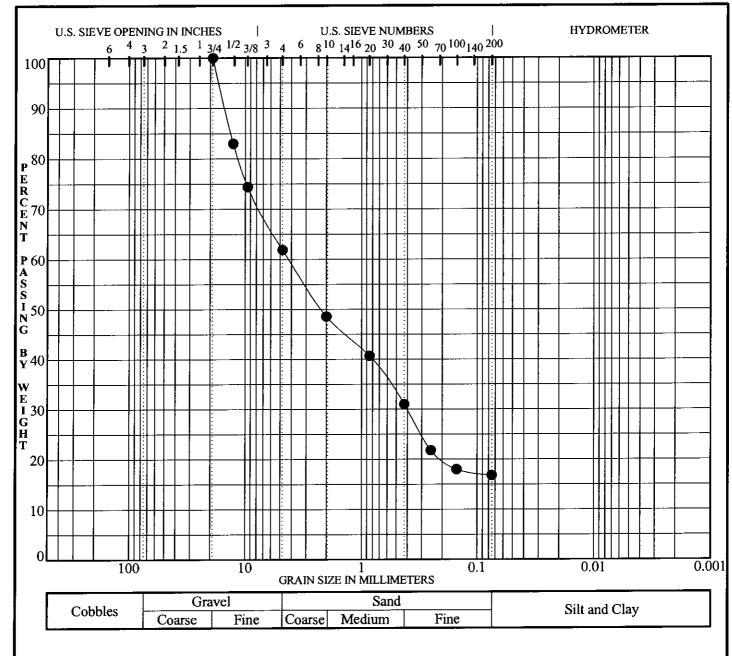


PREPUBY:	
APP'DBY:	l
Y. D. Wang	┞
17/6/05	
DWG FILE:	

**SVRT DOWNTOWN** San Jose, California

FIGURE A12-113




Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-73	32.3	24	57	Clayey GRAVEL with sand (GC)	GC
×	BH-73	41.2	11	61	Well-graded SAND with clay and gravel (SW-SC)	SW-SC
<b>A</b>	BH-73	56.1	20	56	Clayey GRAVEL with sand (GC)	GC
*	BH-73	81.7	91		SILT (ML)	ML
•	BH-73	92.2	64	95	Sandy Lean CLAY (CL)	CL
٥	BH-73	112.3	90		SILT (ML)	ML
0	BH-73	116.2	43	93	Silty SAND (SM)	SM
Δ	BH-73	126.3	47	78	Sandy Lean CLAY with gravel (CL)	CL



PREPOBY:	
APPD BY:	1
Y. D. Wang	╀
17/6/05	1
DWG FILE:	

**SVRT DOWNTOWN San Jose, California** 

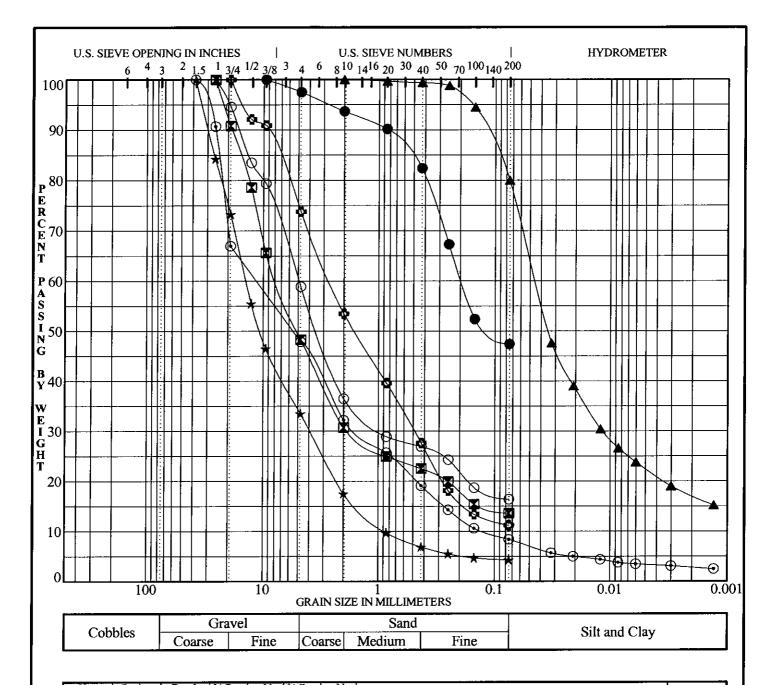
## FIGURE **A12-114-1**



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-73	150.5	17	62	Clayey SAND with gravel (SC)	SC
				_,		

PREPO BY:
APPOBY: Y, D. Wang
DATE: 17/6/05
DWG FILE:

GRADATION TES	T DATA
SVRT DOWNTO	WN


San Jose, California

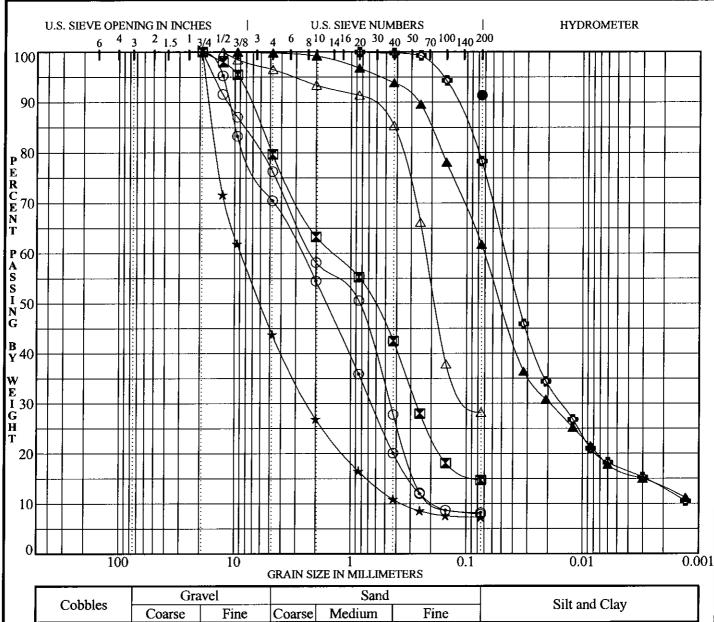
A12-114-2

**FIGURE** 

PROJECT No. 204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05




Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-74	66.8	47	98	Silty SAND (SM)	SM
X	BH-74	71.3	14	48	Silty GRAVEL with sand (GM)	GM
<b>A</b>	BH-74	77.4	80		Lean CLAY with sand (CL)	CL
*	BH-74	95.7	4	34	Well-graded GRAVEL (GW)	GW
•	BH-74	110.5	8	48	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
٥	BH-74	120.5	11	74	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
0	BH-74	150.3	16	59	Silty GRAVEL with sand (GM)	GM



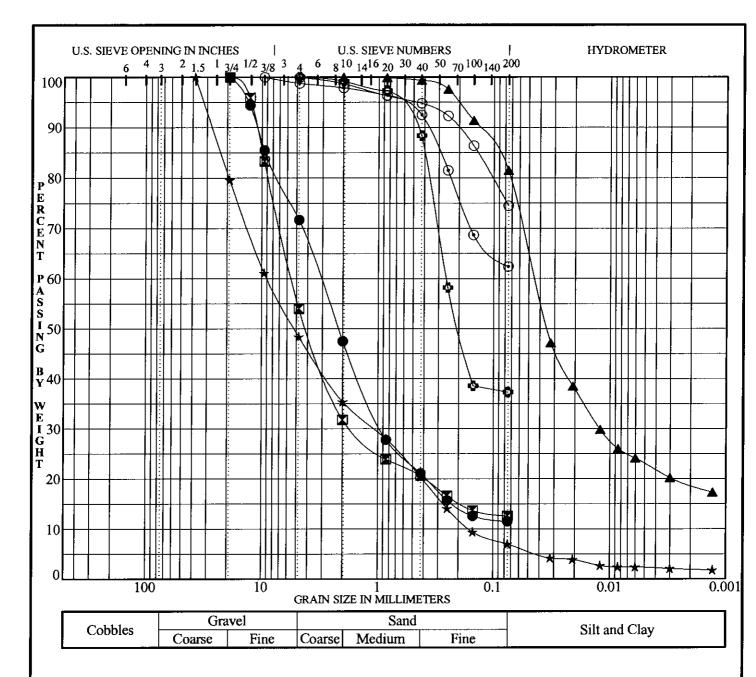
PREPUBI:	ı
APPDBY:	
Y. D. Wang	╙
DATE	
17/6/05	
DWG FILE:	

SVRT DOWNTOWN
San Jose, California

FIGURE	
<b>A12-115</b>	



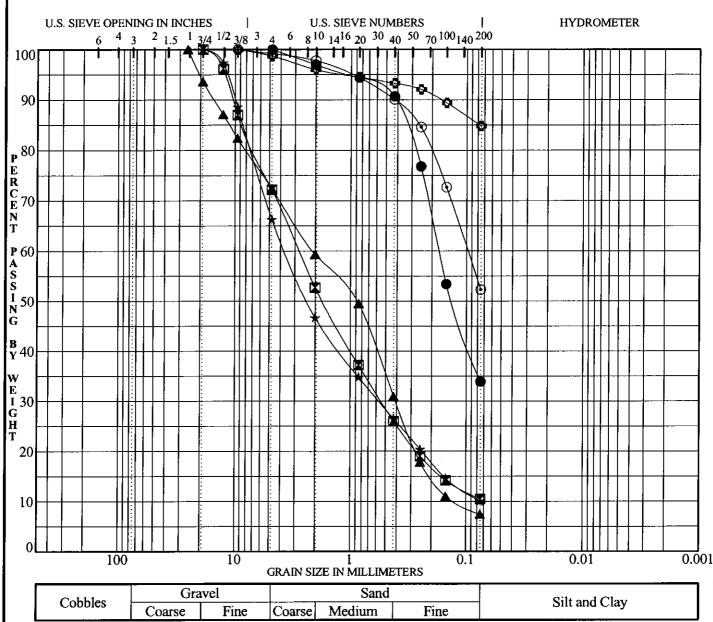
Cabbles	Gra	vel	Sand			Silt and Clay
Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt and Clay


Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-75	51.0	91		Lean CLAY (CL)	CL
<b>X</b>	BH-75	70.5	15	80	Clayey SAND with gravel (SC)	SC
<b>A</b>	BH-75	89.3	62	100	Sandy Lean CLAY (CL)	CL
*	BH-75	99.0	7	44	Well-graded GRAVEL with clay and sand (GW-GC)	GW-GC
•	BH-75	128.8	8	71	Poorly-graded SAND with clay and gravel (SP-SC)	SP-SC
٥	BH-75	141.0	78		Sandy Lean CLAY (CL)	CL
0	BH-75	178.9	8	76	Poorly-graded SAND with clay and gravel (SP-SC)	SP-SC
Δ	BH-75	200.3	28	97	Silty SAND (SM)	SM

#

PREPOBY:
APP D BY:
Y. D. Wang
DATE: 17/6/05
DWG FILE:
DIO I RE

**SVRT DOWNTOWN** San Jose, California

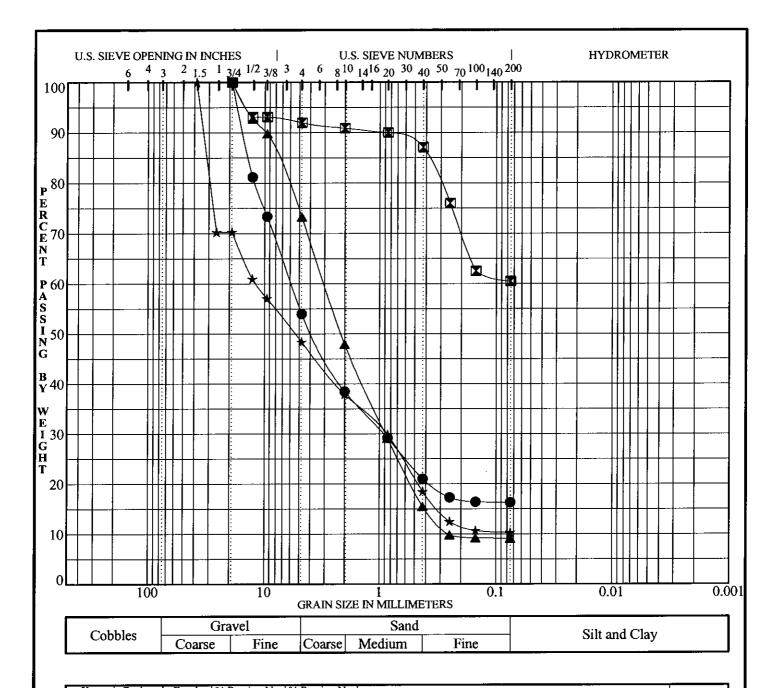

**FIGURE** A12-116



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-76	39.5	12	72	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
×	BH-76	69.3	13	54	Poorly-graded GRAVEL with clay and sand (GP-GC)	GP-GC
<b>A</b>	BH-76	87.5	82		Lean CLAY with sand (CL)	CL
*	BH-76	111.0	7	48	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
•	BH-76	117.5	62	99	Sandy Lean CLAY (CL)	CL
٥	BH-76	132.5	37	100	Silty SAND (SM)	SM
0	BH-76	141.0	75	100	Sandy Lean CLAY (CL)	CL

GRADATION TEST DATA	FIGURE
7/6/05 SVRT DOWNTOWN	A12-117
San Jose, California	PROJECT No. 204104.10
	GRADATION TEST DATA D. Wang 7/16/05 File SVRT DOWNTOWN

TION B 204104_06_20_2005.GPJ_STD.GDT_17/6/05



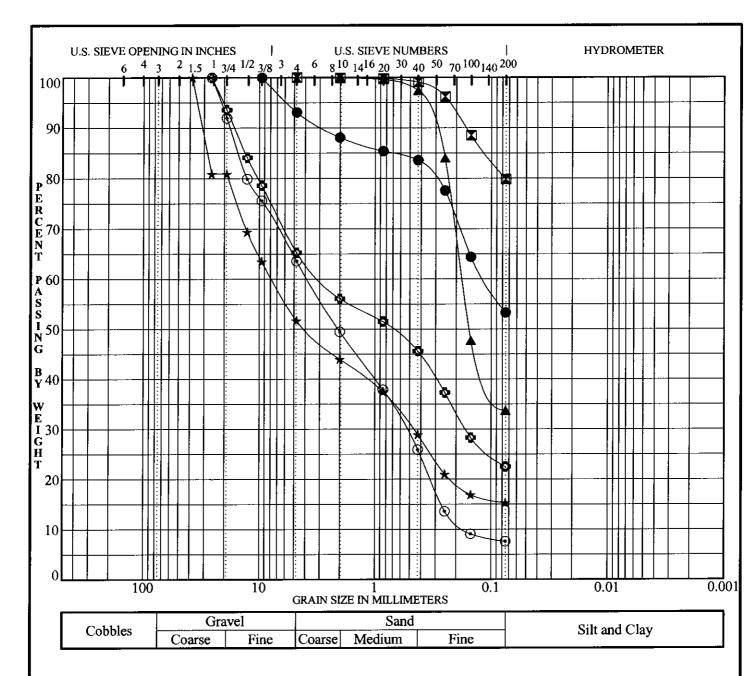

Coarse   Fine   Coarse   Medium   Fine	Cobbles	Gra	vel	Sand		Silt and Clay
		Coarse	Fine	Medium	Fine	Silt and Clay

Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-77	7.5	34	100	Silty SAND (SM)	SM
×	BH-77	50.8	11	72	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
<b>A</b>	BH-77	91.3	7	72	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
*	BH-77	116.0	10	66	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
•	BH-77	121.1	52	99	Sandy, Silty CLAY (CL-ML)	CL-ML
٥	BH-77	125.8	85	99	Lean CLAY with sand (CL)	CL

	PREPO BY:	GRADATION TEST DATA	FIGURE
	APPOBY: Y. D. Wang	OIGNATION TEST DATA	A40 440
	DATE: 17/6/05 DWG FILE:	SVRT DOWNTOWN	A12-118
		San Jose, California	PROJECT No.
			204104.10

GRADATION B 204104 06 20 2005.GPJ STD.GDT 17/6/05

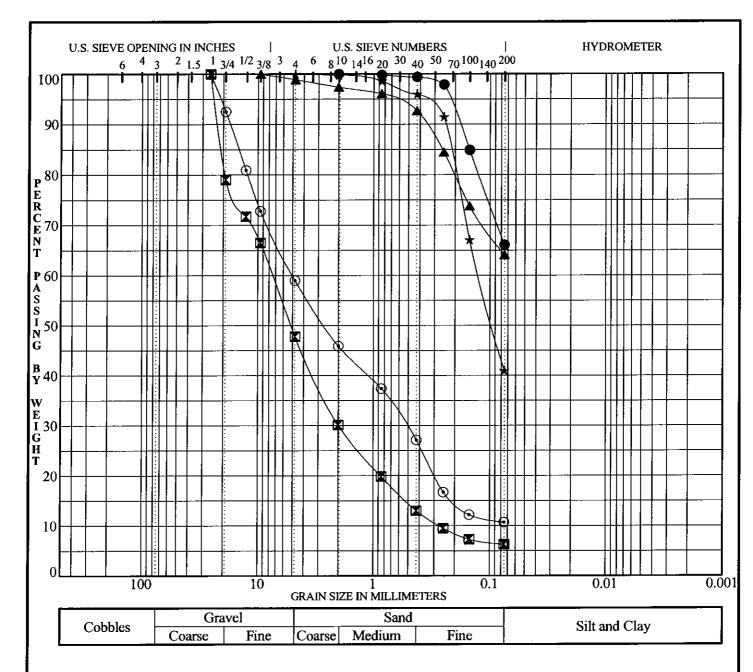



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-78	31.2	16	54	Silty GRAVEL with sand (GM)	GM
	BH-78	51.2	61	92	Sandy SILT (ML)	ML
<b>A</b>	BH-78	61.1	9	73	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
*	BH-78	75.8	10	48	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
						,
						_

	f
	4
T.	,

PREPOBY:	
APPD BY:	١
Y. D. Wang	┝
DATE	ı
17/6/05	
DWG FILE:	l

SVRT DOWNTOWN
San Jose, California


**FIGURE** 



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
•	BH-79	41.8	53	93	Sandy SILT (ML)	ML
×	BH-79	112.1	80	100	SILT with sand (ML)	ML
<b>A</b>	BH-79	150.5	34		Silty SAND to Sandy SILT (SM/ML)	SM/ML
*	BH-79	160.4	15	52	Silty GRAVEL with sand (GM)	GM
•	BH-79	180.3	8	64	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
٥	BH-79	200.4	23	65	Clayey SAND with gravel (SC)	SC
						ļ
			]			

PREPOBY:  APPOBY: Y. D. Wang	GRADATION TEST DATA	FIGURE
DATE: 17/G/05 DWG FILE	SVRT DOWNTOWN San Jose, California	A12-120
		PROJECT No.
		204104.10

TION B 204104 06 20 2005.GPJ STD,GDT 17/6/05



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Descsription	USCS
•	BH-80	40.0	66		Sandy SILT (ML)	ML
X	BH-80	45.0	6	48	Well-graded GRAVEL with silt and sand (GW-GM)	GW-GM
A	BH-80	55.0	64	99	Sandy Lean CLAY (CL)	CL
*	BH-80	74.3	41	100	Silty SAND (SM)	SM
•	BH-80	86.3	11	59	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM

PREPD BY:	GRADATION TEST DATA	FIGURE
Y. D. Wang  DATE:  17/6/05  OWG FILE:	SVRT DOWNTOWN San Jose, California	A12-121
		PROJECT No.
		204104.10

TION B 204104 06 20 2005.GPJ STD.GDT 17/6/05

**Geotechnical Data Report** 

## **APPENDIX 13**

## CONSTANT RATE OF STRAIN (CRS) CONSOLIDATION TEST RESULTS

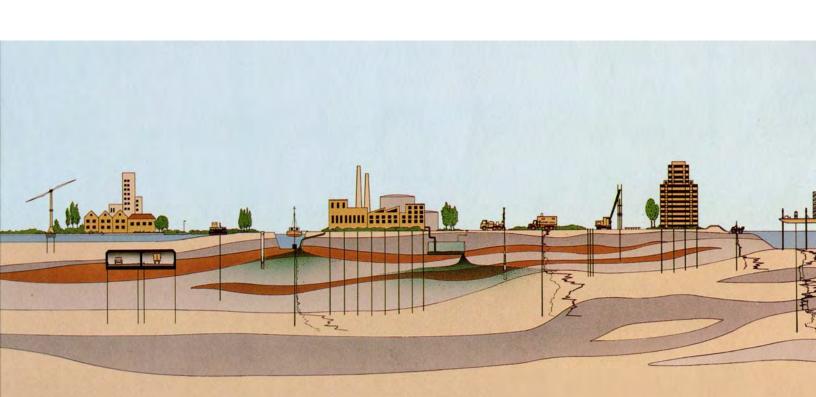
Rev. 0 9/23/2005

**Geotechnical Data Report** 

Appendix 13 presents the laboratory results of the Constant Rate of Strain (CRS) Consolidation tests performed by Fugro.

9/23/2005 Rev. 0




# APPENDIX 13 CONSTANT RATE OF STRAIN (CRS) CONSOLIDATION TEST RESULTS

## GEOTECHNICAL EXPLORATION PROGRAM TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA

Prepared for: HMM/BECHTEL

**JULY 2005** 

Project No. 1637.001





### REPORT DOCKET

#### **APPROVAL**

This document is approved by the following:

Name	Title	Signature /	Issue Date
Jon W. Mitchell	Project Manager	be w MithAM	July 20, 2005
		1	

#### **REVISION HISTORY**

Revision	Date	Change	Approval
0	June 3, 2005	Draft Report: Appendix 13 Constant Rate of Strain (CRS) Consolidation Test Results	W
1	July 20, 2005	Final Report: Appendix 13 Constant Rate of Strain (CRS) Consolidation Test Results with Bechtel comments from 6/10/05 & 7/13/05	M
			/
	,		



#### **FUGRO WEST, INC.**



1000 Broadway, Suite 200 Oakland, California 94607 Tel: (510) 268-0461

Fax: (510) 268-0137

July 20, 2005 Project No. 1637.001

HMM/Bechtel 3103 North First Street San Jose, California 95134

Attention: Mr. Ignacio Arango

Subject: Appendix 13 – Constant Rate of Strain Consolidation Test Results

Tunnel Segment of SVRT Project

San Jose, California

Dear Mr. Arango:

Fugro West, Inc., is pleased to submit this copy of "Appendix 13 - Constant Rate of Strain Consolidation Test Results," presenting the results of the Constant Rate of Strain consolidation tests, conducted by the geotechnical laboratory of Fugro Consultants LP in Houston, Texas, for the Tunnel Segment of SVRT Project in San Jose, California.

We appreciate this opportunity to be of continued service to HMM/Bechtel. Please contact Jon Mitchell at (510) 267-4430 if you have any questions regarding the information presented in this appendix.

Sincerely,

FUGRO WEST, INC.

Linda Al Atik Staff Engineer

Jon W. Mitchell Staff Engineer

Principal Consultant

LAA/JWM/RLB:rp

Copies Submitted: (pdf) Addressee





#### **CONTENTS**

			Page
1.0	INTF	RODUCTION	1
	1.1	Project Description	1
	1.2	Geotechnical Exploration Program Overview	
	1.3	Laboratory Testing Program Overview	
		1.3.1 Testing Overview	
		1.3.3 Sample Recovery and Handling	
		1.3.4 Constant Rate of Strain Consolidation Test Over	
2.0	X-RA	AY TEST PROCEDURES AND RESULTS	4
	2.1	Overview	4
	2.2	Procedure	
	2.3	Results and Limitations	5
3.0	CRS	S CONSOLIDATION TEST PROCEDURES	5
	3.1	Introduction	
3.2	Test Standards and Procedures	5	
4.0	CRS	CONSOLIDATION TEST RESULTS	6
		CRS Consolidation Test Results	
	4.2	Discussion and Interpretation of CRS Consolidation Tes	
		<ul><li>4.2.1 Coefficients of Consolidation and Permeability</li><li>4.2.2 Preconsolidation Pressure</li></ul>	
4.2.	2.1	Casagrande Method	
4.2.		Becker Method	
		4.2.3 Compression, Recompression, and Swelling Rat	tios8
5.0	LIMI	TATIONS	8
6.0	REF	ERENCES	10
		TABLES	
			Table
		of Advanced Laboratory Testing Program	
		of X-Ray Test Results	
Sun	nmary	of CRS Consolidation Test Results	A13-3
		FIGURES	
			Figure
		cation Plan	
		solidation Test Results	
	-	of Casagrande Constructionof Becker Construction	
L	uhie (	or Doorde Oditotradadii	



#### 1.0 INTRODUCTION

This appendix presents the results of the Constant Rate of Strain (CRS) consolidation tests conducted by the geotechnical laboratory of Fugro Consultants LP, of Houston, Texas, (Fugro Consultants) as a part of the advanced laboratory testing program for the Tunnel Segment of SVRT Project. The CRS consolidation tests were conducted on soil samples from boring locations situated along the tunnel segment alignment of the Silicon Valley Rapid Transit (SVRT) Project, as shown on the Boring Location Map, Figure A13-1.

#### 1.1 PROJECT DESCRIPTION

The Santa Clara Valley Transportation Authority (VTA) intends to construct the SVRT Project in San Jose, California. This will be a 26.2-km (16.3-mile) extension of the Bay Area Rapid Transit (BART) heavy rail rapid transit system from its planned terminus at the end of the Warms Springs Extension in Fremont, to San Jose. The proposed alignment currently includes six stations (three above-grade and three below-grade), a proposed future station, and vehicle storage and maintenance facilities. The alignment is composed of two major segments:

- 1) A line segment that will be approximately 11.5 miles of at-grade, elevated and cutand-cover track from Warm Springs to San Jose; and
- 2) A 5.1-mile-long tunnel segment, consisting of twin bored tunnels and cut-and-cover structures through downtown San Jose (see Figure A13-1).

As currently planned, the tunnel segment includes at-grade and open cut track, three cut-and-cover stations, and a cut-and-cover track crossover structure. The cut-and-cover stations and the crossover structures have a cumulative length of approximately 4,970 feet. The remaining 4.14 miles of the alignment will be twin 19.5-foot-diameter tunnels.

This investigation and report cover the 5.1-mile-long tunnel segment section only.

#### 1.2 GEOTECHNICAL EXPLORATION PROGRAM OVERVIEW

The joint venture of Hatch Mott MacDonald T & T, Inc., and Bechtel Infrastructure Corporation (HMM/Bechtel) is providing engineering design services for the tunnel segments (Segments 3 and 4) of the SVRT Project to the VTA. HMM/Bechtel has subcontracted with a number of companies to conduct the geotechnical field exploration program for the project. HMM/Bechtel's primary subcontractors for the geotechnical exploration program included: Fugro West, Inc., (Fugro), Parikh Consultants (Parikh) and Pitcher Drilling Company (Pitcher).

The three companies, Fugro, Parikh, and Pitcher, conducted the majority of the geotechnical field exploration program for the tunnel segments of the SVRT Project from October 15, 2004, to March 5, 2005. The intent of the geotechnical field investigation program was to obtain geotechnical data that will aid in the design and construction of the proposed tunnel and cut-and-cover structures.



In general, the geotechnical field investigations explored subsurface conditions along the proposed tunnel alignment, within the vicinity of the proposed Eastern and Western Portals, at the two proposed ventilation structures, and at the proposed stations including Alum Rock Station, Downtown San Jose Station, and Diridon/Arena Station. The geotechnical exploration program included:

- 76 rotary wash borings, and
- 146 cone penetration tests (CPTS).

Figure A13-1 provides a map of the exploration locations. These locations were selected by HMM/Bechtel based on the following considerations: 1) data requirements of the tunnel designer, 2) location of existing geotechnical data, 3) avoidance of private property, and 4) avoidance of existing underground and overhead utilities. For CPT correlation purposes, approximately 16 sets of borings and CPTs were conducted within 15 feet of each other.

The boring investigation program was conducted by the two companies, Parikh and Pitcher. The investigation included soil sampling and in situ testing. Soil sampling consisted of Pitcher Barrel sampling, Shelby tube sampling, SPT sampling and California sampling. The in situ testing conducted in the borings consisted of field vane shear testing, pressuremeter testing, downhole geophysical logging, and piezometer installation. For further details regarding the boring investigation program and results, please refer to the main report.

#### 1.3 LABORATORY TESTING PROGRAM OVERVIEW

#### 1.3.1 Testing Overview

The geotechnical laboratory of Fugro Consultants conducted the advanced laboratory testing program for the Tunnel Segment of SVRT Project. This program was conducted on samples provided by Parikh from soil borings located along the tunnel segment. Table A13-1, below, summarizes the numbers and types of different tests conducted. The purpose of this advanced laboratory testing program was to determine selected index and engineering properties of the sampled soils. This appendix provides a detailed description for the constant rate of strain CRS consolidation tests along with a summary of the interpreted parameters.

Table A13-1. Summary of Advanced Laboratory Testing Program

Test Description	Number of Tests
Constant Rate of Strain (CRS) Consolidation	37
Static Direct Simple Shear	15
K ₀ -Consolidated Undrained Triaxial Compression	20
K ₀ -Consolidated Undrained Triaxial Extension	16
K ₀ -Consolidated Bishop's Procedure	12
Isotropically-Consolidated Drained Triaxial Compression	30



#### 1.3.2 Program Description

The physical properties of the soils tested during the advanced laboratory testing program are separated into two categories - index and engineering. The index properties include items such as water content, specific gravity, unit weight, void ratio, and degree of saturation. The engineering properties would include items such as compressibility (consolidation), strength, and hydraulic conductivity (permeability). The advanced tests conducted as part of this laboratory testing program are discussed in more detail below.

- Constant Rate of Strain (CRS) Consolidation tests were conducted to determine
  the rate and magnitude of soil consolidation as well as stress history for a soil
  sample that is restrained laterally and drained axially. The one-dimensional
  consolidation tests typically involved constant rate-of-loading, one unload-reload
  cycle, and one rebound stage from the maximum applied stress. Detailed discussion
  of the CRS consolidation tests is provided in Appendix 13 (this appendix).
- Static Direct Simple Shear (DSS) tests were conducted to measure constant volume (undrained) shear strength and stress-strain characteristics of cohesive soils after one-dimensional consolidation using a constant rate of simple shear deformation. Detailed discussion of the DSS tests is provided in Appendix 14.
- Isotropically Consolidated Drained Triaxial (CDTX) tests were conducted to evaluate the drained strength characteristics, such as friction angle and stress-strain relationship of the soils encountered in the borings. For detailed discussion of the consolidated drained triaxial tests, refer to Appendix 15.
- K₀-Consolidated Undrained Triaxial Compression and Extension (CK₀UC & CK₀UE) tests were conducted to estimate the static strength parameters and stress-strain characteristics of fine-grained soils under a range of confining stresses and overconsolidation ratios (OCRs). In K₀-consolidated test, the sample was consolidated under drained conditions to the assigned vertical stress while maintaining a constant diameter of the cylindrical specimen (the horizontal confining stress was automatically adjusted to maintain the constant diameter). For detailed discussion of the K₀ triaxial compression and extension tests, refer to Appendix 16.
- **K**₀ **Bishop's Procedure Triaxial** tests were conducted to determine the at-rest lateral earth pressure coefficient (K₀) as a function of the overconsolidation ratio (OCR). For detailed discussion of the K₀ Bishop's tests, refer to Appendix 17.

The scope of the advanced laboratory testing program also included the x-raying of assigned soil samples. Discussion of the x-ray testing procedures and a summary of results are provided in Section 2.0 of Appendix 13 (this appendix), with x-ray images shown in Appendix 20.

#### 1.3.3 Sample Recovery and Handling

Soil sampling was conducted by Parikh at intervals typically ranging from 5 to 10 feet, in accordance with the project specifications. Upon sample recovery, undisturbed portions of the



soil sample tubes were sealed and transported to Parikh's lab. For further details regarding sample recovery and handling, refer to the main report.

Soil samples assigned for advanced laboratory testing were transported in wooden Shelby tube holders, designed to maintain the tubes' vertical orientation during transit to Fugro's laboratory in Oakland. The samples where then packed in specially-fabricated, padded containers designed to minimize disturbance and maintain an upright (vertical) orientation of the samples during shipping. The samples were finally shipped to the Fugro Consultants' geotechnical laboratory for testing.

#### 1.3.4 Constant Rate of Strain Consolidation Test Overview

The Fugro Consultants' geotechnical laboratory conducted CRS consolidation tests on 37 soil samples, as assigned by HMM/Bechtel. These tests involved constant rate-of-strain loading and, typically, one unload-reload cycle and one rebound stage of the soil samples. The CRS consolidation tests are conducted to determine the rate and magnitude of soil consolidation, as well as stress history for a soil sample that is restrained laterally, and drained and loaded axially. The primary output of the CRS consolidation tests includes load versus strain and coefficient of consolidation data. The compressibility-related parameters of interest that are typically obtained from CRS consolidation tests are the compression (Ccs), recompression (Cr_E) and swelling ratios (Cs_E). These ratios are used to estimate the magnitude of consolidation settlements, and are determined from the plots of strain versus log of pressure. The rate of consolidation is characterized by the coefficient of consolidation (c_v), which is estimated from the time rate of consolidation data. In addition, consolidation test data can be used to estimate the preconsolidation stress. The preconsolidation stress is a measure of the maximum past consolidation pressure that the soil was subjected to. The results of the CRS consolidation tests may be used to estimate one-dimensional consolidation settlement and rates.

#### 2.0 X-RAY TEST PROCEDURES AND RESULTS

#### 2.1 OVERVIEW

Fugro Consultants conducted 68 x-ray tests on soil samples assigned by HMM/Bechtel, in general accordance with ASTM D4452, Standard Test Methods for X-Ray Radiography of Soil Samples. X-ray radiography provides a qualitative measure of the internal structure of the sample's content, as displayed by the varying shades of gray resulting from variations in the soil sample. These varying shades of gray enable one to evaluate items such as the following:

- Sample quality as noted by signs of voids, drilling wash, separations in the soil caused by gas expansion, unusual changes in bedding planes or layering;
- The presence of inclusions in the sample, such as shells and/or calcareous nodules; and
- The presence of naturally occurring fissures, bedding planes, voids, layering, gravel, and silts seams.



Results of the x-ray tests are used to help select appropriate and relatively undisturbed soil specimen for the different types of laboratory testing.

#### 2.2 PROCEDURE

In accordance with ASTM D4452, x-rayed soil samples were viewed in a slightly darkened room. Information regarding the tested sample was recorded on the laboratory's tube log sheet.

All pertinent project information, including project number, boring, sample, and depth, was recorded on the tube log sheet along with the technician's interpretation of the test. The location of the sub samples, also known as "specimen," was marked on the tube log sheet. Subsequent technicians making tube cuts used the tube log sheet to pick up their specimen for advanced testing.

#### 2.3 RESULTS AND LIMITATIONS

Results obtained from the x-ray tests performed are summarized in Table A13-2. Table A13-2 displays information related to the sample and boring numbers, the depth of the soil sample, the length of the material tested, the available testing material and a soil description.

X-ray tests involve some degree of uncertainty. The interpretation of the radiographs is dependent upon the quality of the radiograph and the amount of experience the technician has in performing these interpretations.

#### 3.0 CRS CONSOLIDATION TEST PROCEDURES

#### 3.1 INTRODUCTION

Thirty-seven CRS consolidation tests were performed in general accordance with ASTM Test Method D 4186 - 89 (1998) using an updated consolidometer and testing methodology. CRS consolidation tests include loading at a constant rate-of-deformation while monitoring axial deformation, axial force, and pore water pressure transducers using a data acquisition-control loading system. One unload-reload cycle was achieved for each soil sample and then a rebound stage from the maximum applied stress was performed.

#### 3.2 TEST STANDARDS AND PROCEDURES

CRS consolidation tests were performed in general accordance with ASTM D4186-89, using an updated consolidometer and testing methodology. CRS consolidation specimens were taken from Shelby tubes that had been x-rayed to determine the least disturbed portion of the sample. Each test specimen had a diameter of 2.50 inches and a height of about 0.75 inches. The tests were run on consolidometers manufactured by Trautwein Soil Testing Equipment, using specifications based on research sponsored by Fugro at the Massachusetts Institute of Technology, and reported by Force and Germaine (1998).



The key components in the updated testing methodology may be summarized as follows:

• Specimen Preparation: The selected portions of the tubes were cut into segments with a mechanical hacksaw (18 teeth per inch). A wire saw was used to separate the soil from the surrounding tube in an effort to reduce potential disturbance upon extrusion. In addition, each tube is marked such that all test specimens, will have the same orientation when sheared. The sample is then extruded from the cut portion of the tube using a hydraulically actuated ram.

The placement of the specimen into the consolidometer is done in a manner to prevent any swelling of the specimen or entrapment of air between the specimen and the consolidometer's base and porous stone in the pore-water pressure (PWP) measurement system.

- Seating and Back Pressure Saturation: A seating stress of about 0.1 ksf is applied to enable the initialization of the deformation indicator. Next, the specimen is consolidated to an axial strain of about 0.2 percent, and backpressure saturation is initiated without allowing the specimen to swell and at a rate that minimizes soil compression. The applied bask pressure is typically 70 psi.
- Loading (Consolidation): Loading is initiated at a constant rate-of-deformation while monitoring axial deformation, axial force, and PWP transducers using a data acquisition-control loading system. This system can display the stress-strain curve, pore pressure-stress ratio (R_u = ratio of excess PWP to total axial/vertical stress), etc. and control the applied rate-of-deformation (constant rate-of-strain). If required, the constant rate-of-strain is adjusted to keep R_u between about 3 and 15 percent (in lieu of the 30 percent allowed in D 4186). As presented by Force and Germaine (1998) usage of a smaller range for R_u obtains compressibility and rate-of-consolidation coefficients that are more reliable.

Loading is continued until the virgin compression curve is well defined or the stress limit of the apparatus is reached, 120 ksf. When an unload-reload curve is required, as in this program, it is initiated when it appears that the consolidation curve is well into the virgin consolidation region (axial strain of about 10 to 15 percent for plastic clays). The unload-reload cycle covers about one log cycle of effective vertical stress. The applicable data are corrected for the piston uplift force applied by the back pressure and apparatus compressibility.

#### 4.0 CRS CONSOLIDATION TEST RESULTS

#### 4.1 CRS CONSOLIDATION TEST RESULTS

During consolidation, the necessary data (time, vertical forces, strain, pore pressure, and transducer excitation voltage) were recorded using an automated data-acquisition system and electronically filed. Specialized Excel worksheets, along with a Visual Basic code (VBA) were used to reduce the data files into engineering units in tabular and graphical format. Figures A13-2a through A13-38b present the CRS consolidation test results. For each test performed,



the laboratory axial strain versus the log of effective vertical stress curve is displayed showing a recompression phase, a virgin compression stage, an unload-reload cycle and a final rebound stage. The coefficient of consolidation (c_v) versus the average effective vertical stress and the void ratio at 50 percent consolidation versus the hydraulic conductivity k curves were also plotted. Results such as moisture content, Atterberg limits, initial unit weight, initial and final void ratios, interpreted preconsolidation pressure, estimated in situ vertical stress and overconsolidation ratio, and compression, recompression and swelling ratios are summarized in Table A13-3 for all the CRS consolidation tests performed. The in situ vertical effective stress was estimated by developing a unit weight profile from the boring data and either measured or estimated ground water levels. The interpretation of the parameters from the CRS test data (e.g., preconsolidation pressure and compression/recompression ratios) is discussed in more detail in the sections below.

#### 4.2 DISCUSSION AND INTERPRETATION OF CRS CONSOLIDATION TEST DATA

#### 4.2.1 Coefficients of Consolidation and Permeability

After recording the stress-strain behavior of the tested soil specimens under loading, unloading-reloading and rebound, the applicable data were corrected for the piston uplift force applied by the back pressure and apparatus compressibility.

Consolidation parameters, such as coefficient of consolidation ( $c_v$ ), and hydraulic conductivity (k), were calculated using the "non-linear" approach, as presented by Wissa, et al. (1971) and Sheahan and Watters (1996), instead of using a combination of the "non-linear" and "linear" approaches as presented in D4186. In addition, values of  $c_v$  and k were only determined when steady-state conditions were achieved, as defined by Wissa et al. (1971).

#### 4.2.2 Preconsolidation Pressure

Casagrande's method (1936), and Becker's method (Becker et al. 1987) were employed to estimate the preconsolidation pressure  $(\sigma'_p)$  from the CRS consolidation test data. These methods are discussed in more detail below.

#### 4.2.2.1 Casagrande Method

The most common method for determining the preconsolidation pressure is the graphical construction, where a void ratio (or axial strain) versus log pressure curve is plotted for the clayey soil. Preconsolidation pressure is difficult to define when sample disturbance has occurred. The Casagrande procedure is illustrated on Figure A13-39 and described as follows:

- 1. Choose by eye, the point of minimum radius or maximum curvature on the consolidation curve (Point A).
- 2. Draw a horizontal line from point A (Line 1).
- 3. Draw a line tangent to the curve at point A (Line 2).
- 4. Bisect the angle made by steps 2 and 3 (Line 3).



5. Extend the straight-line portion of the virgin compression curve up to where it meets the bisector line obtained in step 4 (Line 4). The point of intersection of these two lines is the preconsolidation stress (Pp).

#### 4.2.2.2 Becker Method

Becker et al. (1987) proposed a method of interpreting conventional consolidation test data using work per unit volume as a criterion for determining both the in situ effective and preconsolidation stresses in clayey soils. The work per unit volume — effective stress relationship, using arithmetic scales, can be approximated using linear relationships. The total work (defined as the average vertical stress between two load increments multiplied by the strain between load increments) is plotted versus vertical effective stress. The preconsolidation stress is simply defined as the intersection of the pre-yield line (initial loading points) and the post-yield line (at higher stresses) on the work versus vertical stress plot, as illustrated on Figure A13-40.

The Becker method applies for both horizontally and vertically trimmed samples. According to Becker et al. (1987), the accuracy with which in situ effective and preconsolidation stresses are determined was demonstrated to be within 10 percent of known stresses.

#### 4.2.3 Compression, Recompression, and Swelling Ratios

The compression, recompression and swelling ratios are determined from the axial strain versus the effective vertical stress curve plotted using a semi-logarithmic scale. The compression ratio is the slope of the virgin compression line beyond the determined preconsolidation pressure. The swelling and recompression ratios are the slopes of the fitted lines of the unloading and reloading curves respectively.

#### 5.0 LIMITATIONS

Our services consist of laboratory testing and data evaluations that are made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.

The test data provided in this appendix is from laboratory testing of samples obtained from subsurface explorations conducted by others. These explorations indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. Variations may exist and conditions not observed or described in this report could be encountered during construction. Our laboratory tests results presented in this appendix are based on the standards and procedures indicated herein. The laboratory assignments were provided by HMM/Bechtel.

This appendix has been prepared for the exclusive use of HMM/Bechtel and their consultants for specific application to the SVRT project as described herein. In the event that there are any changes in the ownership, nature, design, or location of the proposed project, or if any future additions are planned, the results contained in this appendix should not be considered valid unless 1) the project changes are reviewed by Fugro, and 2) results presented

HMM/Bechtel Project No. 1637.001



in this appendix are modified or verified in writing. Reliance on this report by others must be at their risk unless we are consulted on the use or limitations. We cannot be responsible for the impacts of any changes in geotechnical standards, practices, or regulations subsequent to performance of services without our further consultation. We can neither vouch for the accuracy of information supplied by others, nor accept consequences for unconsulted use of segregated portions of this report.



### 6.0 REFERENCES

- ASTM D2435, "Standard Test Methods for One-Dimensional Properties of Soils Using Incremental Loading," ASTM International.
- ASTM D4452, "Standard Test Methods for X-Ray Radiography of Soil Samples," ASTM International.
- ASTM D4186, "Standard Test Methods for One-Dimensional Properties of Soils Using Controlled-Strain Loading," ASTM International.
- Becker, D. E., Crooks, J. H. A. and Been, K. (1987). "Interpretation of the Field Vane Test in Terms of In Situ and Yield Stresses." American Society for Testing and Materials. International Symposium on Laboratory and Field Vane Shear Strength Testing, Tampa, Florida.
- Becker, D. E., Crooks, J. H. A., Been, K., and Jefferies, M. G. (1987). "Work as a Criterion for Determining In Situ and Yield Stresses in Clays," *Canada Geotechnique Journal 24*, pp. 549-564.
- Casagrande, A. (1936). "Determination of the Preconsolidation Load and Its Practical Significance," *Proceedings, 1st International Conference on Soil Mechanics and Foundation Engineering*, Cambridge, Mass., Vol. 3, pp. 60-64.
- Force, E. A. and Germaine, J. T. (1998), "Technology Advances in Testing Gulf Sediments," Progress Report No. 1, Department of Civil and Environmental Engineering, MIT, March 14, 1998.
- Sheahan, T. C. and Watters, P. J. (1996), "Using an Automated Rowe Cell for Constant Rate of Strain Consolidation Testing," *Geotechnical Testing Journal*, ASTM, GTJODJ, Vol. 19, No. 4, pp. 345-363.
- Wissa A. E. Z., Christian J. T., Davis E. H. and Heiberg S. (1971). "Consolidation at Constant Rate of Strain". *Journal of Soil Mechanics and Foundation Engineering*, ASCE, Vol. 97, No. SM10, October.





			Total Length	1	
Boring #	Sample #	(feet)	of Material (inches)	Available Testing Material (inches)	Description
	3	52.5	21	20.5	
6- <b>B</b>	4	57.5	35	24	Variable material with a clean portion of 8 inches at the bottom of the sample
	2	68	22	18	
B-18	6	82.5	30	29	
B-21	9	47.5	31.5	31	
B.53	6	41.75	23	19	Stress relief cracks towards the bottom of the sample, and sample disturbance at its
3	17	106.8	22.5	20	Sample disturbance at the top of the sample
	18	117.3	26.5	25	Sample disturbance at the top of the sample
	3	15	22	21	Few stress relief cracks at the top of the sample
	4	15	25	23	Expansions throughout the sample
1	5	17.5	27	23	Expansions and voids towards the top and the middle of the sample
B-24	9	22.5	25	22	Stress relief cracks towards the top of the sample
	7	25	31	28	Stress relief crack at the top of the sample
	8	27.5	25.5	23	Sample disturbance at the top of the sample
	59	111	26	24.5	Sample disturbance at the top of the sample
	3	18	22	20	Bottom 12 inches of the sample may be sandy
	4	32.5	34	33	Highly variable material and heavily interlavered
B-25	16	112.5	33	29	Numerous sand and gravel pockets thoughout the sample
	21	127.5	36	31	Slightly interlayered sample
	22	129.5	21	19	Few sand or silt pockets observed throughout the sample
B-26	2	25	33	28	Expansion cracks near the top of the sample, possibly sandy material
2	2	40	25	24	Material may change plasticity 20 inches from the bottom of the sample
	-	9.75	23	23	Material may be may be sandy with gravels
	ဇ	30	31	28	
B-33	9	54.4	25	•	
3	7	62.5	31	31	
	6	82.5	31.5	31	
	17	137	25	24	Bottom 12 inches of the sample may be clayey
B-37	5	42.3	18	17	
B-38	14	76.25	26	25	
B-42	7	37.5	21	21	
B-45	4	41.5	25	24	
B-50	우	47.5	30	28	Some stress relief cracks towards the top of the sample
3	17	101.2		15.5	Clean Sample
Notes: - N	lo available	Notes: - No available testing material			

SUMMARY OF X-RAY TEST RESULTS
Tunnel Segment of SVRT Project
San Jose, California





Boring #	Sample #	Test Depth (feet)	Total Length of Material (inches)	Available Testing Material (inches)	Description
	8	24.2	21.5	20.5	Few seams at the bottom of the sample
	6	24.5	29.5		Stress relief cracks throughout the sample
	10	27	27.5	26.5	Sample disturbance at the ton of the sample
B-52	-	31.9	23.5	23.5	Clean Sample
<u>;</u>	12	34.5	29.5	29.5	Clean Sample
	34	106.5	22	22	Few seams towards the middle of the sample
	35	111.5	32	27	Sample disturbance at the top of the sample
	36	116.5	16	16	Clean Sample
B-53	11	42.5	34.5		Sample disturbance throughout except for the bottom 7 inches
3	28	134	34	29	Sample disturbance at the top and the bottom of the sample
B-54	4	15	11.75	11.75	Clean Sample
,	13	90	32	32	Few stress relief cracks in the middle of the sample
	7	32.5	29.5	25.5	Sample disturbance and expansions at the top and the hottom
B-55	22	110.8	16.75	16.75	Clean Sample
	26	131.5	32.25	30.75	Sample disturbance at the top
	2	32.5	30.5	30.5	Clean Sample
B-64	18	107.1	23	22	Sample disturbance at the top
	19	117.4	17	15	Sample disturbance at the top and a few expansions towards the bottom
B-65	ဂ	20	27.5	22.5	Voids at the top and middle portions of the sample
3	13	121.6	16	#	Sample disturbance throughout the sample except for the bottom 2 inches
B-66	2	22.5	20	18	Sample may be sandy
3	9	27.4	28	26	Variable material, possibly sandy
	က	13.1	26	21.5	
B-68	4	20.7	24.5	24	
	18	151	29.5	29	
B-70	35	137.3	28	27	
,	4	15	25	16	1.5-inches gravel caused large cavity in the top 9 inches of the sample as tube
-	8	22.5	24	23	Top 9 inches of the sample may be clavey
	22	129	13	0	Top 6 inches of the sample is gravelly: cutting edge of tube bent in as it was
	14	141	26	26	
B-75	15	151	32	29	
	16	160	17	16	
R-77	4	16.7	24	•	Partings from the middle to the bottom of the sample
	16	102		23	Sample disturbance at the top
Notes: - L	No available	Notes: - No available testing materia	lai'		

# SUMMARY OF X-RAY TEST RESULTS Tunnel Segment of SVRT Project San Jose, California





Boring Number	B-9	B-18	B-23	B-23	B-23	B-24	B-24	B-24	B-24	B-24	B-25	B-33	B-33	B-42	B-45	B-50	B-50	B-52	B-52
Sample Number	3d	9a	9a	17a	18a	3a	6a	7a	8a	29a	16a	1a	9a	7a	4a	10a	17a	8a	11a
Penetration Depth (ft)	52.35	80.15	41.35	106.80	117.30	15.00	22.50	25.00	27.50	110.50	112.50	9.75	82.25	37.50	41.40	47.50	101.10	24.20	31.90
Soil Type	CH	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL
Moisture Content (%)																			
Initial, W ₀	30.2	23	22.1	17.5	21.3	26.7	24.1	22.9	27.2	21.9	18.5	23.5	25.5	25.2	22.2	26.8	24.6	22.7	27.3
Final, W _f	25.5	17.1	15.2	11.8	15.8	21.4	16.2	16.5	17.9	14.4	13.7	18.5	21.1	17.7	16.2	19	19.2	17.2	17.9
Atterberg Limits																			
Liquid Limit, LL (%)	53	32	32	24	30	37	30	29	35	28	43	35	40	31	27	41	NA	NP	41
Plastic Limit, PL (%)	22	18	15	16	18	18	20	16	18	16	16	16	16	13	17	16	NA	NP	20
Specific Gravity	NA	NA	2.694	2.696	2.670	2.680	2.703	2.676	2.724	2.664	NA	NA	NA	NA	NA	2.699	2.707	2.700	2.703
Initial Total Unit Weight, $\gamma_{t,0}$ (pcf)	122	127	125	130	124	124	126	128	124	126	131	123	124	126	128	124	123	120	122
Void Ratio																			
Initial, e ₀	0.83	0.64	0.64	0.52	0.63	0.70	0.66	0.60	0.74	0.61	0.54	0.71	0.71	0.68	0.61	0.73	0.71	0.72	0.77
Final, e _f	0.69	0.45	0.39	0.32	0.42	0.54	0.43	0.40	0.47	0.38	0.37	0.50	0.56	0.48	0.42	0.49	0.52	0.48	0.48
Interpreted Preconsolidation Pressure, $\sigma'_{D}$ (ksf)																			
Casagrande (1936) Method	12.8	18.1	10.0	25.0	20.6	9.2	13.2	8.9	10.9	19.6	20.6	6.2	18.6	12.9	17.5	10.8	19.2	26.1	8.9
Becker (1987) Method	12.4	18.6	10.1	25.4	20.8	9.4	13.7	8.5	10.9	19.2	23.7	6.3	18.6	12.5	14.9	10.7	18.4	26.4	8.9
Estimated Effective Vertical Stress, σ' _{vo} (ksf)	3.63	5.47	2.79	6.84	7.48	1.64	2.10	2.25	2.40	8.09	8.24	1.20	5.71	2.84	3.08	3.51	7.36	2.32	2.77
Overconsolidation, OCR																			
OCR - Casagrande Method	3.5	3.3	3.6	3.7	2.8	5.6	6.3	3.9	4.5	2.4	2.5	5.2	3.3	4.5	5.7	3.1	2.6	11.2	3.2
OCR - Becker Method	3.4	3.4	3.6	3.7	2.8	5.7	6.5	3.8	4.5	2.4	2.9	5.2	3.3	4.4	4.9	3.0	2.5	11.4	3.2
Compression Index/Ratio																			
$C_{c}$	0.29	0.17	0.16	0.16	0.23	0.21	0.22	0.17	0.22	0.18	0.14	0.19	0.27	0.17	0.17	0.27	0.23	0.27	0.26
$C_{e,c}$	0.16	0.10	0.10	0.11	0.14	0.12	0.13	0.10	0.13	0.11	0.09	0.11	0.16	0.10	0.11	0.16	0.13	0.16	0.15
Recompression Index/Ratio																			
$C_r$	0.057	0.018	0.020	0.021	0.024	0.041	0.032	0.022	0.026	0.026	0.017	0.024	0.026	0.017	0.016	0.048	0.026	0.017	0.049
$C_{e,r}$	0.031	0.011	0.012	0.014	0.015	0.024	0.019	0.014	0.015	0.016	0.011	0.014	0.015	0.010	0.010	0.028	0.015	0.010	0.028
Swelling Index/Ratio																			
C _s	0.060	0.016	0.011	0.018	0.021	0.036	0.023	0.018	0.028	0.018	0.012	0.020	0.026	0.012	0.014	0.040	0.026	0.012	0.039
$C_{e,s}$	0.033	0.01	0.007	0.012	0.013	0.021	0.014	0.011	0.016	0.011	0.008	0.012	0.015	0.007	0.009	0.023	0.015	0.007	0.022
Coefficient of Consolidation, C _v (ft ² /yr)																			
Min (Typical)	1.6	20.1	9.8	5307.6	600.3	3.6	149.9	13.5	5.7	233.7	1386.7	3.6	3.0	100.7	1252.1	7.5	27.6	10951.0	49.3
At σ' _{vo}	51.7	958.0	32.3	-	699.7	4.3	828.8	21.5	9.7	430.6	-	32.3	215.3	1237.8	-	7.5	699.7	-	107.6
Max (Typical)	91.8	1894.4	3656.1	8221.9	11552.3	42.9	2123.1	189.6	135.2	2701.7	20031.3	204.4	373.7	1638.0	20095.8	98.8	969.7	957990.2	835.2
Notes: Data could not be interpreted from test results																			

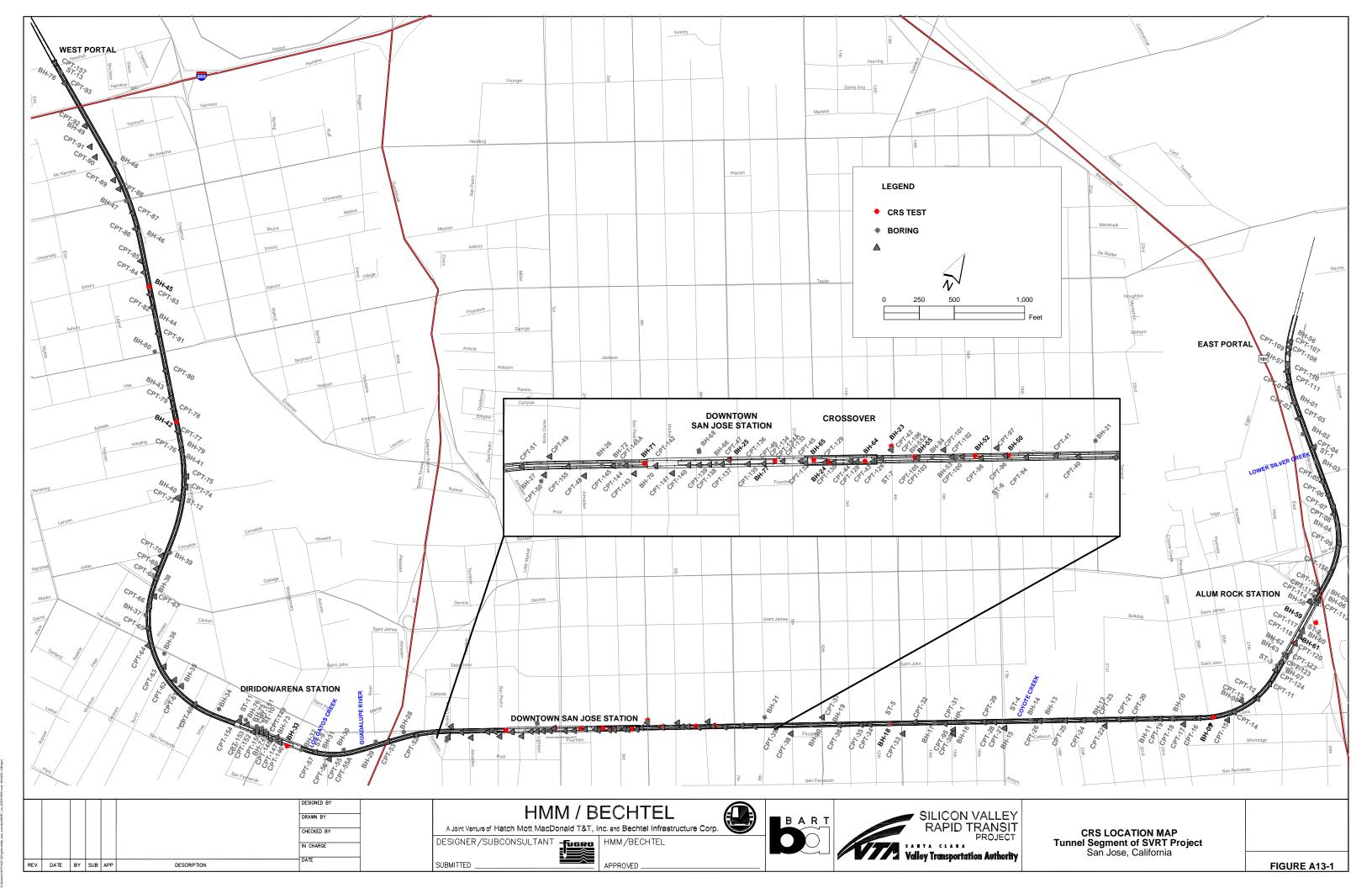
Notes: Data could not be interpreted from test results

NA = Test not assigned, see Appendix 12

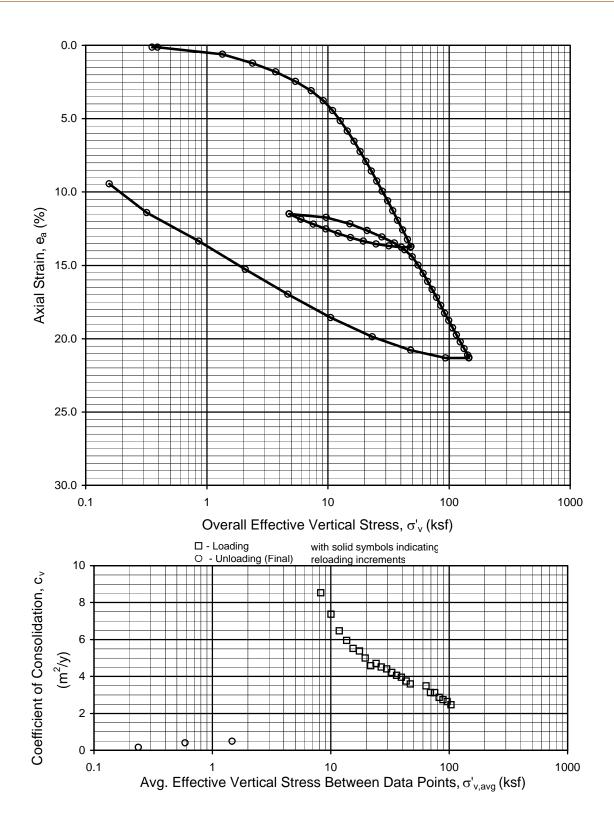
NP = Non plastic soil sample







Boring Number	B-52	B-52	B-52	B-52	B-55	B-55	B-55	B-59	B-59	B-61	B-61	B-61	B-64	B-64	B-64	B-65	B-71	B-77
Sample Number	12a	34a	35a	36a	7a	22a	26a	5a	17a	5a	15a	17a	5a	18a	19a	13a	6a	16a
Penetration Depth (ft)	34.50	106.50	111.50	116.50	32.35	110.80	131.50	50.70	170.00	47.20	125.55	135.45	32.50	107.05	117.40	121.60	25.00	102.00
Soil Type	CL	CL	CL	CL	CL	CL	CL	CL	CL	CH	СН	CH	CL	CL	CL	CL	ОН	CL
Moisture Content (%)																		
Initial, W ₀	31.8	22.7	19.9	19.8	32.1	21.4	20.2	22.6	28.8	33.4	25.4	28.3	31	20.5	30.1	21.3	32	17.2
Final, W _f	20.7	18.6	14.2	15.2	18.5	15.6	16.4	22.3	28.2	25.5	20.6	25.6	19.8	14	22.8	14.5	24.9	12.2
Atterberg Limits																		
Liquid Limit, LL (%)	35	NA	34	NA	39	34	37	42	51	53	41	47	32	NA	NA	36	68	NA
Plastic Limit, PL (%)	19	NA	16	NA	20	14	16	15	25	25	21	20	21	NA	NA	14	20	NA
Specific Gravity	2.768	2.681	2.708	2.667	2.684	2.664	2.705	NA	NA	NA	NA	NA	2.714	2.679	2.679	2.666	NA	2.668
Initial Total Unit Weight, $\gamma_{t,0}$ (pcf)	123	126	129	124	121	127	126	129	122	118	126	124	122	128	119	128	119	128
Void Ratio																		
Initial, e ₀	0.85	0.62	0.57	0.60	0.83	0.59	0.60	0.62	0.82	0.93	0.71	0.77	0.82	0.57	0.82	0.58	0.90	0.52
Final, e _f	0.57	0.50	0.38	0.41	0.49	0.41	0.44	0.60	0.75	0.69	0.56	0.69	0.53	0.37	0.61	0.39	0.68	0.32
Interpreted Preconsolidation Pressure, o' _p (ksf) Casagrande (1936) Method Becker (1987) Method	8.5 8.5	30.6 30.4	21.4 22.0	29.2 27.7	7.5 7.4	20.2 19.5	25.5 25.4	10.9 10.9	33.5 33.0	10.57 10.42	25.62 23.44	23.42 22.12	20.17 18.23	24.23 23.18	31.26 31.7	18.14 18.32	9 9.6	16.14 15.11
Estimated Effective Vertical Stress, σ' _{νο} (ksf)	2.92	7.76	8.12	8.47	2.80	7.91	9.15	3.48	11.21	3.70	8.72	9.46	2.54	7.39	7.99	8.57	2.77	7.34
Overconsolidation, OCR OCR - Casagrande Method OCR - Becker Method	2.9 2.9	3.9 3.9	2.6 2.7	3.4 3.3	2.7 2.6	2.5 2.5	2.8 2.8	3.1 3.1	3.0 2.9	2.9 2.8	2.9 2.7	2.5 2.3	8.0 7.2	3.3 3.1	3.9 4.0	2.1 2.1	3.2 3.5	2.2 2.1
Compression Index/Ratio																		
C _c	0.21	0.15	0.20	0.22	0.22	0.18	0.20	0.18	0.34	0.29	0.25	0.30	0.19	0.18	0.28	0.20	0.29	0.19
$C_{e,c}$	0.11	0.09	0.13	0.14	0.12	0.11	0.13	0.11	0.19	0.15	0.15	0.17	0.11	0.12	0.15	0.13	0.15	0.12
Recompression Index/Ratio																		
$C_r$	0.022	0.029	0.031	0.026	0.035	0.018	0.027	0.039	0.064	0.046	0.034	0.050	0.022	0.030	0.033	0.041	0.084	0.027
$C_{e,r}$	0.012	0.018	0.020	0.016	0.019	0.011	0.017	0.024	0.035	0.024	0.020	0.028	0.012	0.019	0.018	0.026	0.044	0.018
Swelling Index/Ratio	Ì																	
$C_s$	0.022	0.021	0.027	0.021	0.022	0.011	0.021	0.036	0.062	0.052	0.038	0.046	0.009	0.019	0.018	0.027	0.074	0.017
$C_{e,s}$	0.012	0.013	0.017	0.013	0.012	0.007	0.013	0.022	0.034	0.027	0.022	0.026	0.005	0.012	0.01	0.017	0.039	0.011
Coefficient of Consolidation, C _v (ft²/yr)																		
Min (Typical)	31.4	21.6	88.0	189.3	13.2	37.2	305.1	5.2	4.0	7.4	10.5	5.6	282.9	4472.9	2795.8	423.5	5.7	4292.5
At σ' _{vo}	366.0	118.4	2454.2	193.8	581.3	678.1	968.8	-	344.4	204.5	1216.3	93.6	538.2	-	-	-	12.9	-
Max (Typical)  Notes: Data could not be interpreted from test results	492.0	567.1	11764.7	12442.4	663.5	691.4	1338.6	38.6	381.3	371.9	1261.3	94.2	114536.1	6763.0	4361.7	60303.4	404.1	5936.0

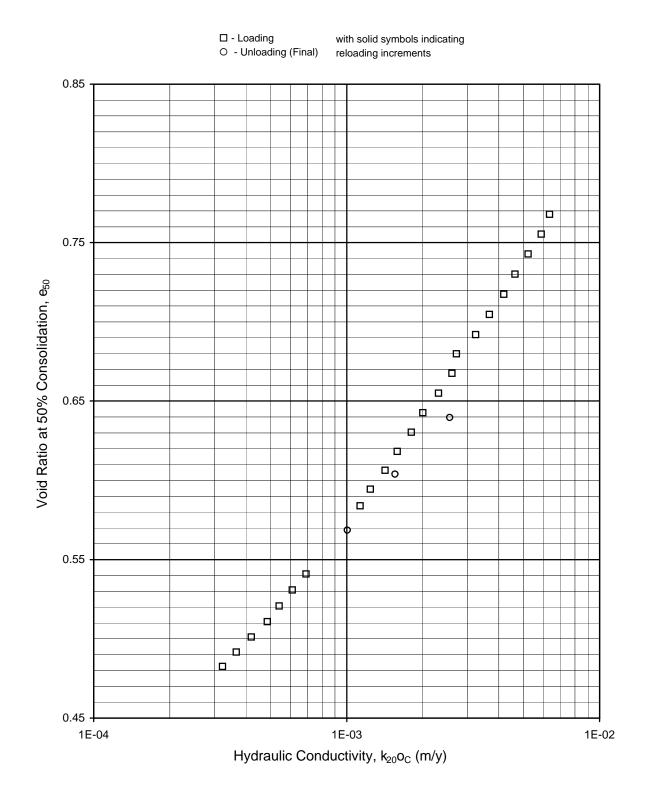
NA = Test not assigned, see Appendix 12


NP = Non plastic soil sample





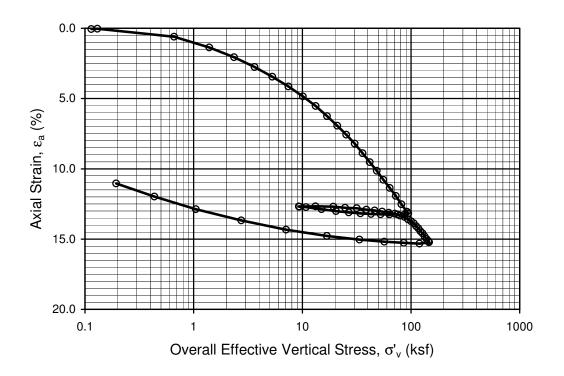






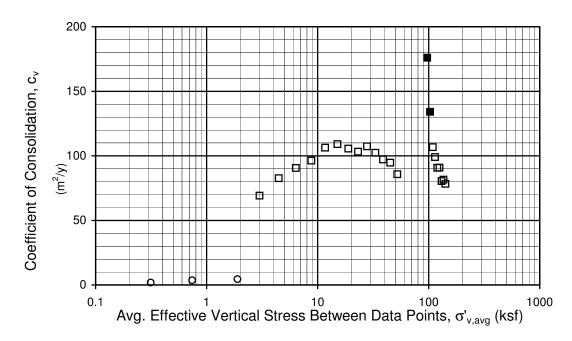

Sample No. 3d - Depth 52.35 ft Boring B-9 Tunnel Segment of SVRT Project San Jose, California








Sample No. 3d - Depth 52.35 ft
Boring B-9
Tunnel Segment of SVRT Project
San Jose, California

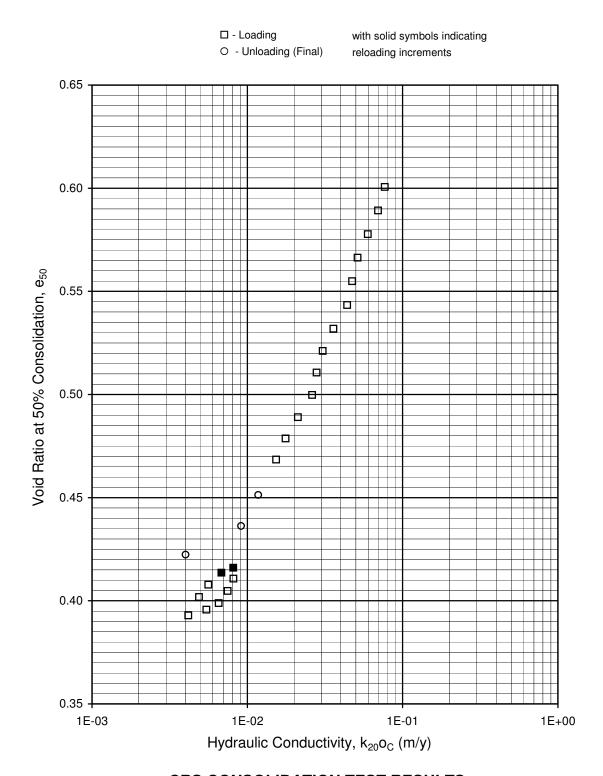







□ - Loading○ - Unloading (Final)

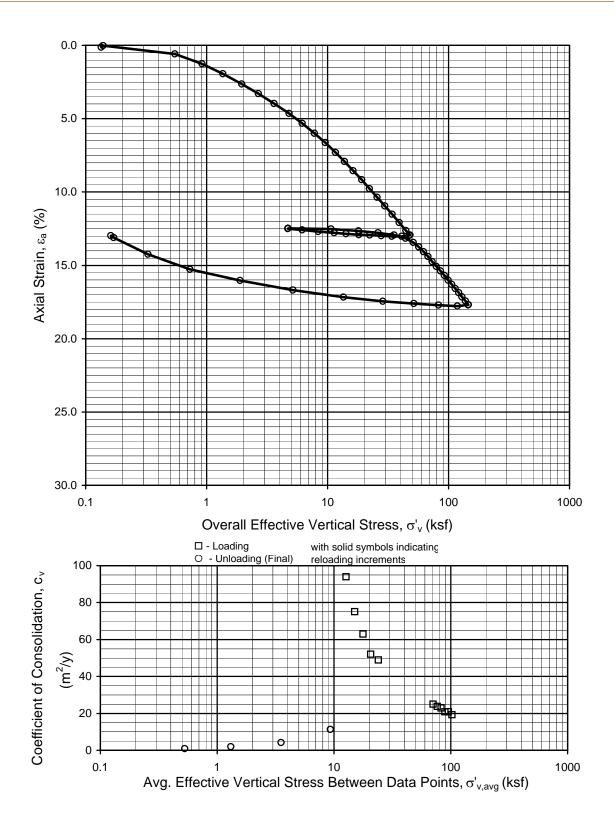
with solid symbols indicating reloading increments




# **CRS CONSOLIDATION TEST RESULTS**

Sample No. 9a - Depth 80.15 ft
Boring B-18
Tunnel Segment of SVRT Project
San Jose, California

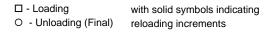


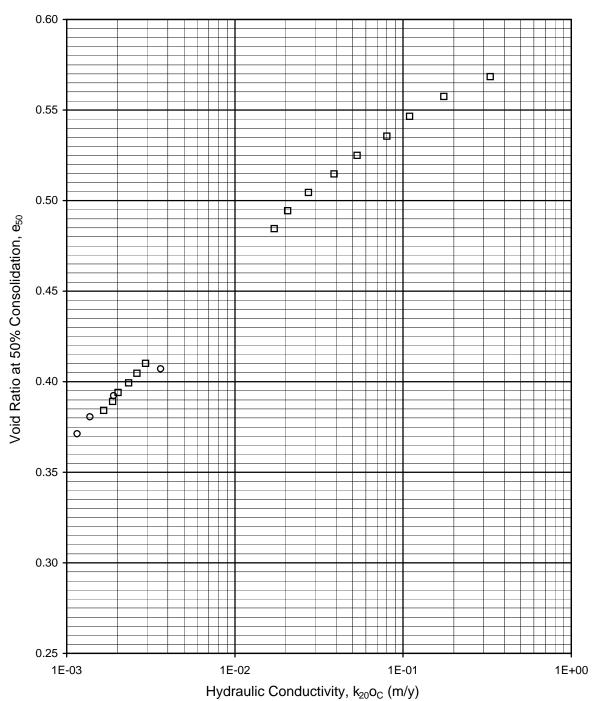





Sample No. 9a - Depth 80.15 ft Boring B-18 Tunnel Segment of SVRT Project San Jose, California



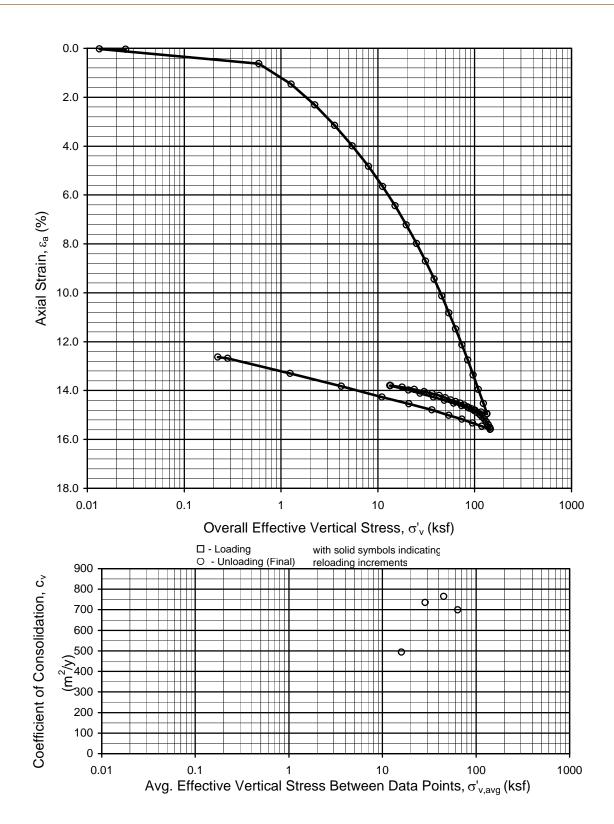



Sample No. 9a - Depth 41.35 ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California



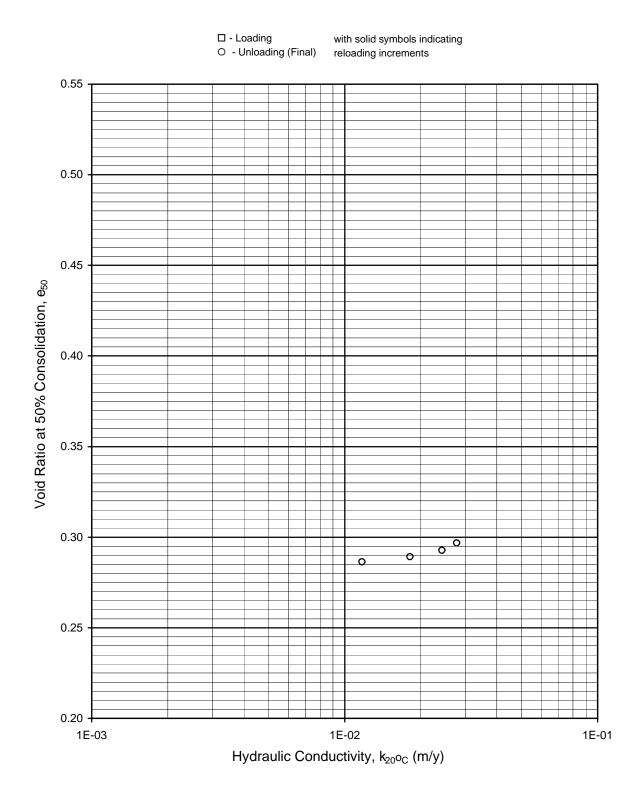







Sample No. 9a - Depth 41.35 ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California

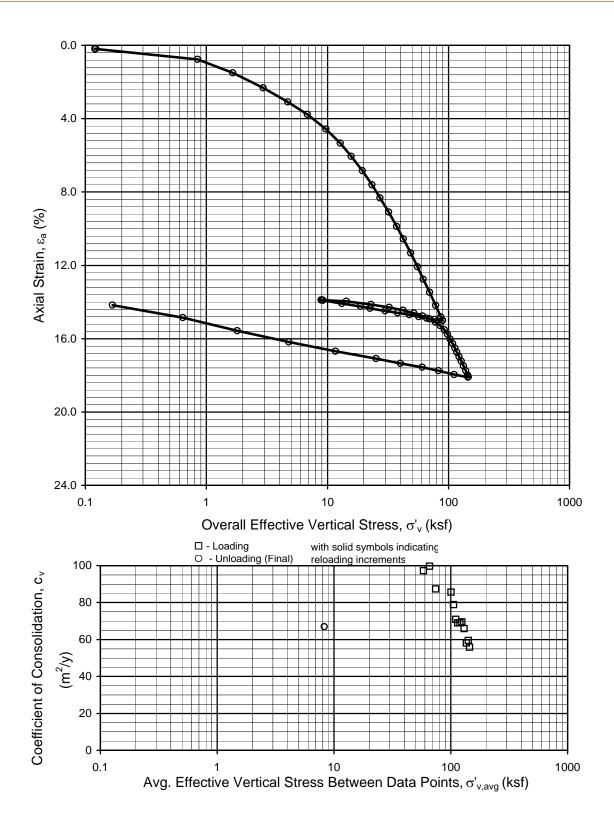







Sample No. 17 - Depth 106.80 ft Boring B-23 Tunnel Segment of SVRT Project San Jose, California

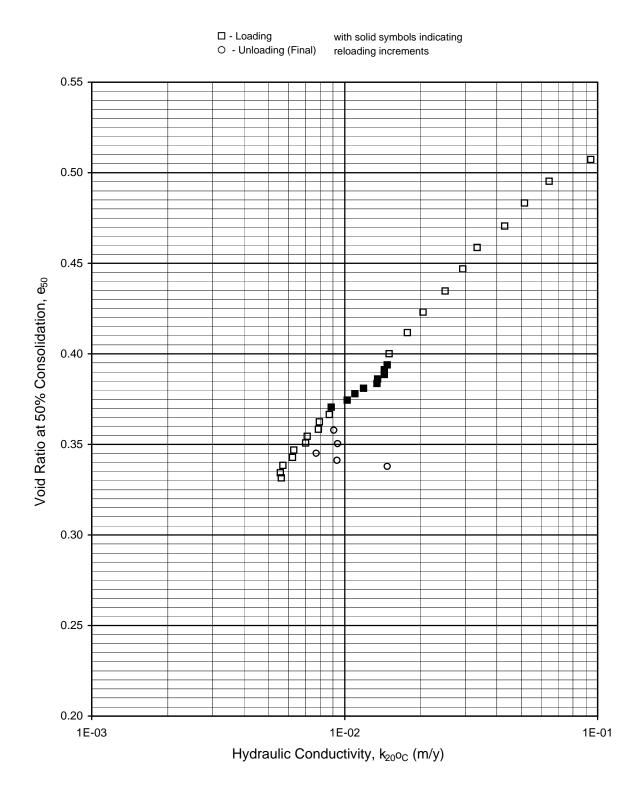







Sample No. 17 - Depth 106.80 ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California

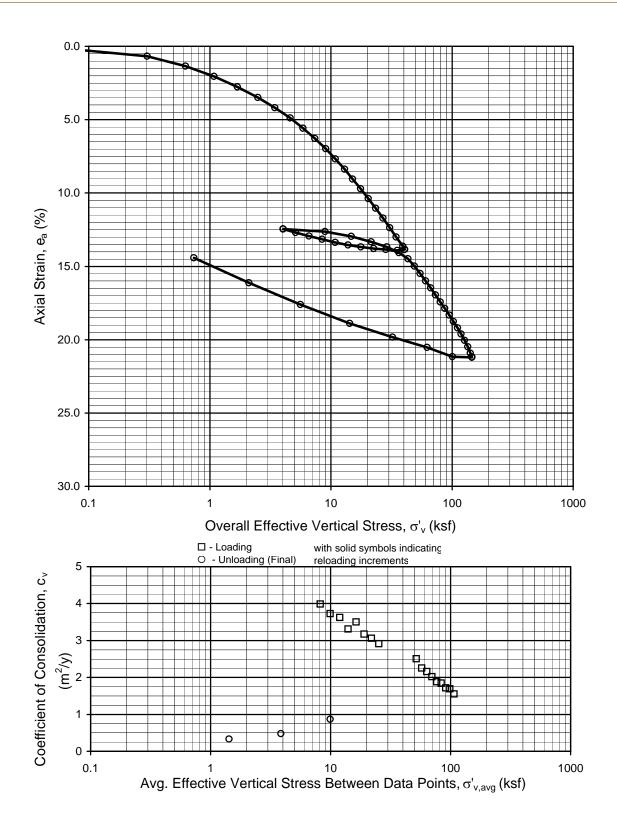







Sample No. 18a - Depth 117.30 ft Boring B-23 Tunnel Segment of SVRT Project San Jose, California

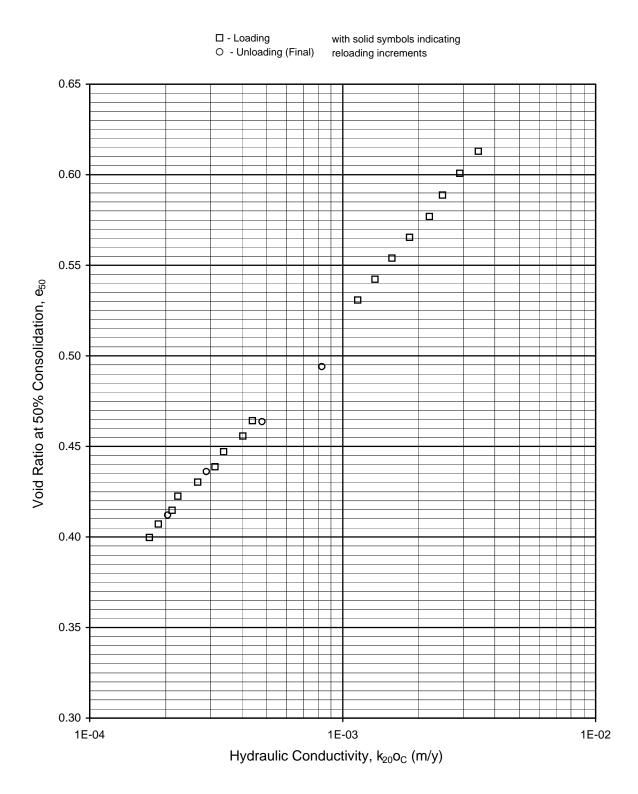







Sample No. 18a - Depth 117.30 ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California

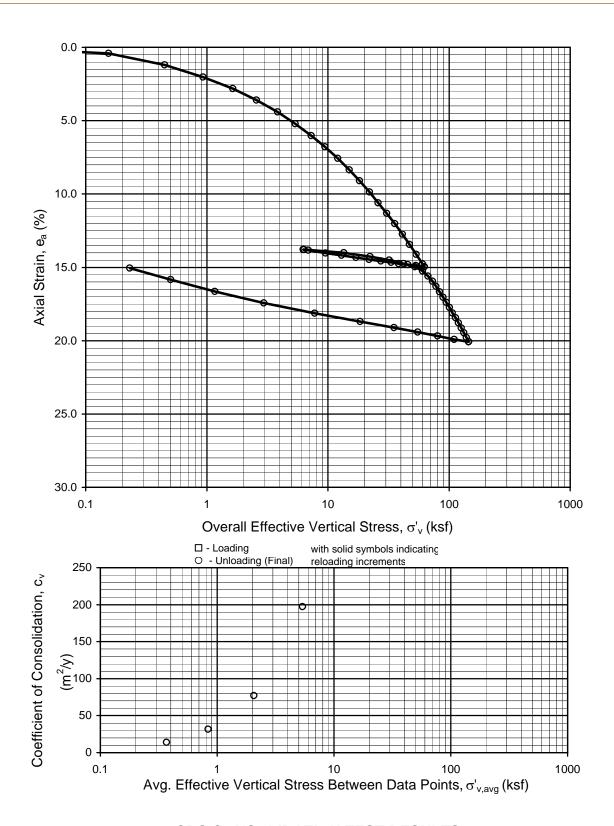







Sample No. 3a - Depth 15.00 ft Boring B-24 Tunnel Segment of SVRT Project San Jose, California

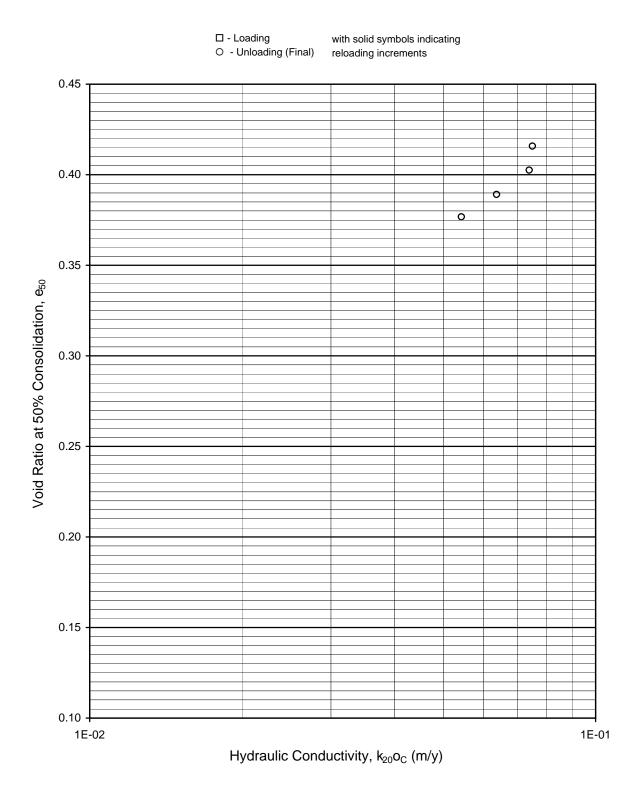







Sample No. 3a - Depth 15.00 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California

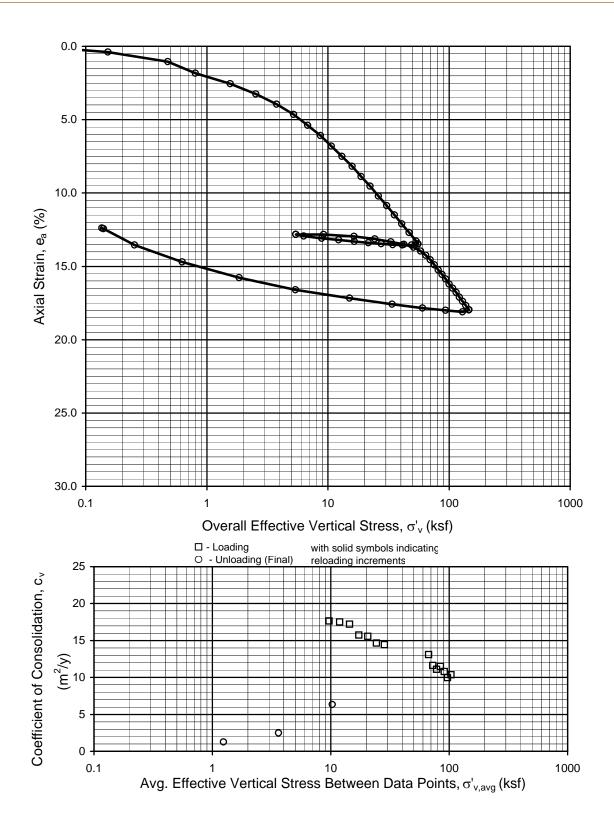







Sample No. 6a - Depth 22.50 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California

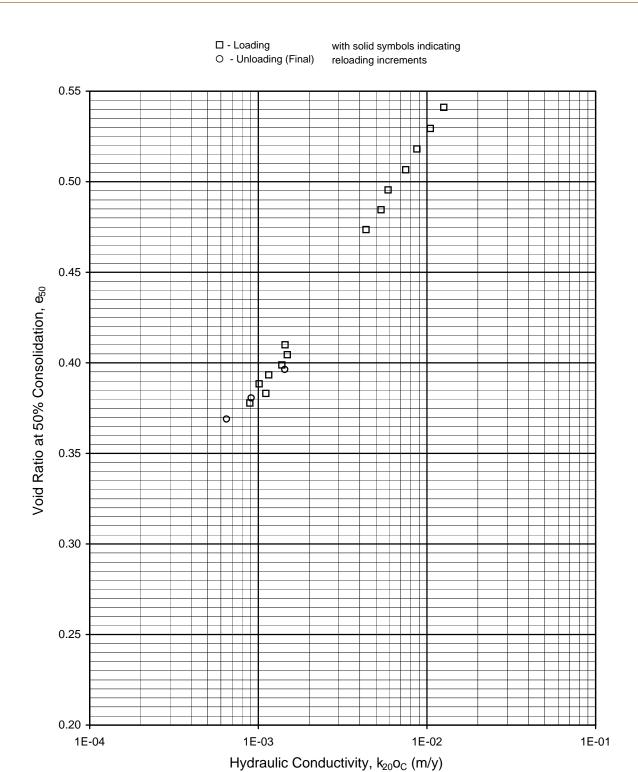







Sample No. 6a - Depth 22.50 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California

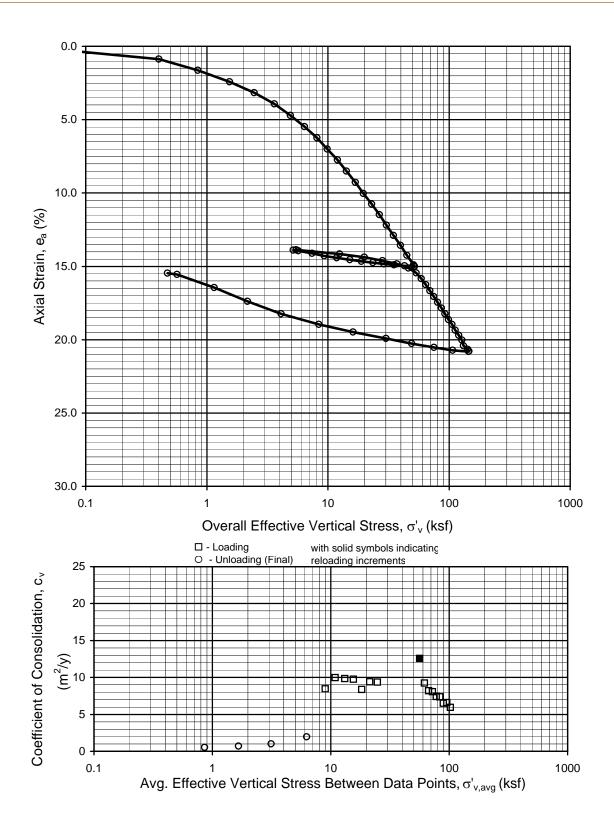







Sample No. 7a - Depth 25.00 ft Boring B-24 Tunnel Segment of SVRT Project San Jose, California

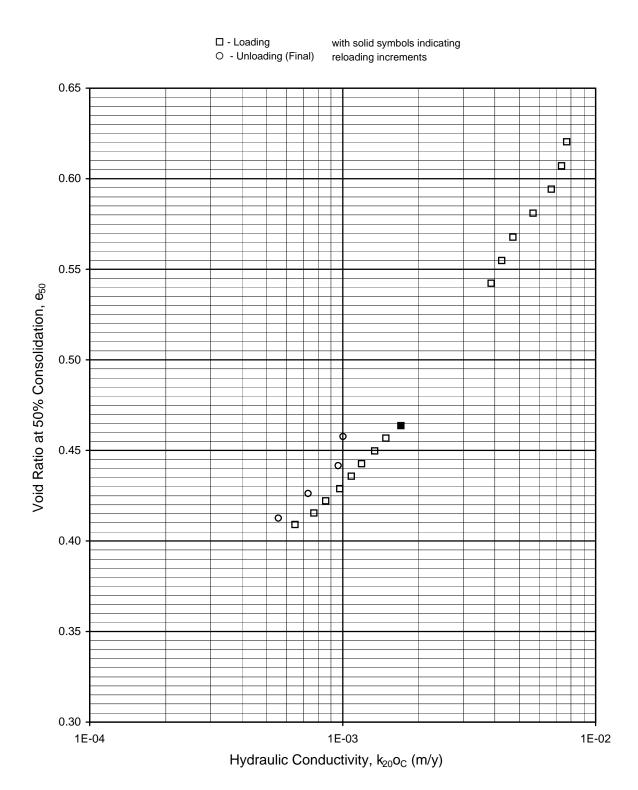







Sample No. 7a - Depth 25.00 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California

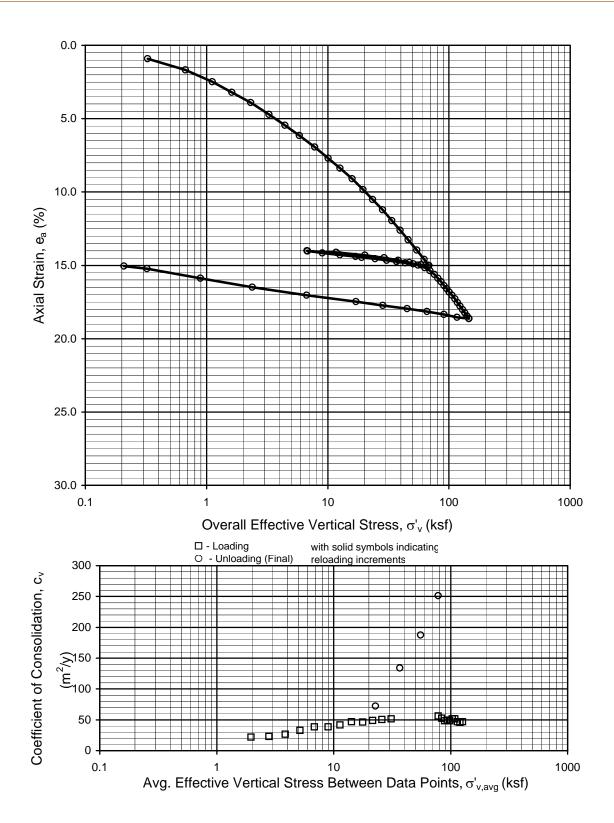







Sample No. 8a - Depth 27.50 ft Boring B-24 Tunnel Segment of SVRT Project San Jose, California

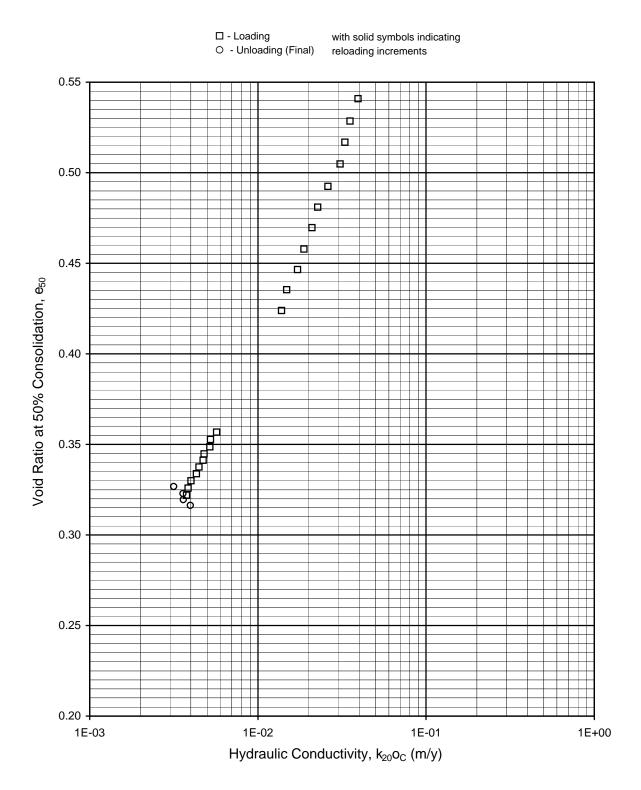







Sample No. 8a - Depth 27.50 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California

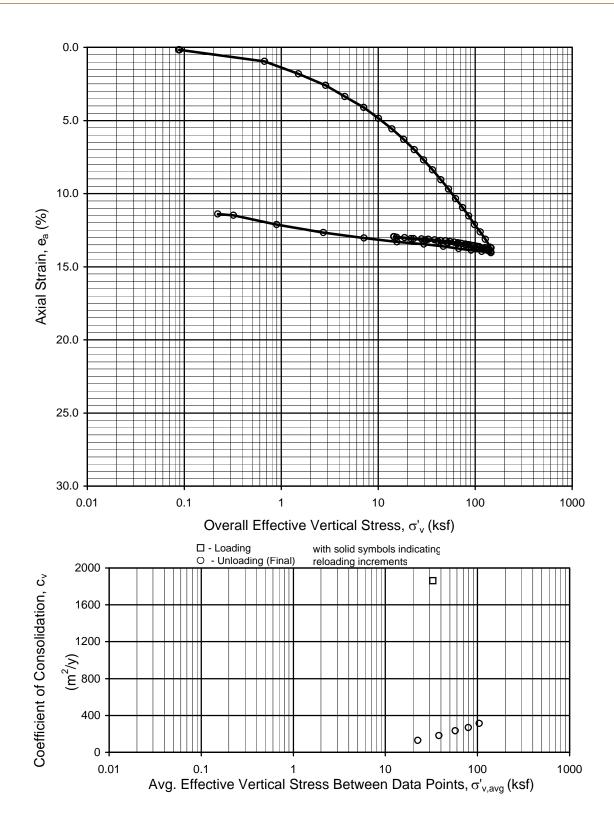







Sample No. 29 - Depth 110.50 ft Boring B-24 Tunnel Segment of SVRT Project San Jose, California

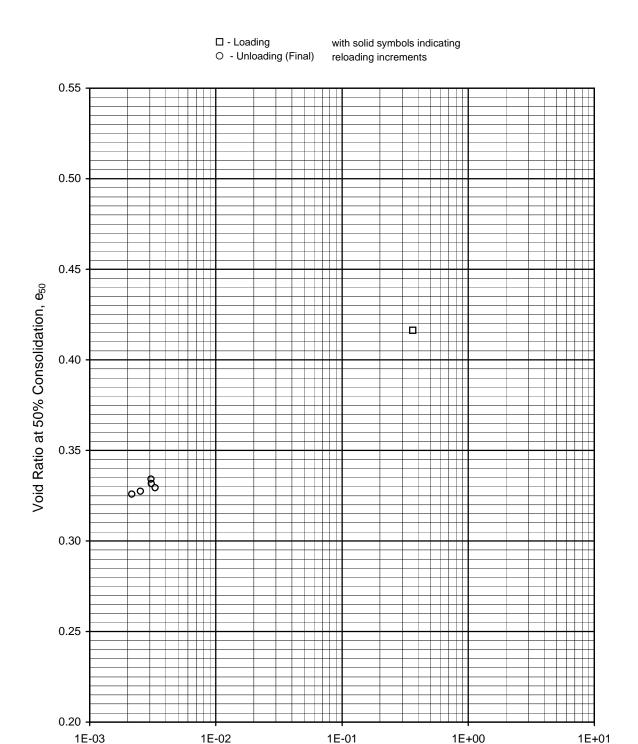







Sample No. 29 - Depth 110.50 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California



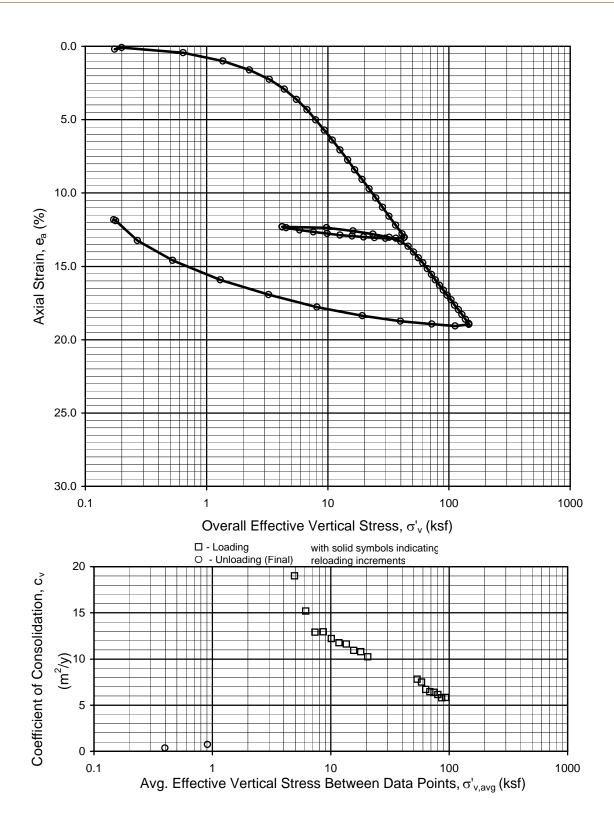





Sample No. 16a - Depth 112.50 ft Boring B-25 Tunnel Segment of SVRT Project San Jose, California








Hydraulic Conductivity,  $k_{20}o_C$  (m/y)

Sample No. 16a - Depth 112.50 ft
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California

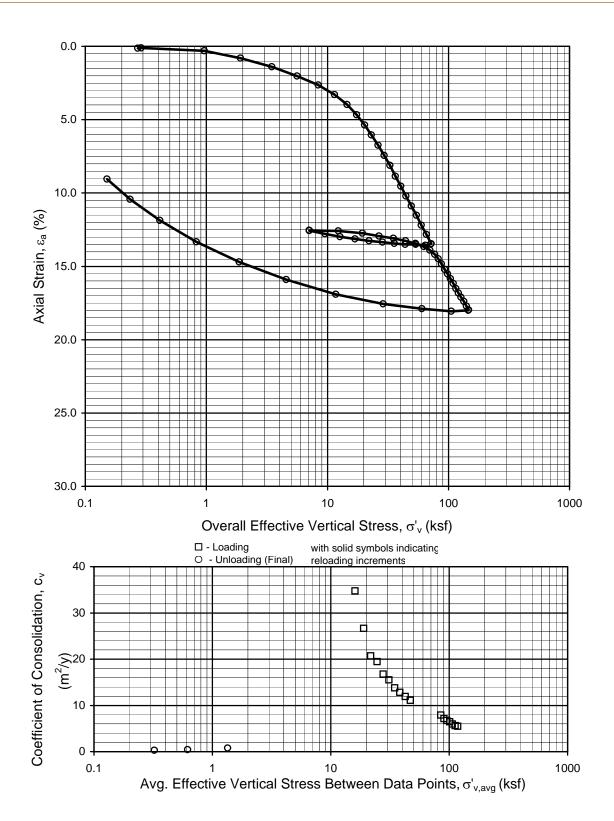







Sample No. 1a - Depth 9.75 ft
Boring B-33
Tunnel Segment of SVRT Project
San Jose, California

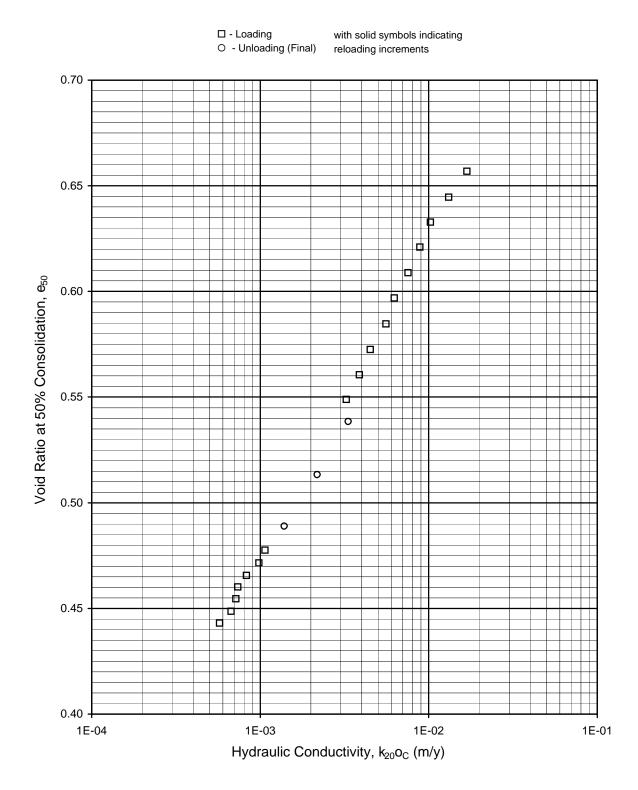







Sample No. 1a - Depth 9.75 ft
Boring B-33
Tunnel Segment of SVRT Project
San Jose, California

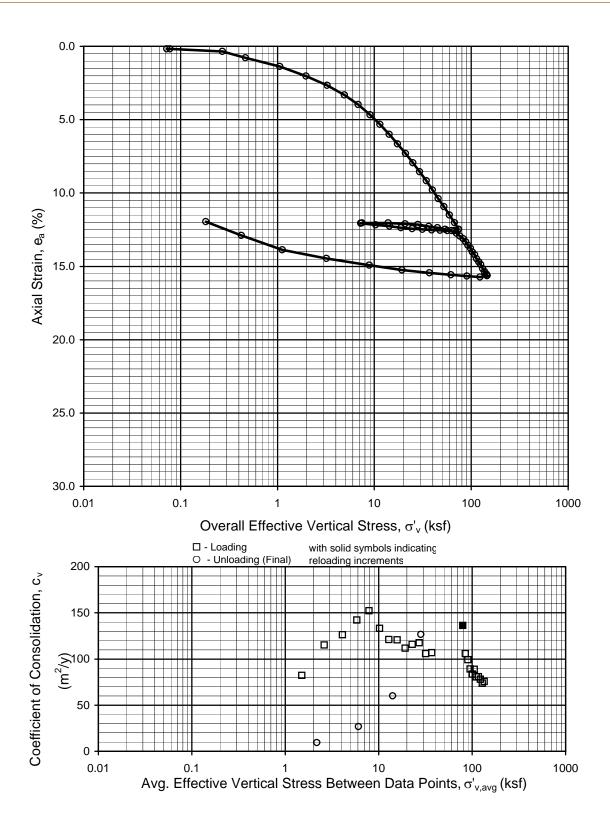







Sample No. 9a - Depth 82.25 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California

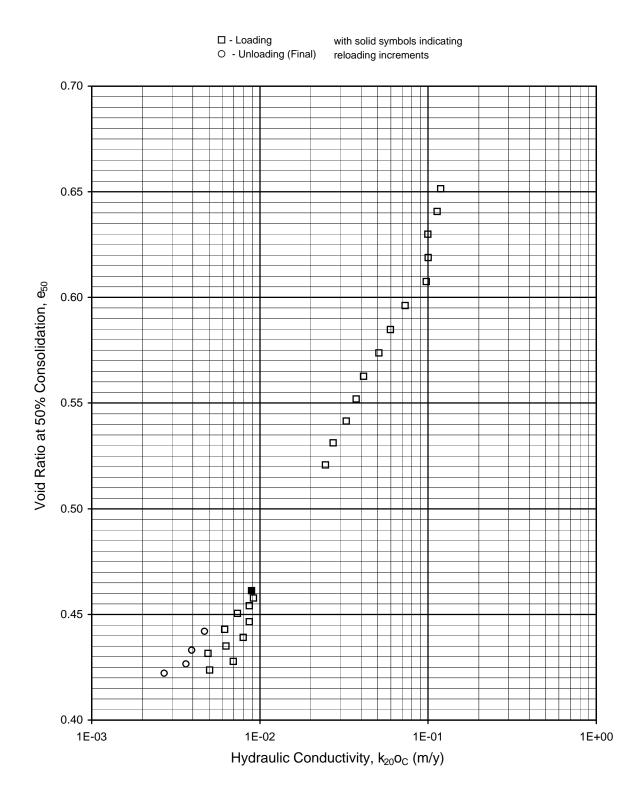







Sample No. 9a - Depth 82.25 ft
Boring B-33
Tunnel Segment of SVRT Project
San Jose, California

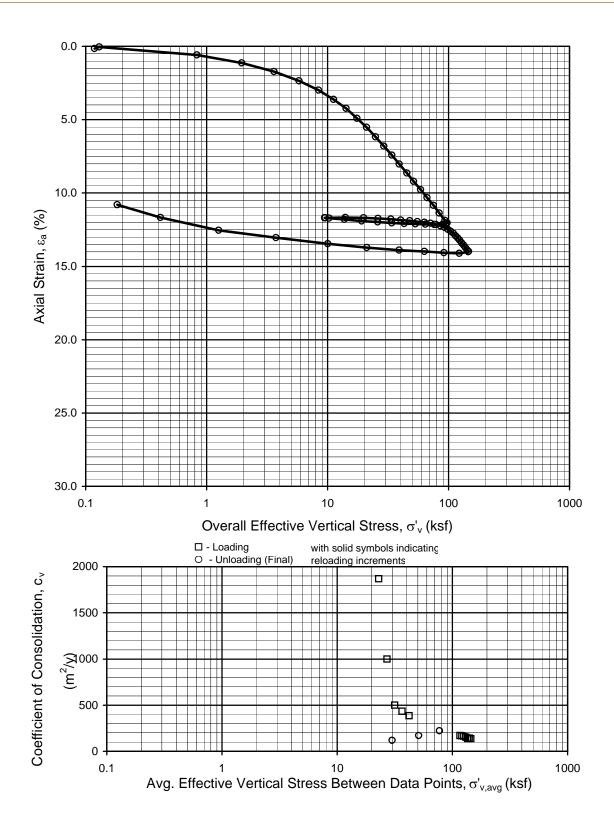







Sample No. 7a - Depth 37.50 ft Boring B-42 Tunnel Segment of SVRT Project San Jose, California

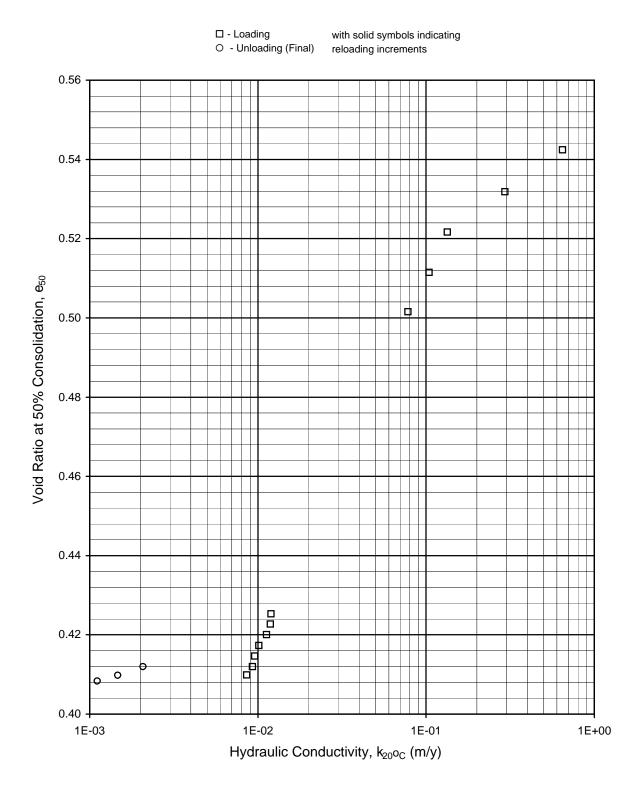







Sample No. 7a - Depth 37.50 ft
Boring B-42
Tunnel Segment of SVRT Project
San Jose, California

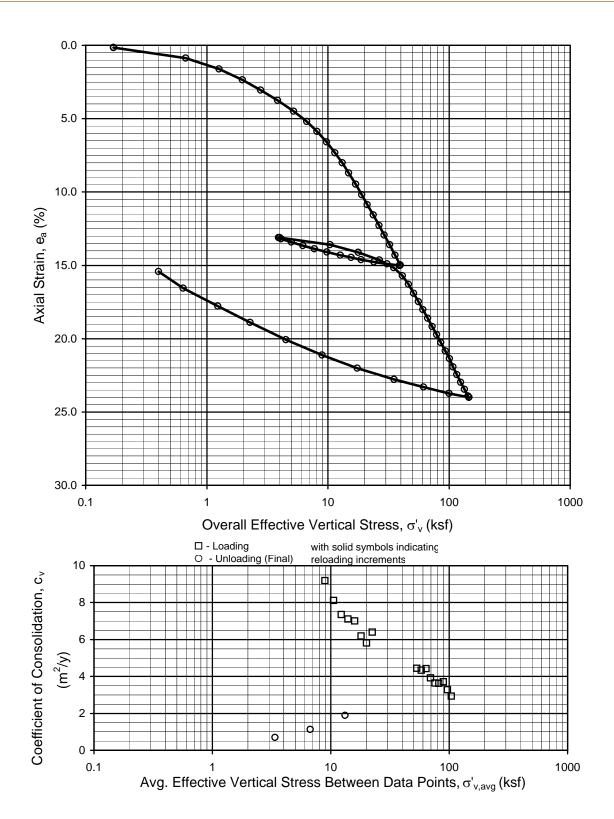







Sample No. 4a - Depth 41.40 ft
Boring B-45
Tunnel Segment of SVRT Project
San Jose, California

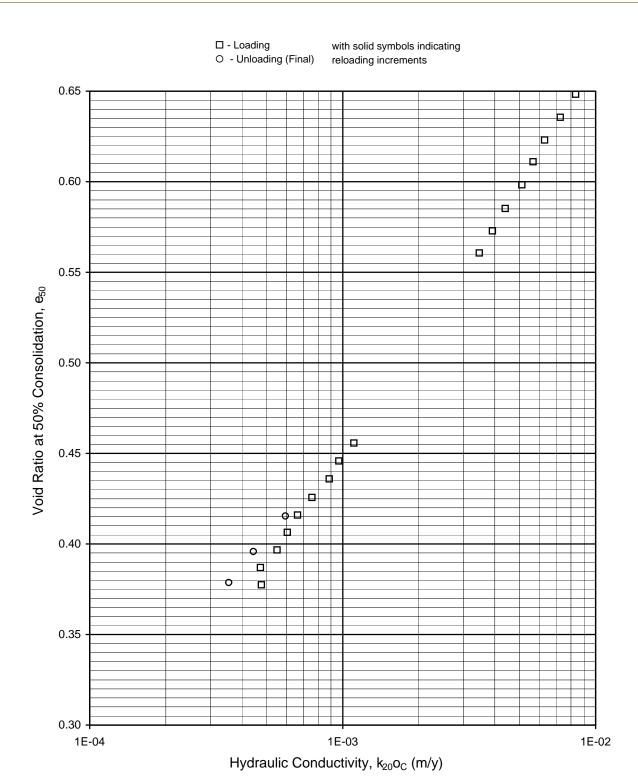







Sample No. 4a - Depth 41.40 ft
Boring B-45
Tunnel Segment of SVRT Project
San Jose, California

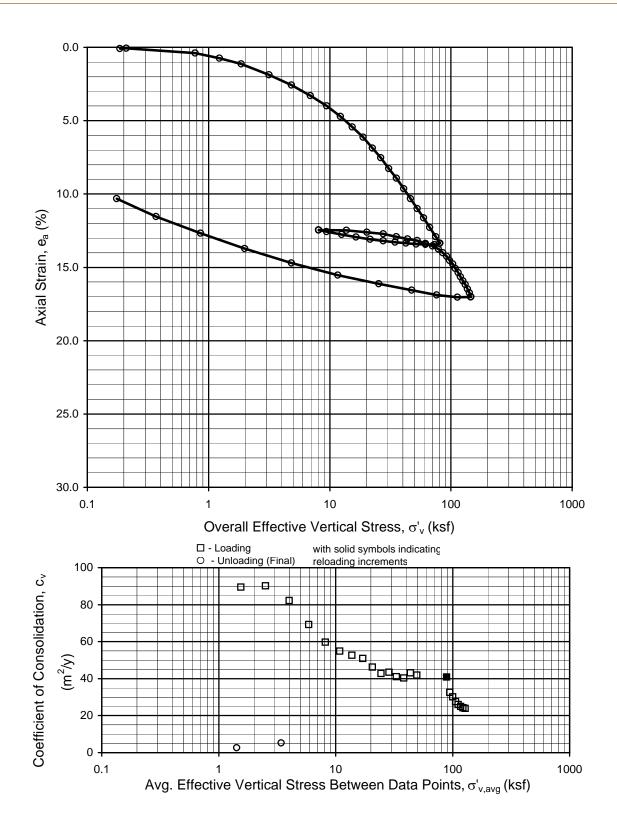







Sample No. 10a - Depth 47.50 ft Boring B-50 Tunnel Segment of SVRT Project San Jose, California

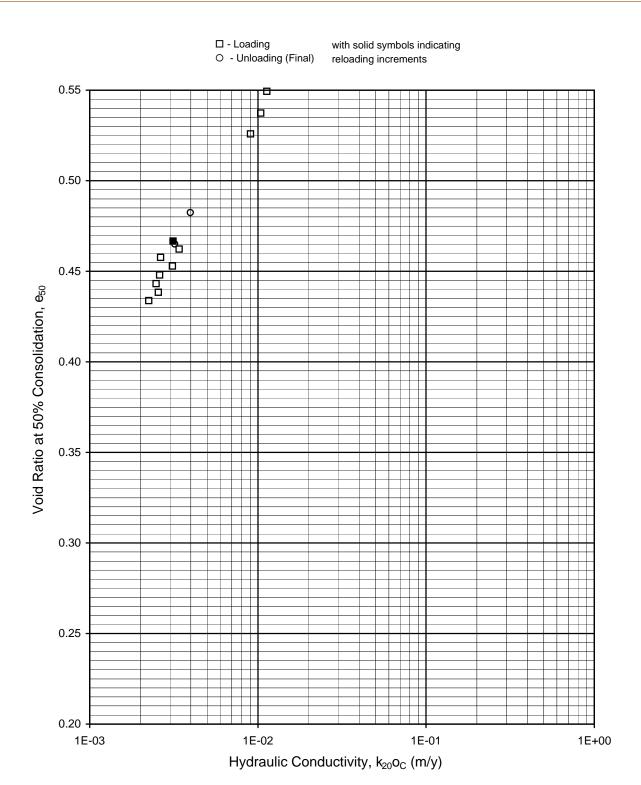







Sample No. 10a - Depth 47.50 ft
Boring B-50
Tunnel Segment of SVRT Project
San Jose, California

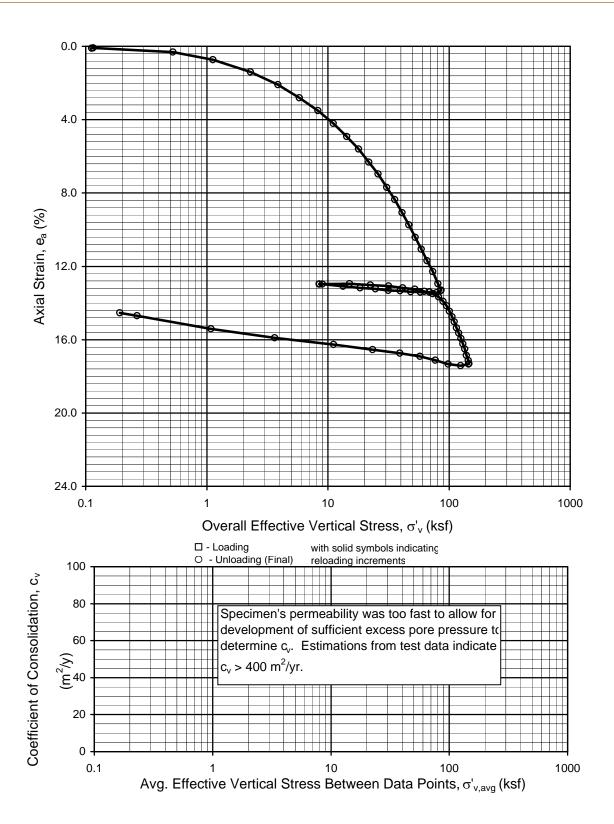







Sample No. 17 - Depth 101.10 ft Boring B-50 Tunnel Segment of SVRT Project San Jose, California

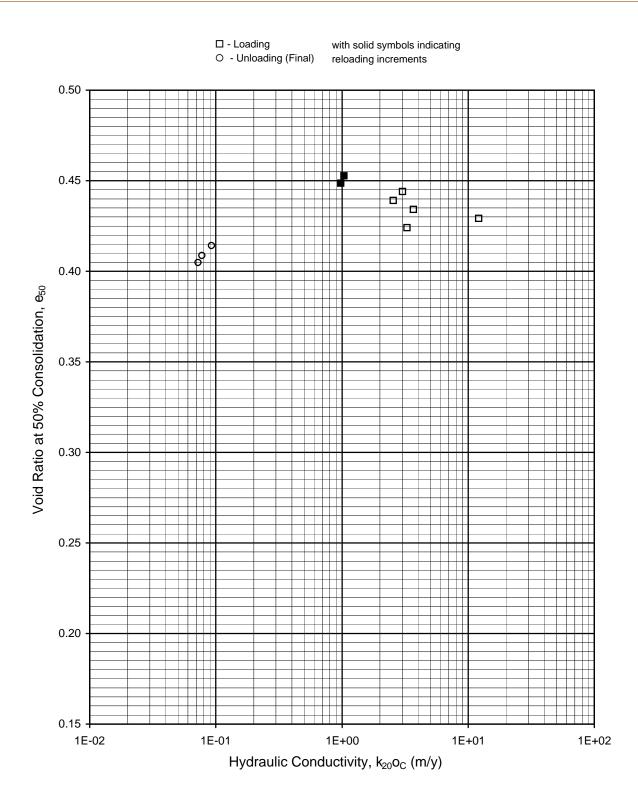







Sample No. 17 - Depth 101.10 ft
Boring B-50
Tunnel Segment of SVRT Project
San Jose, California

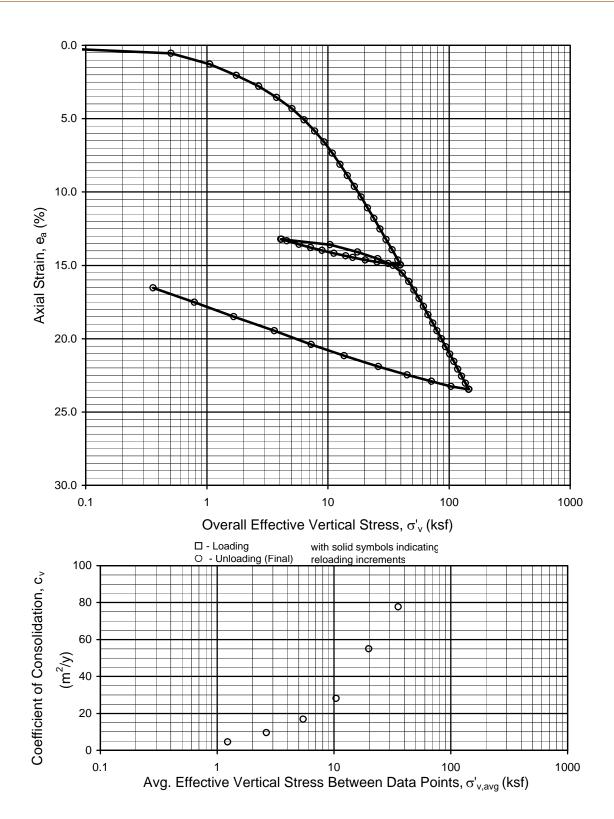







Sample No. 8a - Depth 24.20 ft Boring B-52 Tunnel Segment of SVRT Project San Jose, California

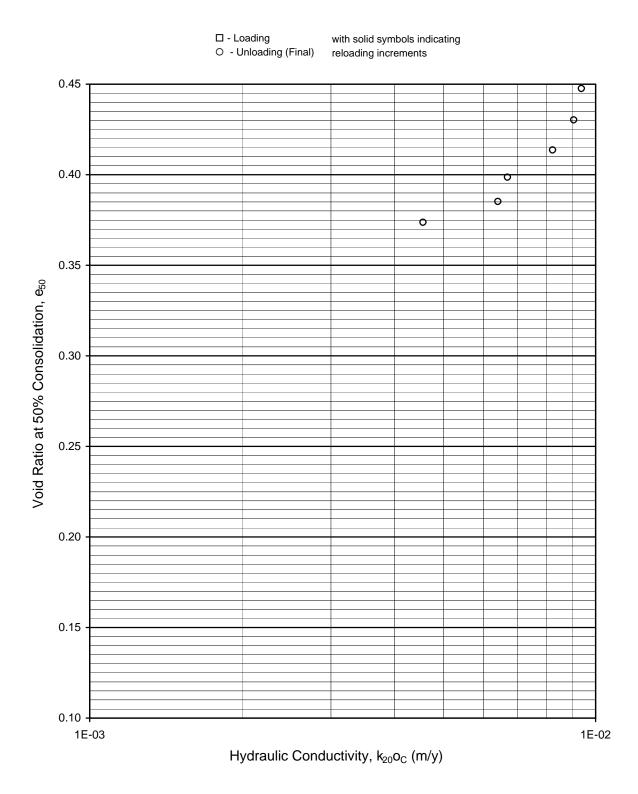







Sample No. 8a - Depth 24.20 ft
Boring B-52
Tunnel Segment of SVRT Project
San Jose, California








Sample No. 11a - Depth 31.90 ft Boring B-52 Tunnel Segment of SVRT Project San Jose, California

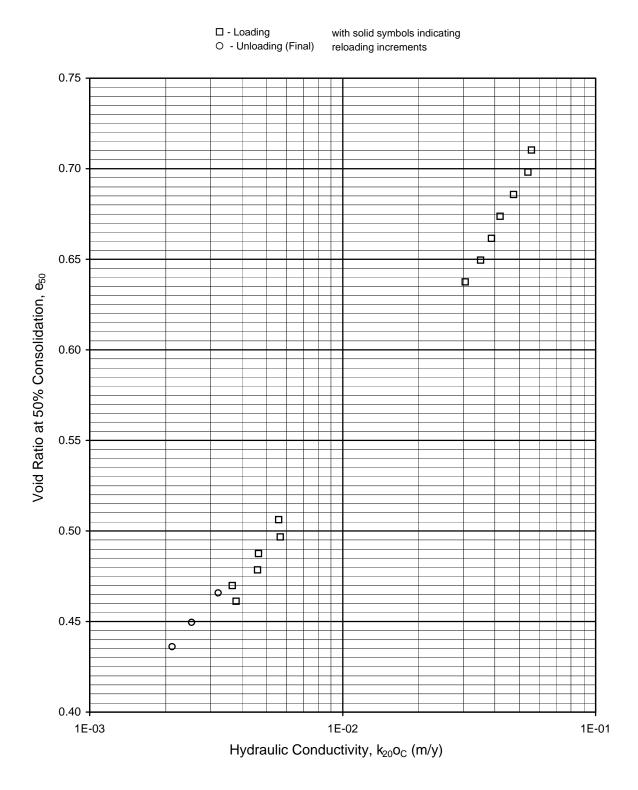






Sample No. 11a - Depth 31.90 ft
Boring B-52
Tunnel Segment of SVRT Project
San Jose, California

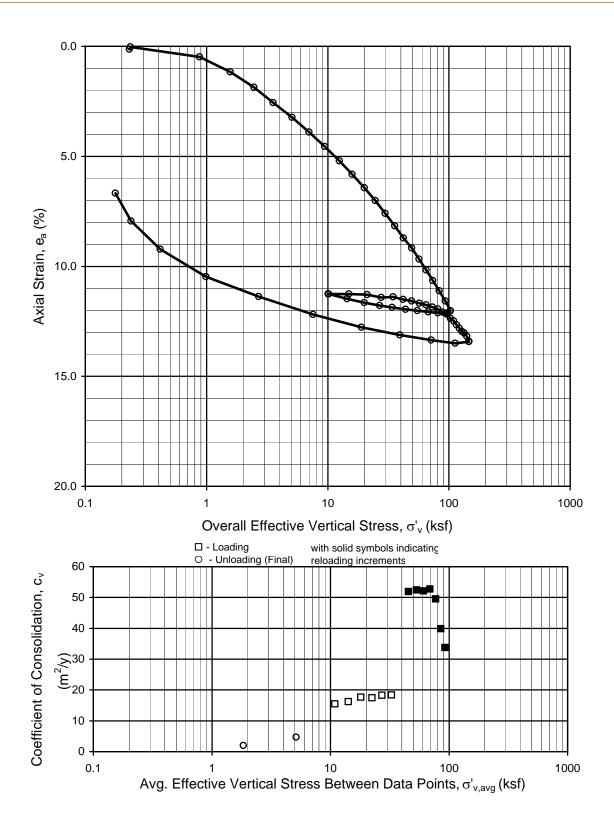







Sample No. 12a - Depth 34.50 ft Boring B-52 Tunnel Segment of SVRT Project San Jose, California

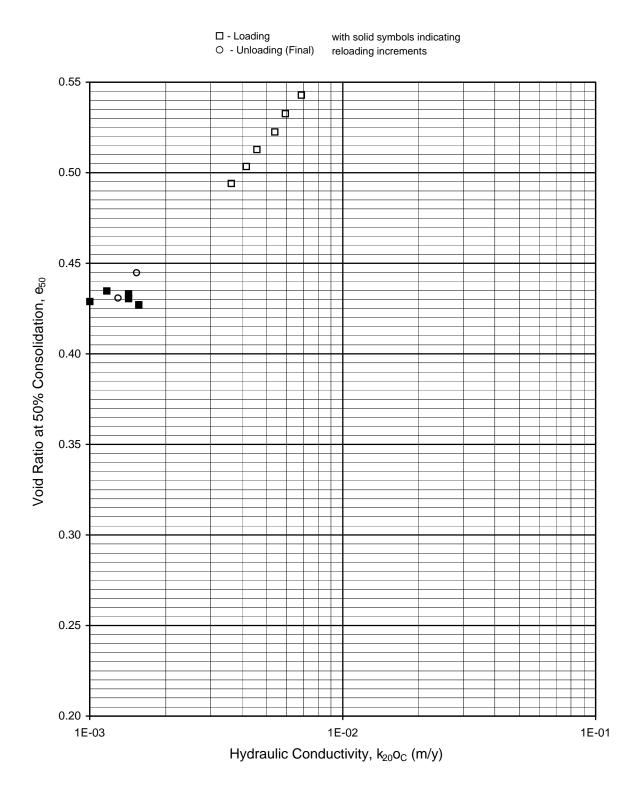







Sample No. 12a - Depth 34.50 ft
Boring B-52
Tunnel Segment of SVRT Project
San Jose, California

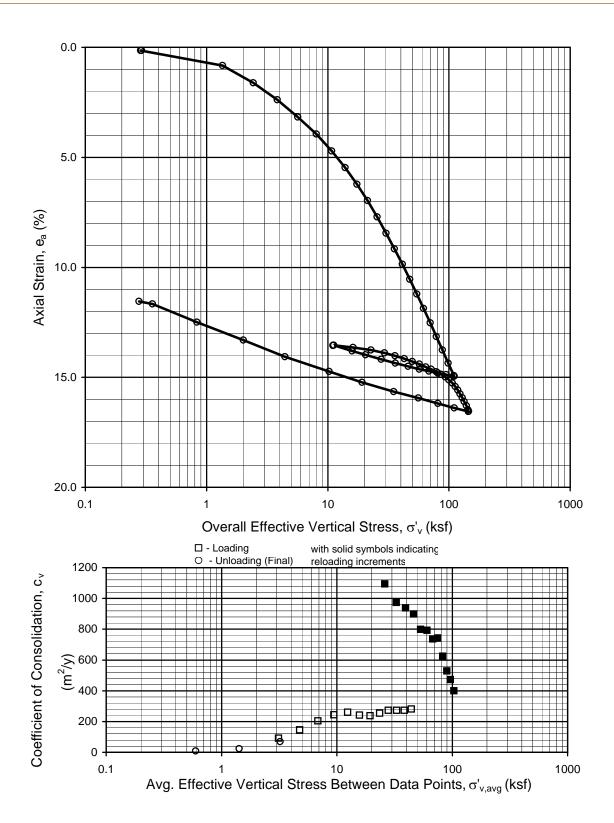







Sample No. 34a - Depth 106.50 ft Boring B-52 Tunnel Segment of SVRT Project San Jose, California

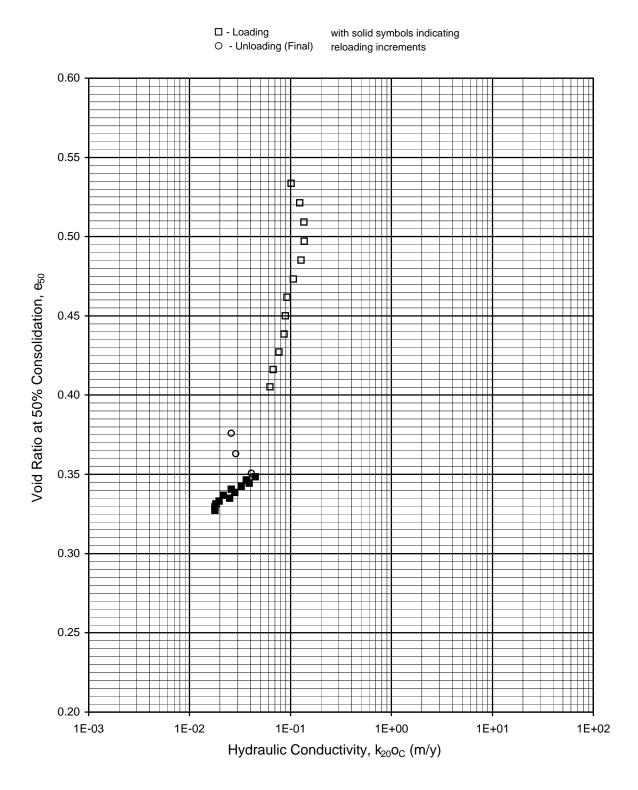







Sample No. 34a - Depth 106.50 ft
Boring B-52
Tunnel Segment of SVRT Project
San Jose, California

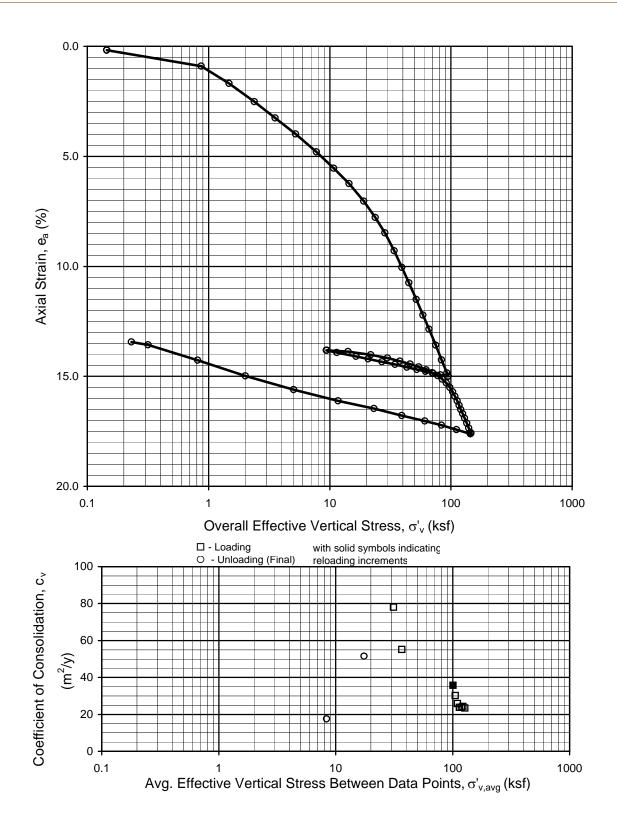







Sample No. 35a - Depth 111.50 ft Boring B-52 Tunnel Segment of SVRT Project San Jose, California

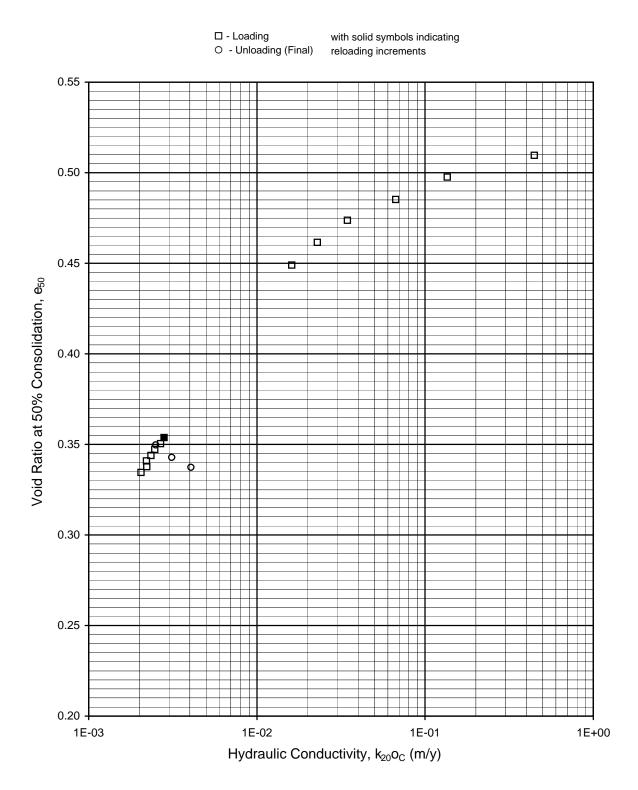







Sample No. 35a - Depth 111.50 ft
Boring B-52
Tunnel Segment of SVRT Project
San Jose, California

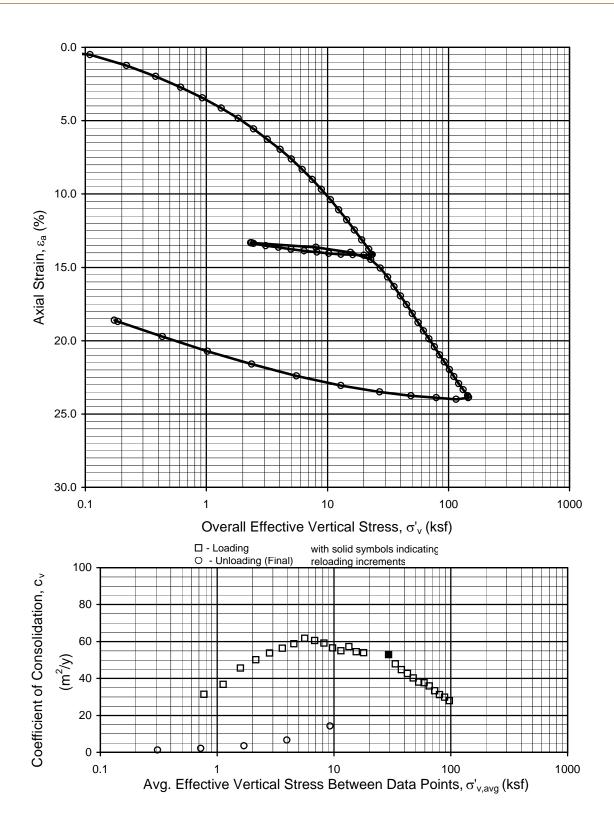







Sample No. 36a - Depth 116.50 ft Boring B-52 Tunnel Segment of SVRT Project San Jose, California

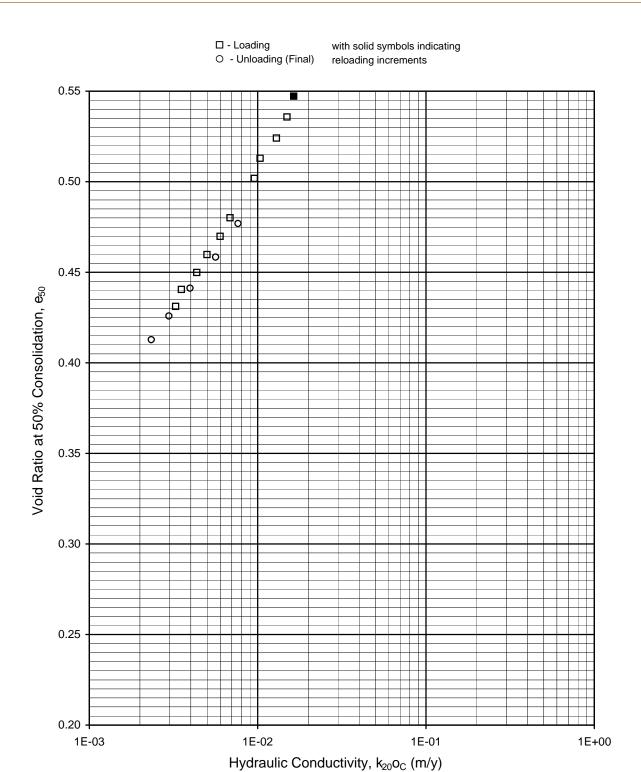







Sample No. 36a - Depth 116.50 ft Boring B-52 Tunnel Segment of SVRT Project San Jose, California

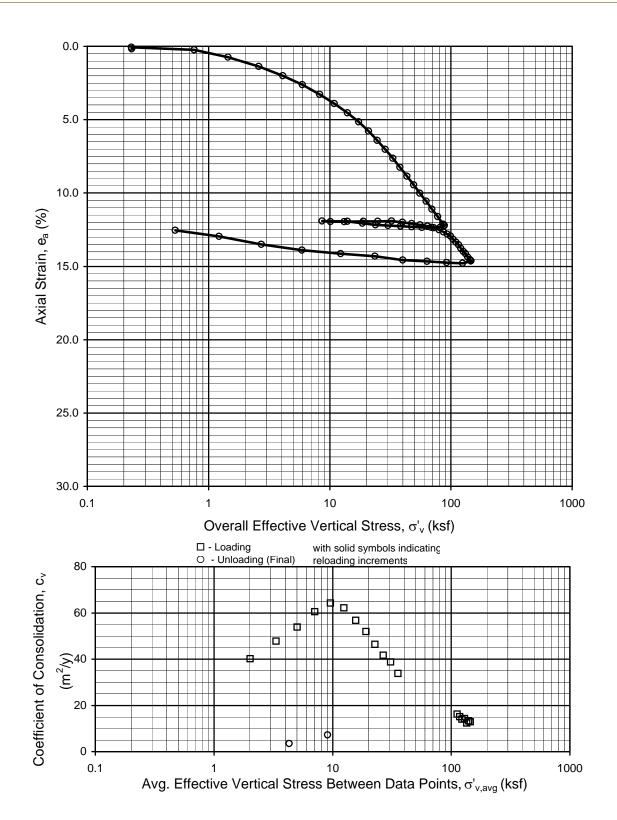







Sample No. 7a - Depth 32.35 ft Boring B-55 Tunnel Segment of SVRT Project San Jose, California

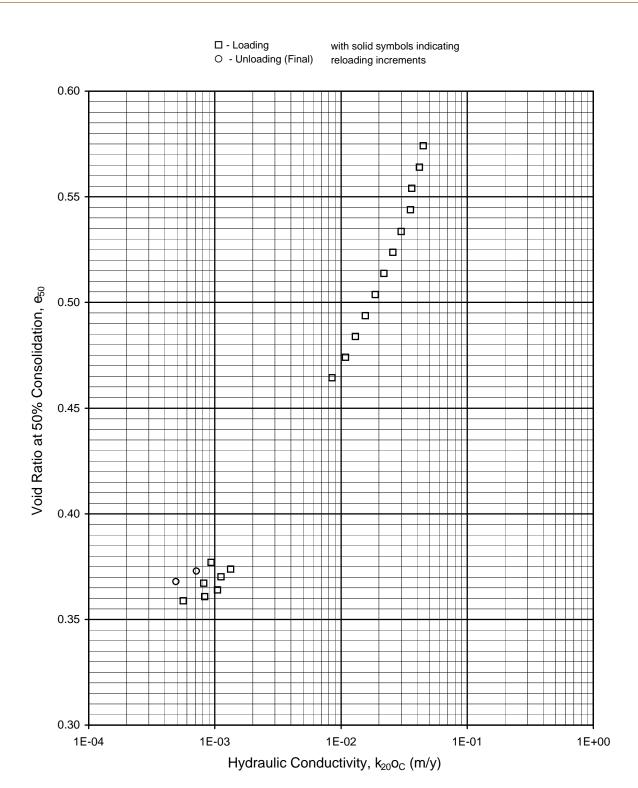







Sample No. 7a - Depth 32.35 ft
Boring B-55
Tunnel Segment of SVRT Project
San Jose, California

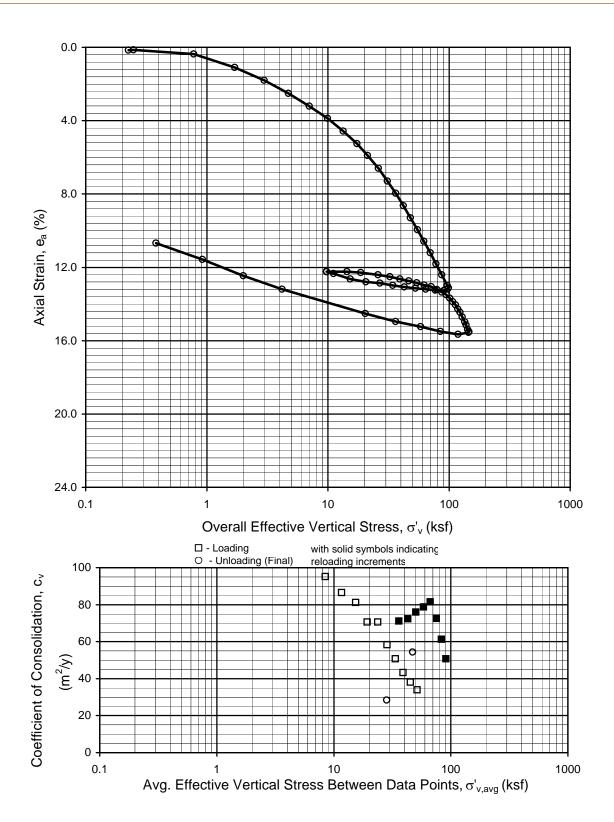







Sample No. 22a - Depth 110.80 ft Boring B-55 Tunnel Segment of SVRT Project San Jose, California

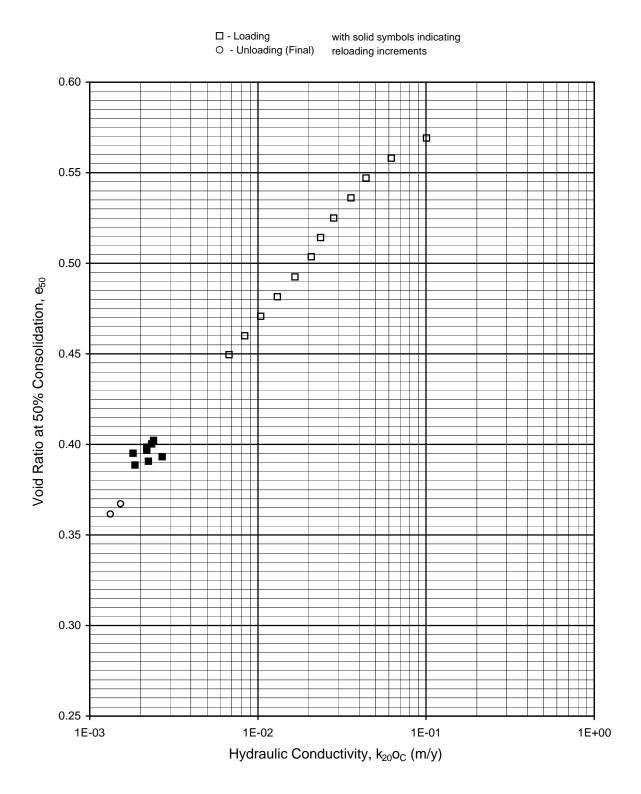







Sample No. 22a - Depth 110.80 ft Boring B-55 Tunnel Segment of SVRT Project San Jose, California

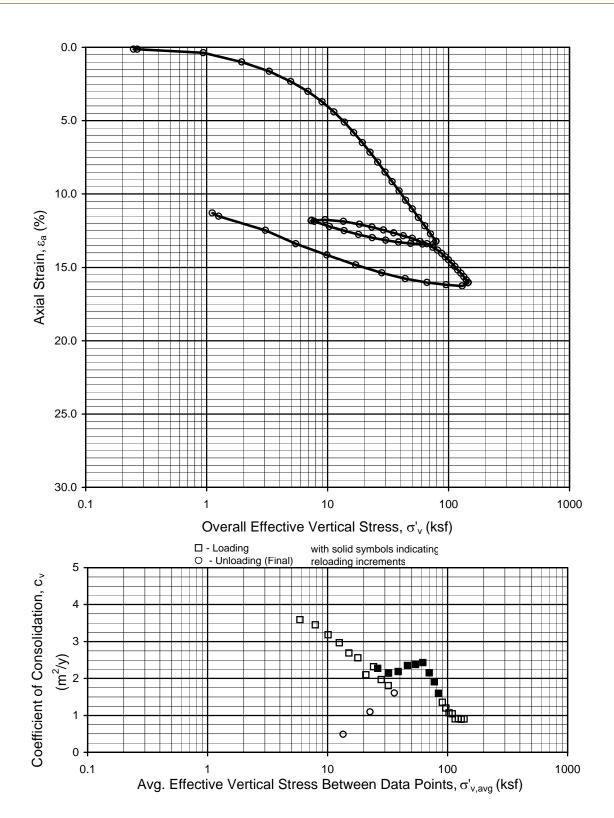







Sample No. 26a - Depth 131.50 ft Boring B-55 Tunnel Segment of SVRT Project San Jose, California

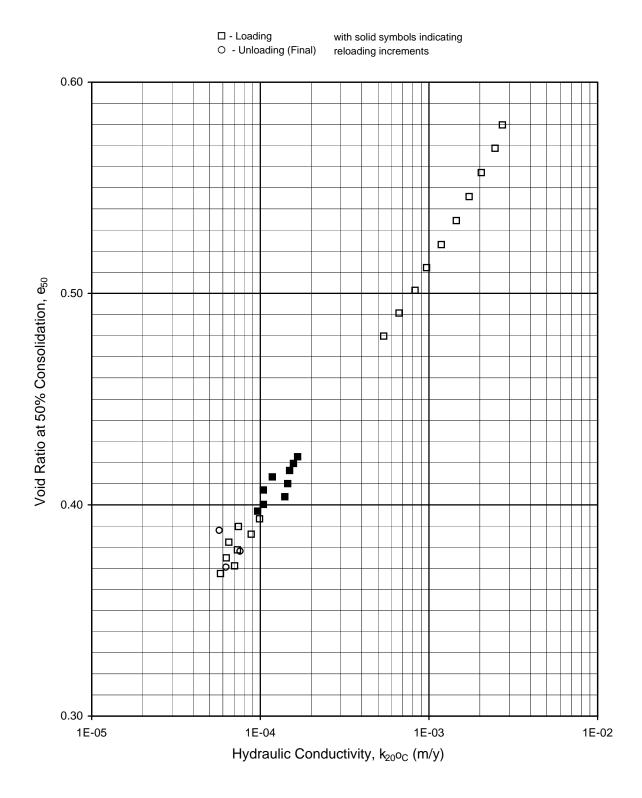







Sample No. 26a - Depth 131.50 ft
Boring B-55
Tunnel Segment of SVRT Project
San Jose, California

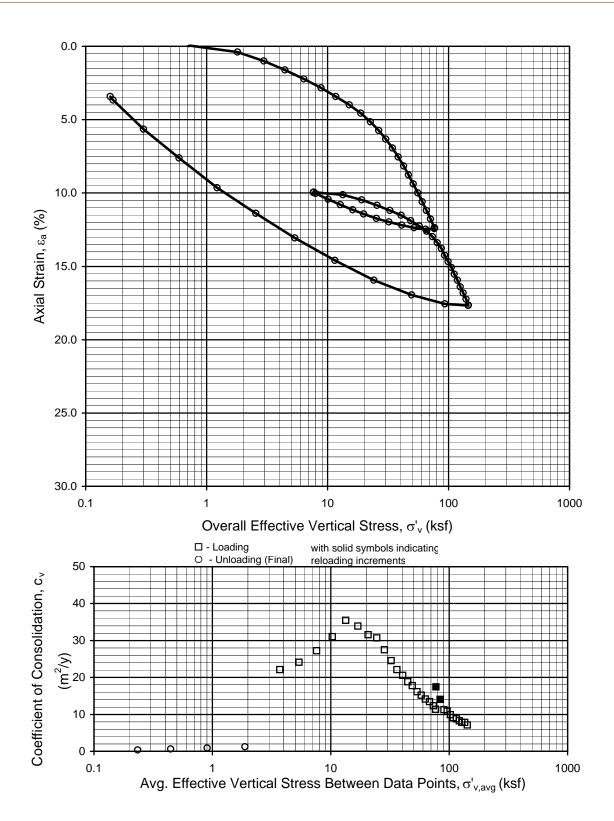







Sample No. 5a - Depth 50.70 ft
Boring B-59
Tunnel Segment of SVRT Project
San Jose, California

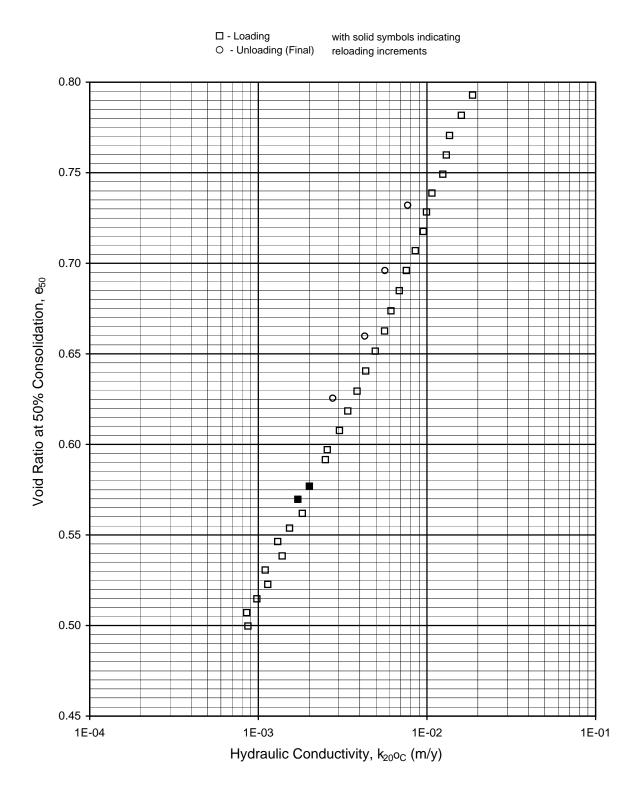







Sample No. 5a - Depth 50.70 ft
Boring B-59
Tunnel Segment of SVRT Project
San Jose, California

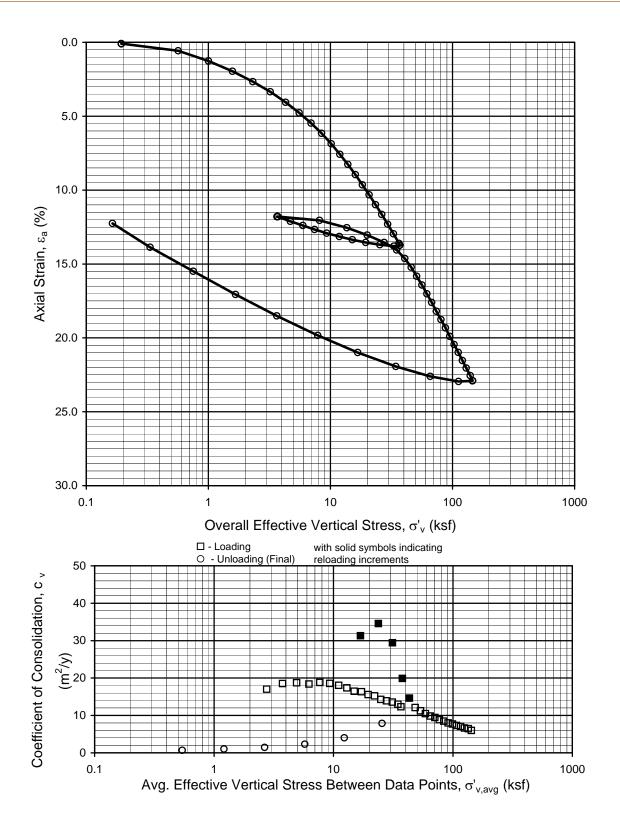







Sample No. 17a - Depth 170.00 ft Boring B-59 Tunnel Segment of SVRT Project San Jose, California

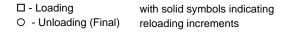







Sample No. 17a - Depth 170.00 ft Boring B-59 Tunnel Segment of SVRT Project San Jose, California





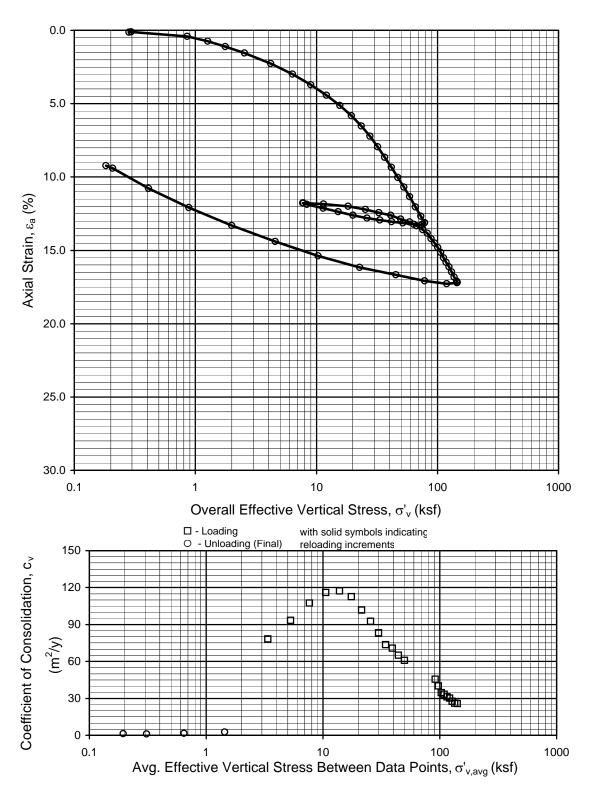




Sample No. 5a - Depth 47.20 ft
Boring B-61
Tunnel Segment of SVRT Project
San Jose, California



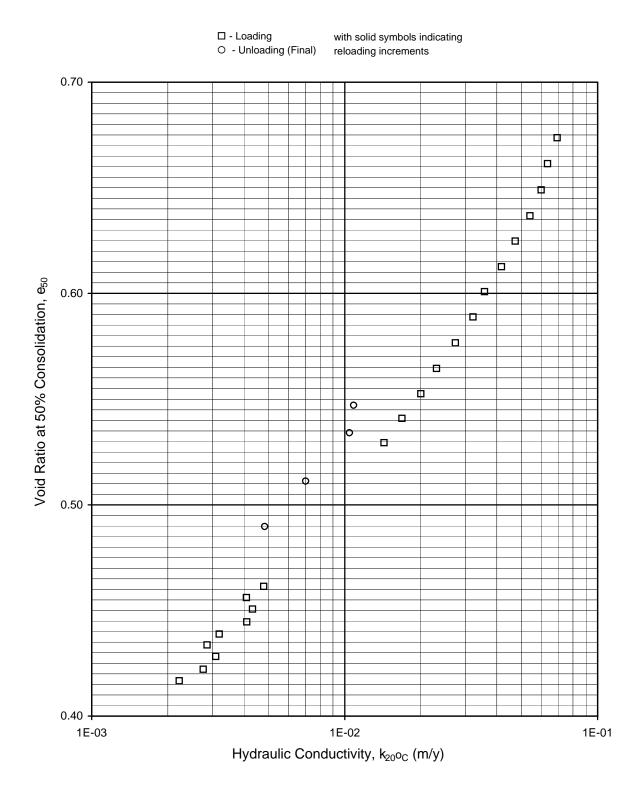







Sample No. 5a - Depth 47.20 ft
Boring B-61
Tunnel Segment of SVRT Project
San Jose, California



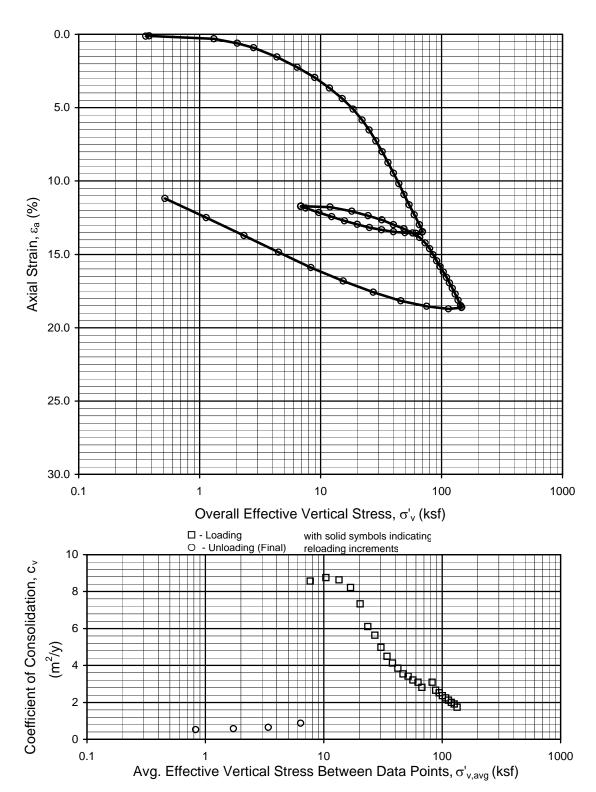





Sample No. 15a - Depth 136.00 ft Boring B-61 Tunnel Segment of SVRT Project San Jose, California



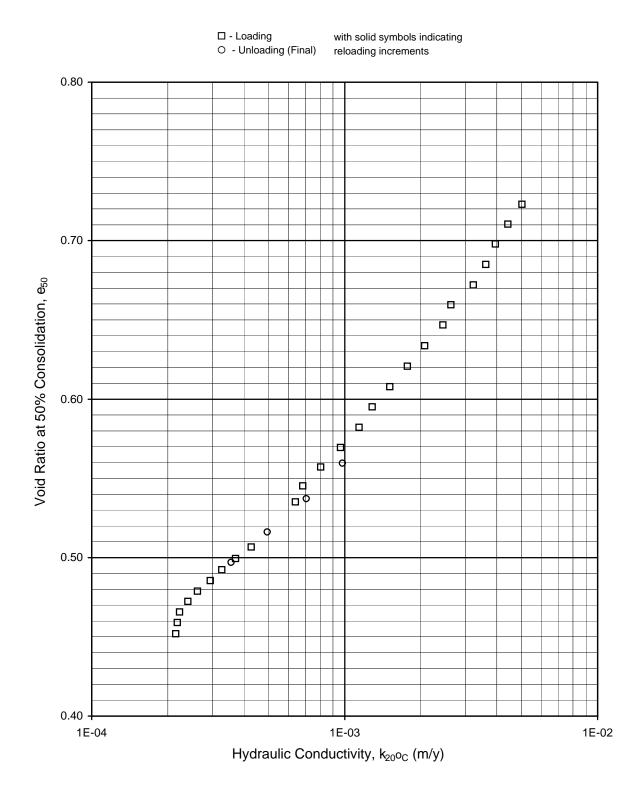





Sample No. 15a - Depth 136.00 ft Boring B-61 Tunnel Segment of SVRT Project San Jose, California

FIGURE A13-31b

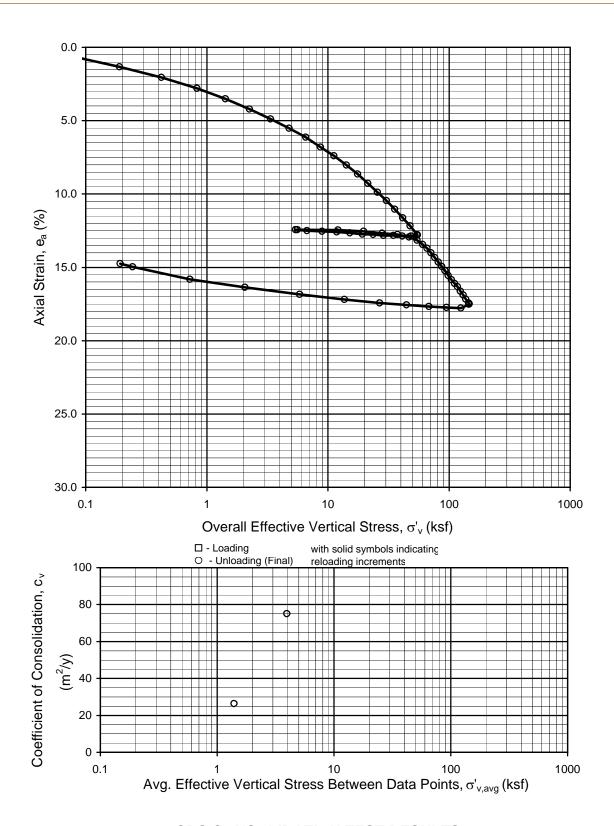







Sample No. 17a - Depth 135.45 ft Boring B-61 Tunnel Segment of SVRT Project San Jose, California

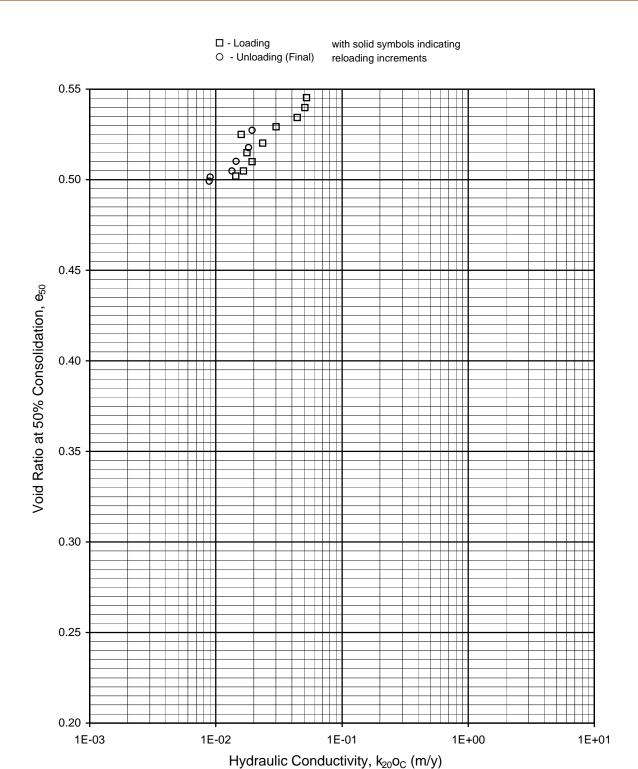







Sample No. 17a - Depth 135.45 ft Boring B-61 Tunnel Segment of SVRT Project San Jose, California

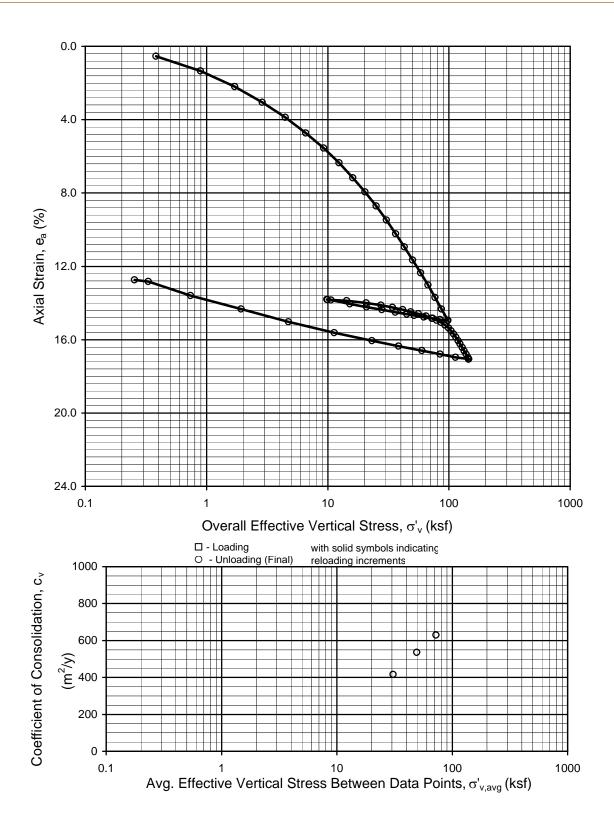







Sample No. 5a - Depth 32.50 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California

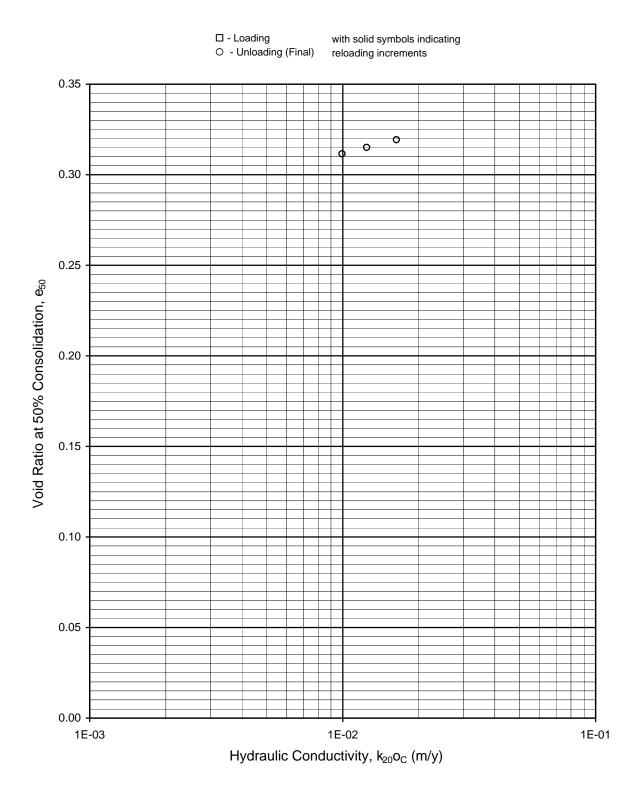







Sample No. 5a - Depth 32.50 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California

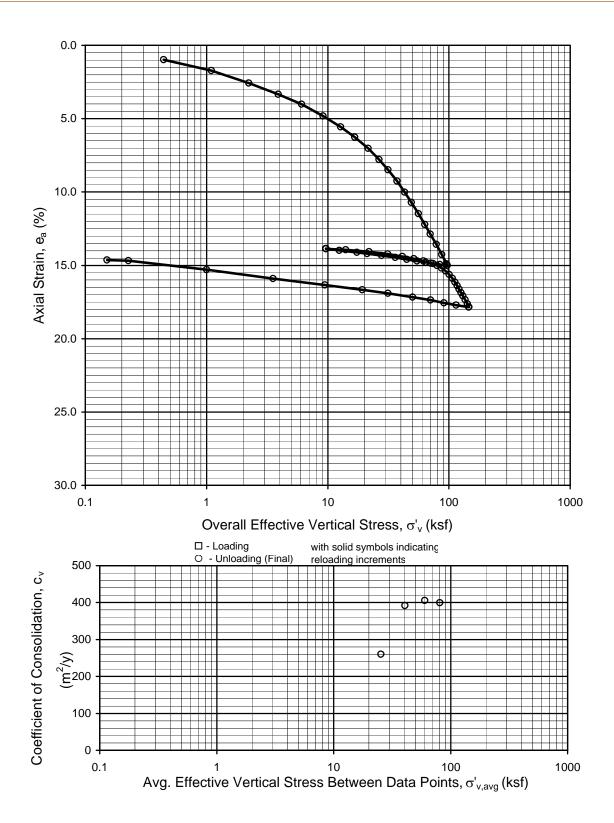







Sample No. 18a - Depth 107.05 ft Boring B-64 Tunnel Segment of SVRT Project San Jose, California

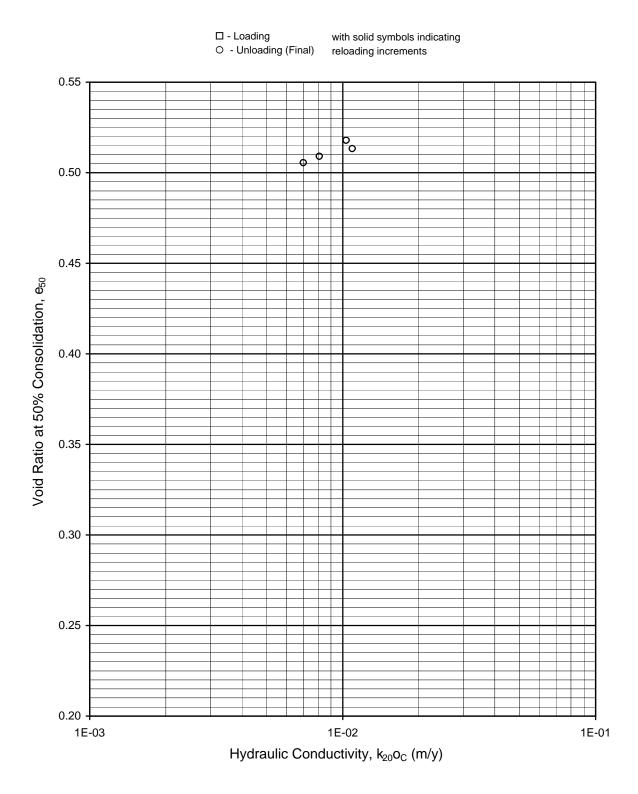







Sample No. 18a - Depth 107.05 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California

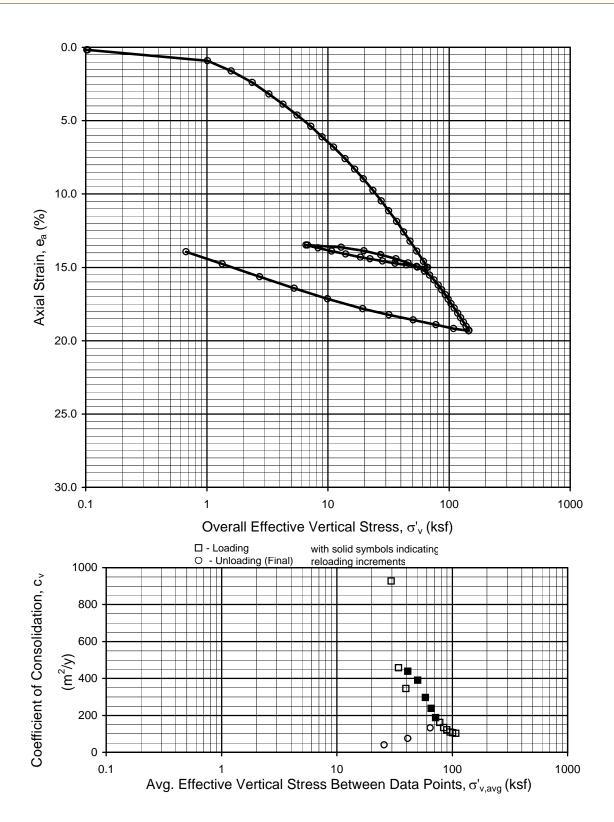







Sample No. 19a - Depth 117.40 ft Boring B-64 Tunnel Segment of SVRT Project San Jose, California

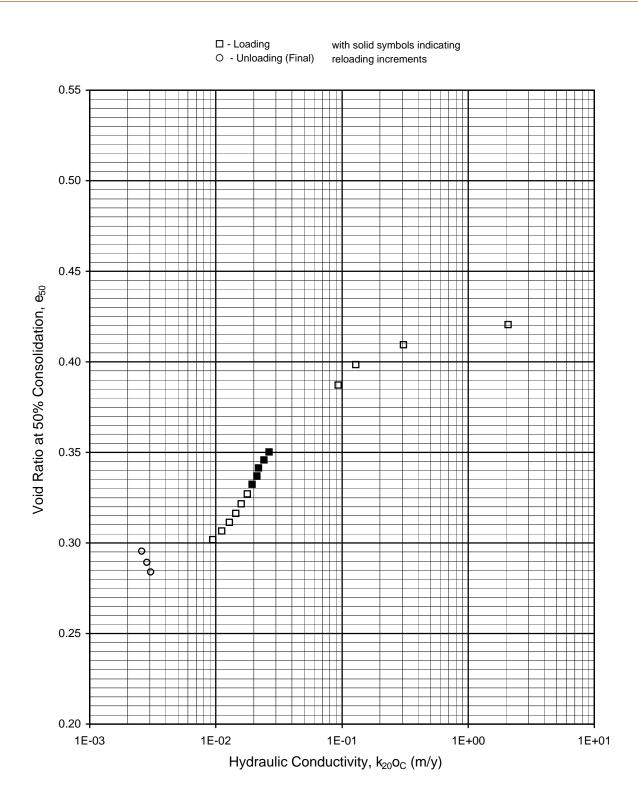







Sample No. 19a - Depth 117.40 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California

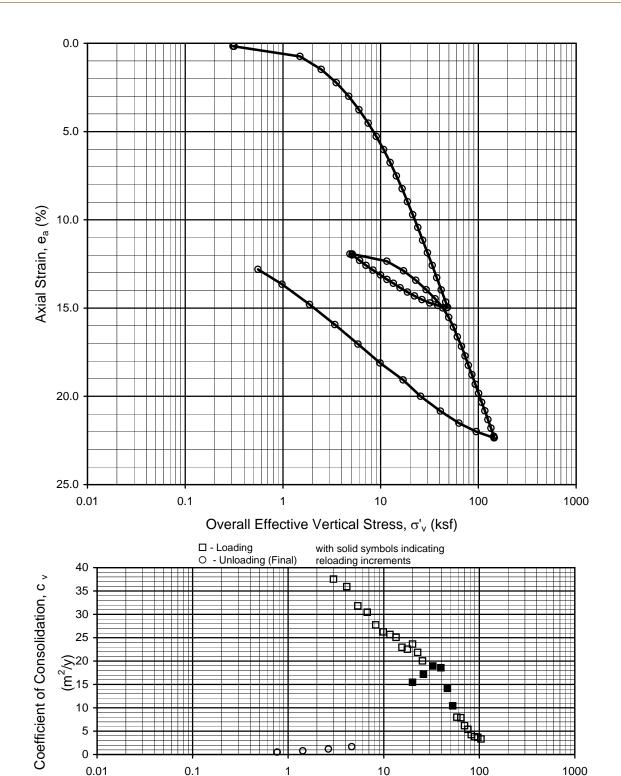







Sample No. 13a - Depth 121.60 ft Boring B-65 Tunnel Segment of SVRT Project San Jose, California



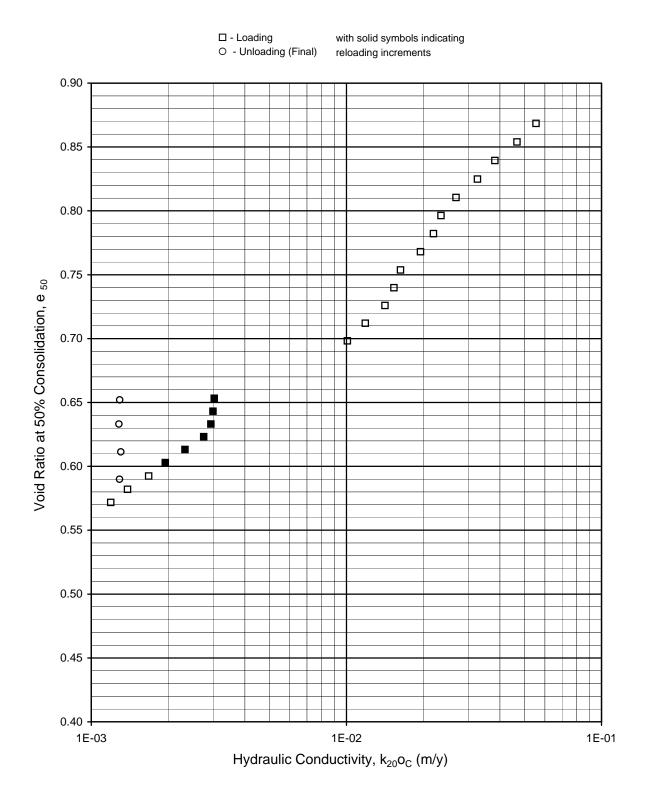





Sample No. 13a - Depth 121.60 ft Boring B-65 Tunnel Segment of SVRT Project San Jose, California



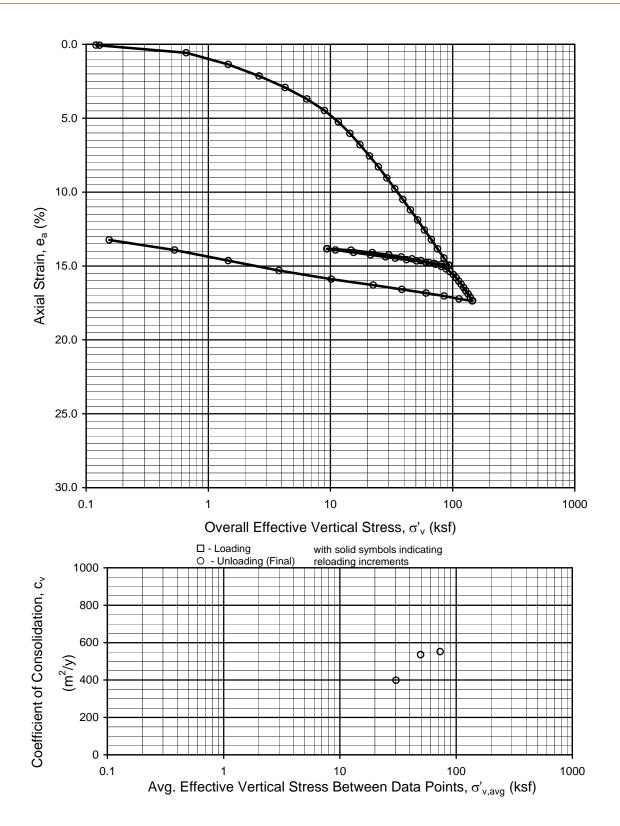





Avg. Effective Vertical Stress Between Data Points,  $\sigma'_{v,avg}$  (ksf)

Sample No. 6 - Depth 25.00 ft Boring B-71 Tunnel Segment of SVRT Project San Jose, California





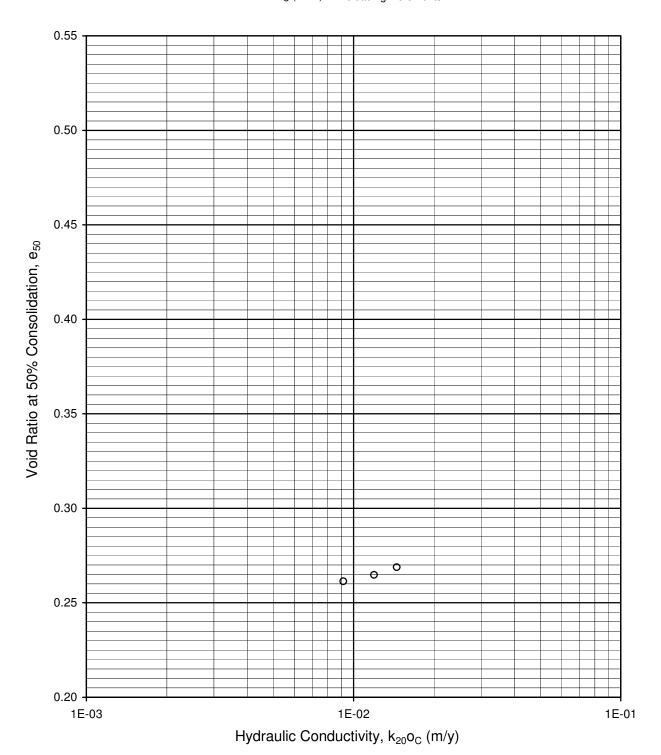



Sample No. 6 - Depth 25.00 ft
Boring B-71
Tunnel Segment of SVRT Project
San Jose, California







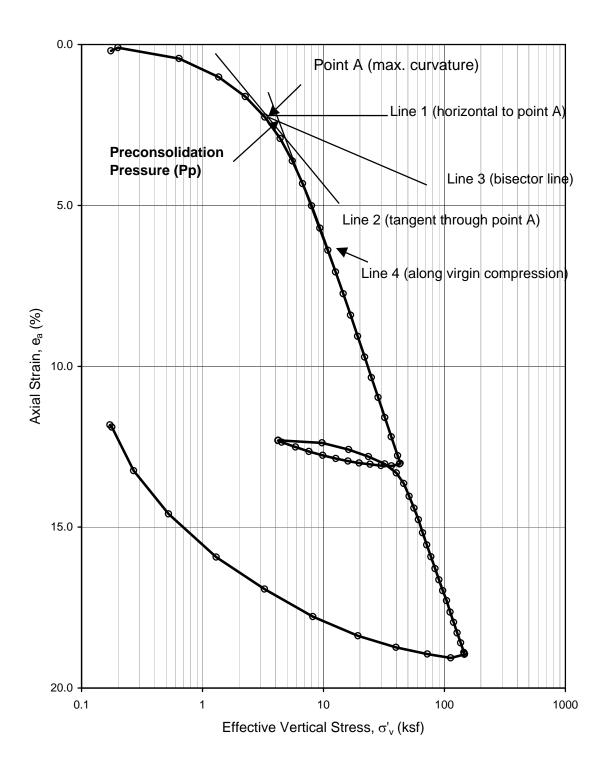

Sample No. 16a - Depth 102.00 ft Boring B-77 Tunnel Segment of SVRT Project San Jose, California





□ - Loading○ - Unloading (Final)

with solid symbols indicating reloading increments

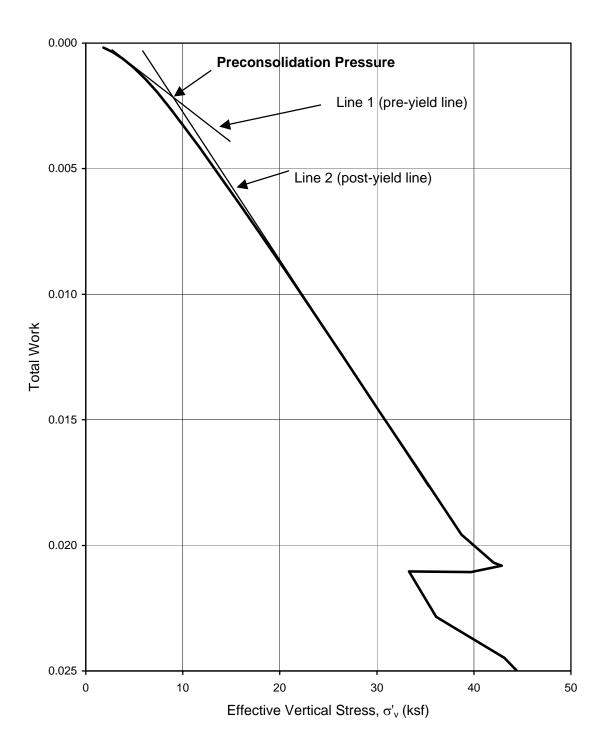



# **CRS CONSOLIDATION TEST RESULTS**

Sample No. 16a - Depth 102.00 ft Boring B-77 Tunnel Segment of SVRT Project San Jose, California








# **EXAMPLE OF CASAGRANDE CONSTRUCTION**

Tunnel Segment of SVRT Project San Jose, California







# **EXAMPLE OF BECKER CONSTRUCTION**

Tunnel Segment of SVRT Project San Jose, California



**Geotechnical Data Report** 

# APPENDIX 14 STATIC DIRECT SIMPLE SHEAR TEST RESULTS

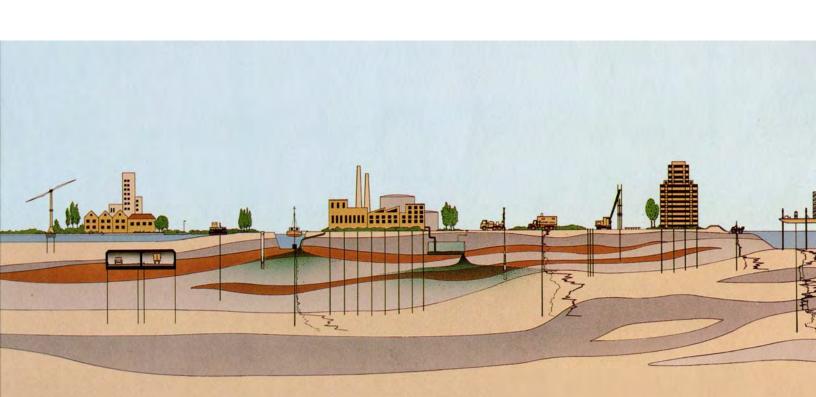
Rev. 0 9/23/2005

**Geotechnical Data Report** 

Appendix 14 presents the laboratory results of the Static Direct Simple Shear tests performed by Fugro.

9/23/2005 Rev. 0




# APPENDIX 14 STATIC DIRECT SIMPLE SHEAR TEST RESULTS

# GEOTECHNICAL EXPLORATION PROGRAM TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA

Prepared for: HMM/BECHTEL

**JULY 2005** 

Project No. 1637.001





# REPORT DOCKET

# **APPROVAL**

This document is approved by the following:

Name	Title	Signature	Issue Date
Jon W. Mitchell	Project Manager	In w MARKETTO	July 20, 2005

# **REVISION HISTORY**

Revision	Date	Change	Approval
0	June 3, 2005	Draft Report: Appendix 14 Static Direct Simple Shear Test Results	In
1	July 20, 2005	Final Report: Appendix 14 Static Direct Simple Shear Test Results with Bechtel comments from 6/10/05 & 7/13/05	m



### **FUGRO WEST, INC.**



1000 Broadway, Suite 200 Oakland, California 94607 **Tel: (510) 268-0461** Fax: (510) 268-0137

July 20, 2005 Project No. 1637.001

HMM/Bechtel 3103 North First Street San Jose, California 95134

Attention: Mr. Ignacio Arango

Subject: Appendix 14 – Static Direct Simple Shear

Tunnel Segment of SVRT Project

San Jose, California

Dear Mr. Arango:

Fugro West, Inc., is pleased to submit this copy of "Appendix 14 – Static Direct Simple Shear" presenting the results of the Static Direct Simple Shear (DSS) tests performed by the geotechnical laboratory of Fugro Consultants LP in Houston, Texas, for the Tunnel Segment of SVRT Project in San Jose, California.

We appreciate this opportunity to be of continued service to HMM/Bechtel. Please contact Jon Mitchell at (510) 267-4430 if you have any questions regarding the information presented in this appendix.

Sincerely,

FUGRO WEST, INC.

Linda Al Atik Staff Engineer

Jon W. Mitchell Staff Engineer

Ronald L. Bajuniami, P.E. G.E. Principal Consultant

LAA/JWM/RLB:rp

Copies Submitted: (pdf) Addressee





# **CONTENTS**

			Page
1.0	INTE	RODUCTION	1
	1.1	Project Description	
	1.2	Geotechnical Exploration Program Overview	
	1.3	Laboratory Testing Program Overview	
		1.3.1 Testing Overview	
		1.3.2 Program Description	
		<ul><li>1.3.3 Sample Recovery and Handling</li><li>1.3.4 Overview of Static Direct Simple Shear Test Program</li></ul>	
2.0	חפפ	S TEST PROCEDURES	
2.0	2.1	Introduction	
	2.1	DSS Test Standards and Procedures	
3.0	DSS	S TEST RESULTS	
0.0	3.1	DSS Test Results	
	3.2	Discussion and Interpretation of DSS Test Data	
4.0	LIMI	ITATIONS	7
5.0	REF	FERENCES	7
		TABLES	
			Table
Sum	marv	of Lab Tests Performed	A14-1
		of DSS Test Results	
		FIGURES	
			Figure
Bori	ng Lo	ocation May	A14-1
	-	t Results	
Norr	naliza	ad Undrained Shear Strength Versus OCR	Δ11-17



#### 1.0 INTRODUCTION

This appendix presents the results of the Static Direct Simple Shear (DSS) tests conducted by the geotechnical laboratory of Fugro Consultants LP, in Houston, Texas, (Fugro Consultants) as a part of the advanced laboratory testing program for the Tunnel Segment of Silicon Valley Rapid Transit (SVRT) Project. The DSS tests were performed on soil samples from boring locations situated along the tunnel segment alignment of SVRT Project, as shown on the Boring Location Map, Figure A14-1.

#### 1.1 PROJECT DESCRIPTION

The Santa Clara Valley Transportation Authority (VTA) intends to construct the SVRT Project in San Jose, California. This will be a 26.2-km (16.3-mile) extension of the Bay Area Rapid Transit (BART) heavy rail rapid transit system from its planned terminus at the end of the Warms Springs Extension in Fremont, to San Jose. The proposed alignment currently includes six stations (three above-grade and three below-grade), a proposed future station, and vehicle storage and maintenance facilities. The alignment is composed of two major segments:

- 1) A line segment which will be approximately 11.5 miles of at grade, elevated and cutand-cover track from Warm Springs to San Jose; and
- 2) A 5.1-mile-long tunnel segment, consisting of twin bored tunnels and cut-and-cover structures through downtown San Jose (See Figure A14-1.).

As currently planned, the tunnel segment includes at-grade and open cut track, three cut-and-cover stations, and a cut-and-cover track crossover structure. The cut-and-cover stations and the crossover structures have a cumulative length of approximately 4,970 feet. The remaining 4.14 miles of the alignment will be twin 19.5-foot-diameter tunnels.

This investigation and report cover the 5.1-mile-long tunnel segment section only.

#### 1.2 GEOTECHNICAL EXPLORATION PROGRAM OVERVIEW

The joint venture of Hatch Mott MacDonald T & T, Inc., and Bechtel Infrastructure Corporation (HMM/Bechtel) is providing engineering design services for the tunnel segments (Segments 3 and 4) of the SVRT project to the VTA. HMM/Bechtel has subcontracted with a number of companies to conduct the geotechnical field exploration program for the project. HMM/Bechtel's primary subcontractors for the geotechnical exploration program included Fugro West, Inc., (Fugro); Parikh Consultants (Parikh); and Pitcher Drilling Company (Pitcher).

The three companies, Fugro, Parikh, and Pitcher, conducted the majority of the geotechnical field exploration program for the tunnel segments of the SVRT Project from October 15, 2004, to March 5, 2005. The intent of the geotechnical field investigation program was to obtain geotechnical data that will aid in the design and construction of the proposed tunnel and cut-and-cover structures.



In general, the geotechnical field investigations explored subsurface conditions along the proposed tunnel alignment, within the vicinity of the proposed Eastern and Western Portals, at the two proposed ventilation structures, and at the proposed stations including Alum Rock Station, Downtown San Jose Station, and Diridon/Arena Station. The geotechnical exploration program included:

- 76 rotary wash borings, and
- 146 cone penetration tests (CPTs).

Figure A14-1 provides a map of the exploration locations. These locations were selected by HMM/Bechtel based on the following considerations: 1) the data requirements of the tunnel designer; 2) the location of existing geotechnical data; 3) the avoidance of private property; and 4) the avoidance of existing underground and overhead utilities. For CPT correlation purposes approximately 16 sets of borings and CPTs were conducted within 15 feet of each other.

The boring investigation program was conducted by the two companies, Parikh and Pitcher. The investigation included soil sampling and in situ testing. Soil sampling consisted of Pitcher Barrel sampling, Shelby tube sampling, SPT sampling and California sampling. The in situ testing conducted in the borings consisted of field vane shear testing, pressuremeter testing, downhole geophysical logging, and piezometer installation. For further details regarding the boring investigation program and results, please refer to the main report.

#### 1.3 LABORATORY TESTING PROGRAM OVERVIEW

#### 1.3.1 Testing Overview

Fugro Consultants' geotechnical laboratory conducted the advanced laboratory testing program for the Tunnel Segment of SVRT Project. This program was conducted on samples provided by Parikh from soil borings located along the tunnel segment. Table A14-1, below, summarizes the numbers and types of different tests conducted. The purpose of this advanced laboratory testing program was to determine selected index and engineering properties of the sampled soils. This appendix provides a detailed description for the constant rate of strain CRS consolidation tests, along with a summary of the interpreted parameters.

Table A14-1. Summary of Advanced Laboratory Testing Program

Test Description	Number of Tests
Constant Rate of Strain (CRS) Consolidation	37
Static Direct Simple Shear	15
K₀-Consolidated Undrained Triaxial Compression	20
K₀-Consolidated Undrained Triaxial Extension	16
K ₀ -Consolidated Bishop's Procedure	12
Isotropically-Consolidated Drained Triaxial Compression	30



#### 1.3.2 Program Description

The physical properties of the soils tested during the advanced laboratory testing program are separated into two categories - index and engineering. The index properties include items such as water content, specific gravity, unit weight, void ratio, and degree of saturation. The engineering properties would include items such as compressibility (consolidation), strength, and hydraulic conductivity (permeability). The advanced tests conducted as part of this laboratory testing program are discussed in more detail below.

- Constant Rate of Strain Consolidation (CRS) tests were conducted to determine
  the rate and magnitude of soil consolidation as well as stress history for a soil
  sample that is restrained laterally and drained axially. The one-dimensional
  consolidation tests typically involved constant rate-of-loading, one unload-reload
  cycle, and one rebound stage from the maximum applied stress. Detailed discussion
  of the CRS consolidation tests is provided in Appendix 13.
- Static Direct Simple Shear (DSS) tests were conducted to measure constant volume (undrained) shear strength and stress-strain characteristics of cohesive soils after one-dimensional consolidation using a constant rate of simple shear deformation. Detailed discussion of the DSS tests is provided in Appendix 14 (this appendix).
- Isotropically Consolidated Drained Triaxial (CDTX) tests were conducted to evaluate the drained strength characteristics, such as friction angle and stress-strain relationship of the soils encountered in the borings. For detailed discussion of the consolidated drained triaxial tests, refer to Appendix 15.
- K₀-Consolidated Undrained Triaxial Compression and Extension (CK₀UE & CK₀UC) tests were conducted to estimate the static strength parameters and stress-strain characteristics of fine-grained soils under a range of confining stresses and overconsolidation ratios (OCRs). In K₀-consolidated testing, the sample was consolidated under drained conditions to the assigned vertical stress while maintaining a constant diameter of the cylindrical specimen (the horizontal confining stress was automatically adjusted to maintain the constant diameter). For detailed discussion of the K₀ triaxial compression and extension tests, refer to Appendix 16.
- **K**₀ **Bishop's Procedure Triaxial** tests were conducted to determine the at-rest lateral earth pressure coefficient (K₀) as a function of the overconsolidation ratio (OCR). For detailed discussion of the K₀ Bishop's tests, refer to Appendix 17.

The scope of the advanced laboratory testing program also included the x-raying of assigned soil samples. Discussion of the x-ray testing procedures and a summary of results are provided in Section 2.0 of Appendix 13, with x-ray images shown in Appendix 20.

#### 1.3.3 Sample Recovery and Handling

Soil sampling was conducted by Parikh at intervals typically ranging from 5 to 10 feet in accordance with the project specifications. Upon sample recovery, undisturbed portions of the



soil sample tubes were sealed and transported to Parikh's lab. For further details regarding sample recovery and handling, please refer to the main report.

Soil samples assigned for advanced laboratory testing were transported in wooden Shelby tube holders, which are designed to maintain the tubes vertical orientation during transit to Fugro's laboratory in Oakland. The samples where then packed in specially fabricated padded containers designed to minimize disturbance and maintain an upright (vertical) orientation of the samples during shipping. The samples were finally shipped to Fugro Consultants' geotechnical laboratory for testing.

#### 1.3.4 Overview of Static Direct Simple Shear Test Program

Fugro Consultants' geotechnical laboratory conducted 15 DSS tests as assigned by HMM/Bechtel. The DSS test measures constant volume (undrained) shear strength and stress strain-characteristics of cohesive soils after K₀-consolidation using a constant rate of simple shear deformation. The test is applicable to field conditions where the soils have fully consolidated under one set of stresses, and then subjected to changes in stress without time for further drainage to take place. In the DSS test, the shear strength is measured under plane strain conditions, which is indicative of field loading conditions such as beneath long embankments and around axially loaded piles.

#### 2.0 DSS TEST PROCEDURES

#### 2.1 INTRODUCTION

The DSS tests were conducted in general accordance with ASTM Test Method D 6528 using an NGI-type simple shear device. In static DSS tests, a sample is consolidated under  $K_0$  conditions, and subjected to horizontal displacement. Horizontal displacement is applied at a constant rate and the constant volume condition simulates the undrained condition for saturated specimens. Constant volume is achieved by changing the normal load applied to the specimen to maintain constant specimen height.

During the DSS test, horizontal and vertical loads and displacements are recorded and then analyzed to determine strength and stress-strain characteristics of the soil specimen. These soil characteristics are presented in the normalized shear stress versus strain and normalized shear stress versus normalized effective stress plots.

#### 2.2 DSS TEST STANDARDS AND PROCEDURES

In accordance with ASTM D6528, the DSS test involves four steps:

Specimen Preparation: The selected portions of the tubes were cut into segments with a
mechanical hacksaw (18 teeth per inch). A wire saw was used to separate the soil from
the surrounding tube in an effort to reduce potential disturbance upon extrusion. In
addition, each tube is marked such that all test specimens, will have the same



orientation when sheared. The sample is then extruded from the cut portion of the tube using a hydraulically actuated ram.

After the cohesive soil sample is trimmed to the required diameter (47.6, 63.5 or 71 mm) and height (19.5 mm), the specimen is placed between two parallel rigid platens constrained axially and laterally, such that its cross-sectional area remains constant.

- 2. Specimen Consolidation: The specimen is loaded axially and allowed to consolidate one-dimensionally to reach the stress level specified by the client. Each normal load increment is maintained until excess pore water pressures are essentially dissipated to reach at least 90 percent consolidation. The maximum normal load is maintained until the completion of one cycle of secondary compression. If a test requires the specimen to have an OCR greater than one, as in this program, the specimen is first consolidated to an induced OCR = 1, and cured (as mentioned above, but with  $\sigma'_{v,c} = \sigma'_{vc,max}$ ); then rebounded in increments to  $\sigma'_{v,c}$  and cured (thereby obtaining the appropriate OCR > 1); and, finally, sheared.
- 3. Equipment Preparation: Equipment is prepared by setting a suitable rate of displacement on the shear motor, setting the displacement gauge to a desired starting position and locking the vertical loading assembly to prevent any vertical deformation of specimen during simple shear.
- 4. Simple Shearing: The specimen is sheared by displacing one platen tangentially relative to the other at a constant rate of displacement and measuring the resulting shear force. The platens are constrained against rotation and axial movement throughout shear. The specimen volume is held constant during shear to simulate undrained conditions. The specimen must be sheared at a rate that is slow enough to allow dissipation of excess pore pressure generated during shearing. For this program the specimen were typically sheared at a strain rate of about 5 percent per hour.

#### 3.0 DSS TEST RESULTS

#### 3.1 DSS TEST RESULTS

During shearing, the necessary data (time, vertical and horizontal forces, shear deformations, and transducer excitation voltage) were recorded using an automated data-acquisition system and electronically filed. Specialized Excel worksheets, along with a Visual Basic code (VBA) were used to reduce the data files into engineering units in tabular and graphical format. Figures A14-2 through A14-16 present the DSS test results. For each test performed, normalized shear stress (the ratio of the horizontal shear stress to the pre-shear effective vertical stress [ $\tau_h/\sigma'_{v,c}$ ] versus shear strain ( $\gamma$ %) and normalized shear stress ( $\tau_h/\sigma'_{v,c}$ ) versus normalized effective vertical stress ( $\sigma'_v/\sigma'_{v,c}$ ) were displayed.

In addition, a plot of the Normalized Undrained Shear Strength,  $S_u/\sigma'_{v,c}$  versus Overconsolidation Ratio (OCR), for test series run at various test-induced OCRs is presented on



Plate A14-17. The data presented in that plot can be expressed by the following empirical relationship:

$$(S_u/\sigma'_v) = (S_u/\sigma'_{v,c})_{NC} \times OCR^m$$

where:

- (S_u/σ'_v) is the in situ, normalized undrained shear strength for a given node of shearing and OCR;
- $(S_u/\sigma'_{v,c})_{NC}$  is the normalized undrained shear strength at an induced OCR = 1 and for a given node of shearing;
- OCR is the over consolidation ratio; and m is the OCR exponent.

The above empirical relationship implies a linear relationship between the increase in normalized undrained shear strength and increase in OCR, when plotted on a log-log scale. The data presented on the on Figure A14-17 include data from: 1) tests with induced OCRs of greater than 1, and 2) tests which had a test induced OCR of 1, and where it could be confirmed that the in situ preconsolidation stress (from CRS consolidation tests) was significantly less than the preshear vertical effective consolidation stress. This second condition helps to ensure that there is minimal effect of sample disturbance for the OCR =1 data points. Based on the data plotted on Figure A14-17, the  $(S_u/\sigma'_{v,c})_{NC} = 0.27$  and m = 0.68. The value of m typically ranges between about 0.70 and 0.85 (Ladd et al. 1977).

Results such as moisture content, Atterberg limits, initial unit weight, soil type, interpreted preconsolidation pressure, estimated in situ vertical stress, overconsolidation ratio, undrained shear strength and maximum shear strain are summarized in Table A14-2 – Summary of DSS Test Results for all the DSS tests performed. The estimated in situ vertical effective stress was estimated by developing a unit weight profile from the boring data with either measured or estimated ground water levels. The interpretation of the parameters from the DSS test data (e.g., undrained shear strength and stress-strain curves) is discussed in more detail below.

#### 3.2 DISCUSSION AND INTERPRETATION OF DSS TEST DATA

Interpretation of the DSS test results is subject to the following assumptions and limitations:

- The interpreted shear strength of a specimen is a function of the soil type, normal consolidation stress, time of consolidation, rate of strain applied and prior stress history of the soil.
- The interpreted undrained strength of a specimen is a function of stress conditions.
   In this test method, undrained shear strength is measured under plane strain conditions and the principle stresses continuously rotate due to the application of shear stress.
- The constant volume conditions applied during the DSS tests are equivalent to the undrained conditions for a saturated specimen; hence, the DSS test results are applicable to field conditions wherein soils have fully consolidated under one set of

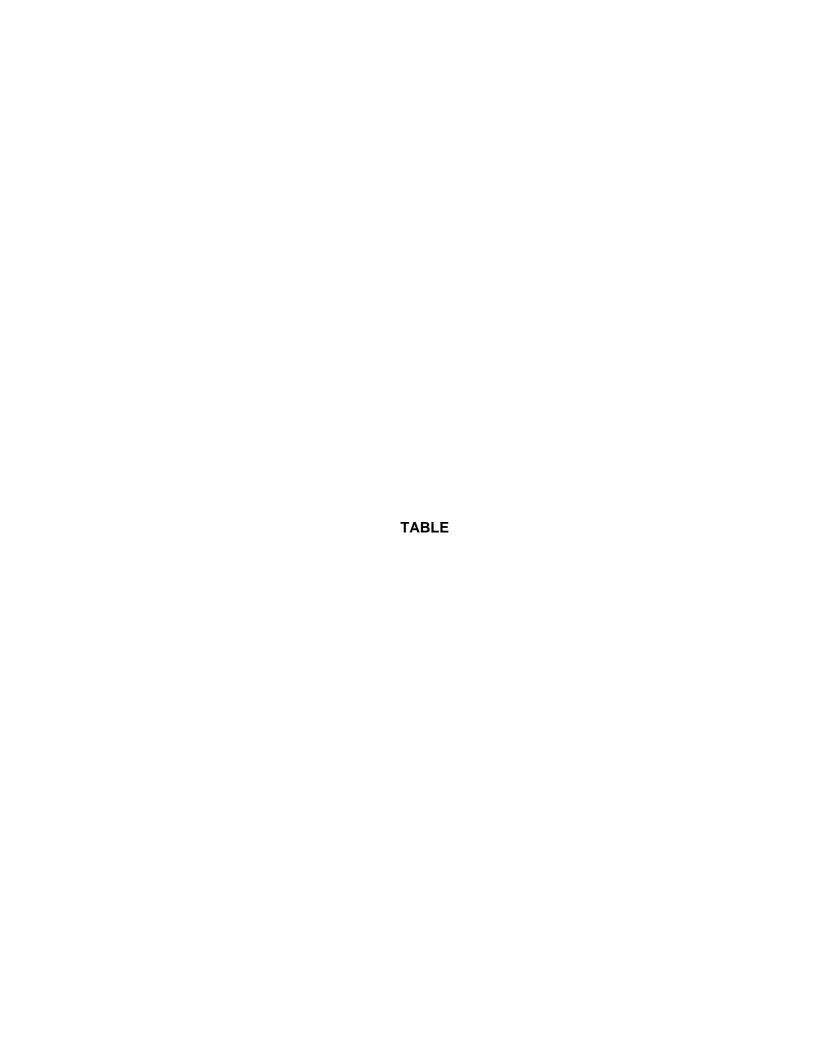


field conditions, and then are subjected to changes in stress without enough time for further drainage to take place.

- The state of stress within the soil specimen under the DSS test is usually neither sufficiently defined nor uniform enough to allow rigorous interpretation of the results.
   Therefore, interpreted results herein should not be confused with the effective stress parameters derived from other shear tests having better defined states of stress.
- Values of the secant shear modulus can be used to estimate the initial settlements of saturated cohesive soils due to undrained shear deformations.

#### 4.0 LIMITATIONS

Our services consist of laboratory testing and data evaluations that are made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.


The test data provided in this appendix is from the laboratory testing of samples obtained from subsurface explorations conducted by others. These explorations indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. Variations may exist and conditions not observed or described in this report could be encountered during construction. Our laboratory tests results presented in this appendix are based on the standards and procedures indicated herein. The laboratory assignments were provided by HMM/Bechtel.

This appendix has been prepared for the exclusive use of HMM/Bechtel and their consultants for specific application to the SVRT project as described herein. In the event that there are any changes in the ownership, nature, design, or location of the proposed project, or if any future additions are planned, the results contained in this appendix should not be considered valid unless 1) the project changes are reviewed by Fugro, and 2) results presented in this appendix are modified or verified in writing. Reliance on this report by others must be at their risk unless we are consulted on the use or limitations. We cannot be responsible for the impacts of any changes in geotechnical standards, practices, or regulations subsequent to performance of services without our further consultation. We can neither vouch for the accuracy of information supplied by others nor accept consequences for unconsulted use of segregated portions of this report.

#### 5.0 REFERENCES

ASTM D6528, "Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils," ASTM International.

Ladd, C.C., et al. 1977. "Stress Deformation and Strength Characteristics," *Proceedings, 9th International Conference on Soil Mechanics, 2,* Tokyo, Japan, pp. 421-494.





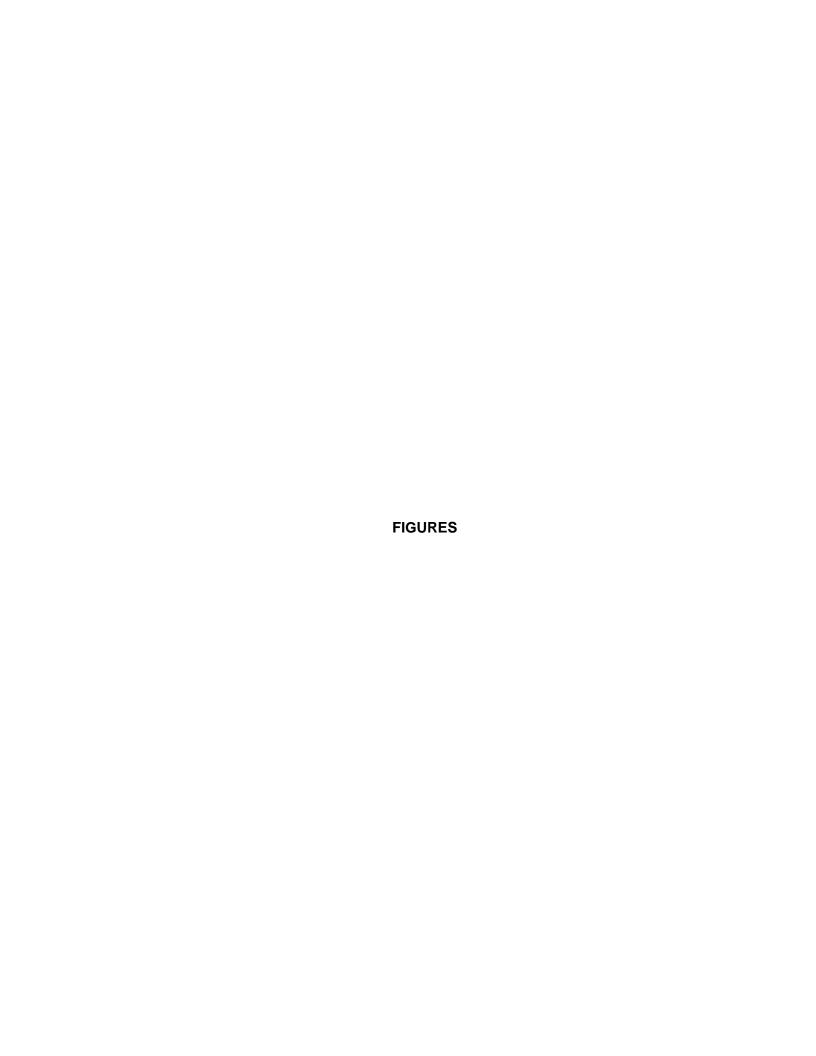
Boring Number	R-23	B-23	B-24	R-25	R-25	R-25	B-33	R-55	R-50
Sample Number	17b	18b	23b	16b	21a	21b	17a	26b	17b
Penetration Depth (ft)	106.65	117.15	110.35	110.65	127.50	127.35	137.00	131.35	169.85
Soil Type	CL	CF	CF	CF	CL	CL	CL	CL	CL
Moisture Content (%)									
In Situ, W _o	18.6	20.4	21.8	25.7	28.3	28.6	28.8	20.0	26.1
Initial Before Consolidation, W _i	19.4	20.8	22.6	26.7	28.9	29.3	29.5	22	27.6
Final W _f	11.7	17.3	17.2	15.7	25.4	18.4	26.2	14.4	24.9
Atterberg Limits (%)									
Liquid Limit, LL	24	30	28	43	54	ΑN	22	37	51
Plastic Limit, PL	16	18	16	16	18	ΑN	19	16	25
Initial Total Unit Weight (pcf)	131.1	126.7	126.5	123.9	121	119.3	121.8	125.4	121.3
In Situ Vertical Effective Stress, o'vo (ksf)	8.9	7.5	8.1	8.1	9.2	6.9	9.6	9.1	11.2
Vertical Effective Consolidation Stress (Pre-Shear), σ' _{vc} (ksf)	50.6	18.9	20.2	51.6	8.3	13.0	8.7	22.9	10.6
Interpreted Preconsolidation Pressure, σ' _p (ksf)²	25.0	20.7	19.4	21.0	-	-	1	25.5	33.0
Overconsolidation, OCR									
In Situ²	3.7	2.8	2.4	2.5	•	ı		2.8	3.0
Test Induced	1	1	1	1	1	4.99	1	3.5	1
Maximum Shear Strain (%)	29.1	28.1	29.4	29.1	28.6	28.7	29.2	29.5	28.1
Undrained Shear Strength, S _u (ksf)	14.48	7.36	6.13	13.62	3.80	10.75	3.23	14.32	4.20
Undrained Shear Strength Ratio, Su/o'vc	0.29	0.39	0:30	0.26	0.46	0.82	0.37	0.62	0.39

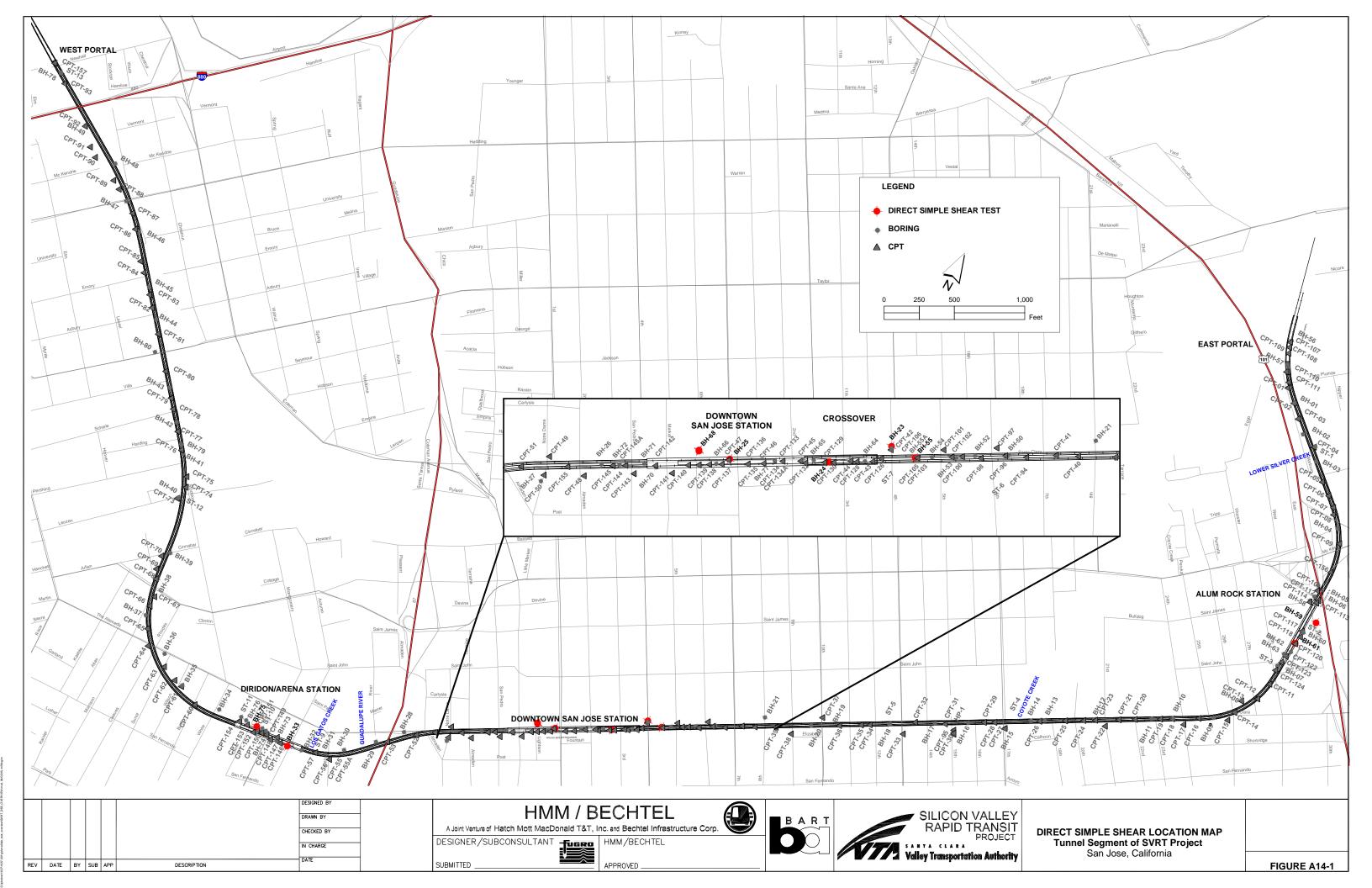
Notes:

NA = Test Not Assigned
1. Soil type is based on visual soil classification
2. Parameters interpreted from CRS consolidation tests
- : Test data not measured

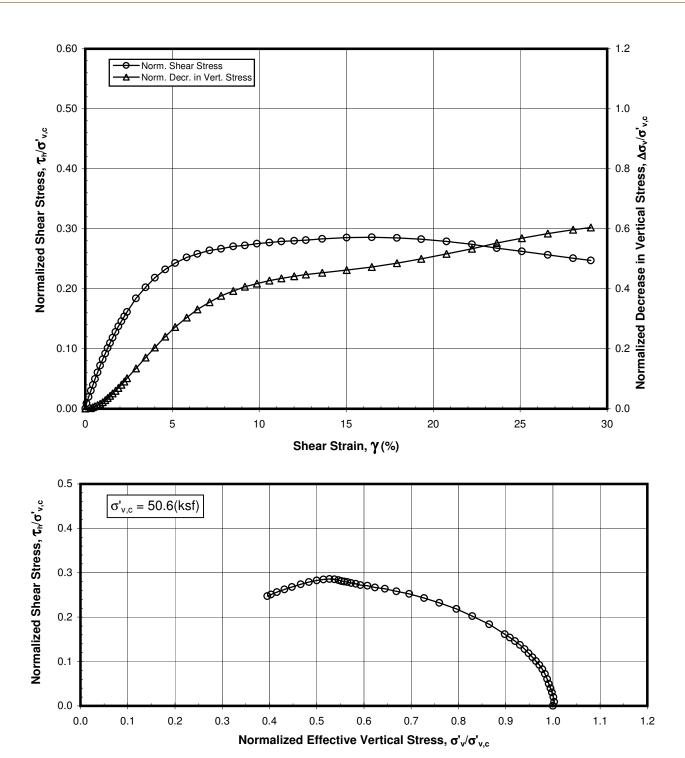
# Summary of Static Direct Simple Shear Test Results Tunnel Segment of SVRT Project San Jose, California







Boring Number	B-61	B-61	B-61	B-68	B-75	B-75
Sample Number	15b	15f	17c	18a	15a	15d
Penetration Depth (ft)	125.70	127.10	136.10	148.90	151.00	150.05
Soil Type ¹	НЭ	СН	СН	CL	CL	CL
Moisture Content (%)						
In Situ, W _o	24.7	29.8	23.1	24.3	18.4	27.1
Initial Before Consolidation, W _i	24.6	29.8	23.9	25.3	18.9	28.1
Final W _f	21.3	17.5	15.4	22.4	17.1	19.1
Atterberg Limits (%)						
Liquid Limit, LL	41	41	41	38	29	29
Plastic Limit, PL	21	21	21	18	16	16
Initial Total Unit Weight (pcf)	129	121	126.1	125.8	131.2	123.7
In Situ Vertical Effective Stress, σ' _{vo} (ksf)	8.9	8.7	9.4	10.3	10.5	10.5
Vertical Effective Consolidation Stress (Pre-Shear), σ' _{vc} (ksf)	8.2	17.5	16.9	5.1	5.1	25.1
Interpreted Preconsolidation Pressure, o'p	0.40	0.40	0			
(ksf)²	24.0	24.0	23.0	ı	-	-
Overconsolidation, OCR						
In Situ ²	2.8	2.8	2.4	ı	İ	ı
Test Induced	1	4	2.99	1	1	2
Maximum Shear Strain (%)	28.2	31.9	30.5	27.8	28.2	29.2
Undrained Shear Strength, S _u (ksf)	3.33	11.98	9.44	2.10	2.34	10.39
Undrained Shear Strength Ratio, S _u /σ'νc	0.41	0.68	0.56	0.41	0.46	0.41

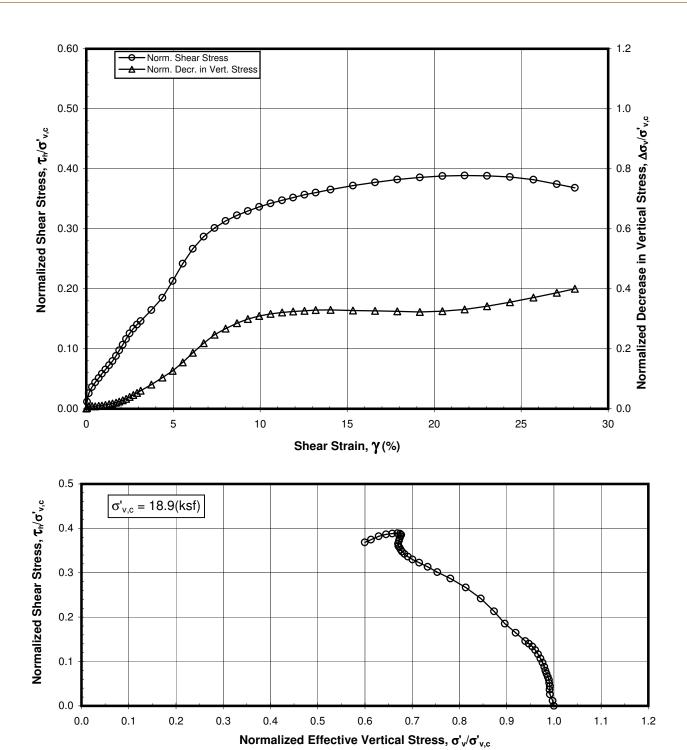
NA = Test Not Assigned
1. Soil unit is based on visual soil classification
2. Parameters interpreted from CRS consolidation tests
-: Test data not measured


# Summary of Static Direct Simple Shear Test Results Tunnel Segment of SVRT Project San Jose, California





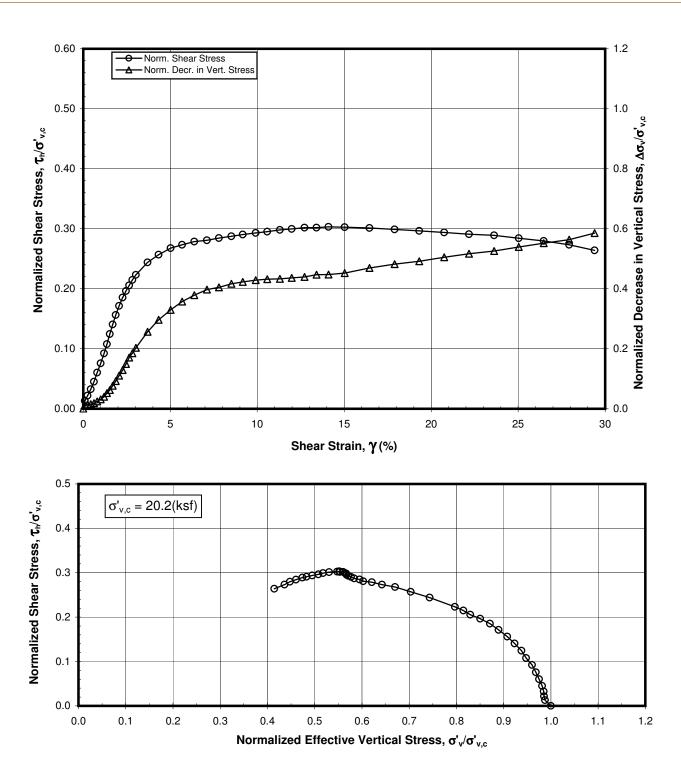







Sample: 17b - Depth: 106.65 ft. Induced OCR = 1
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California

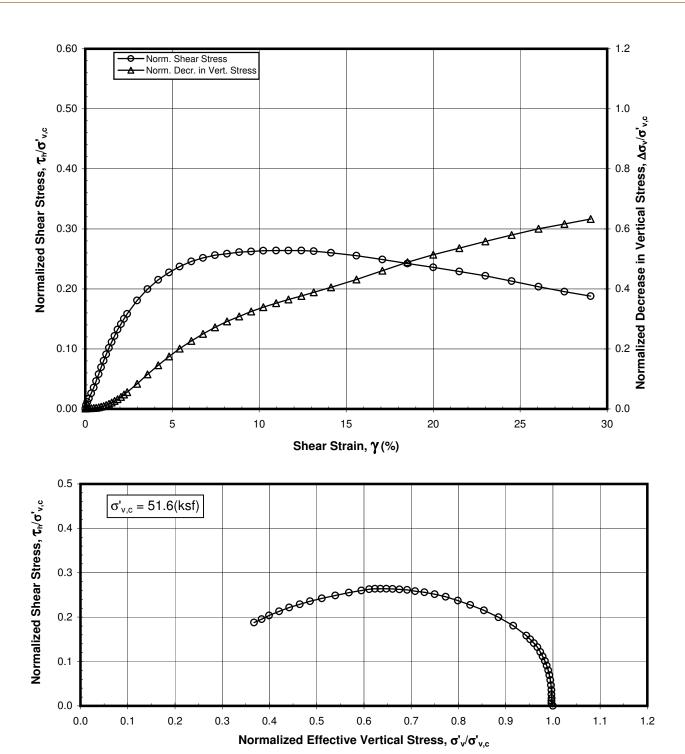







Sample: 18b - Depth: 117.15 ft. Induced OCR = 1
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California

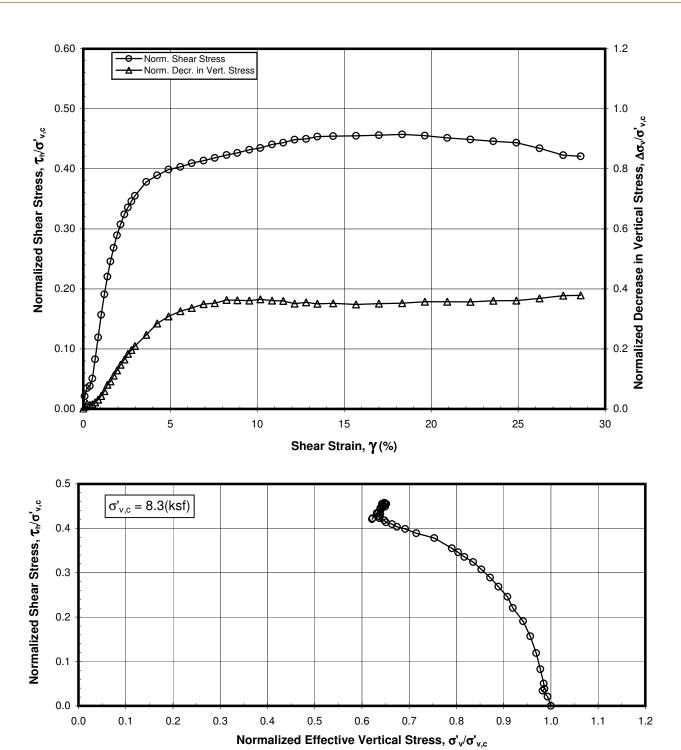







Sample: 29b - Depth: 110.35 ft. Induced OCR = 1
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California

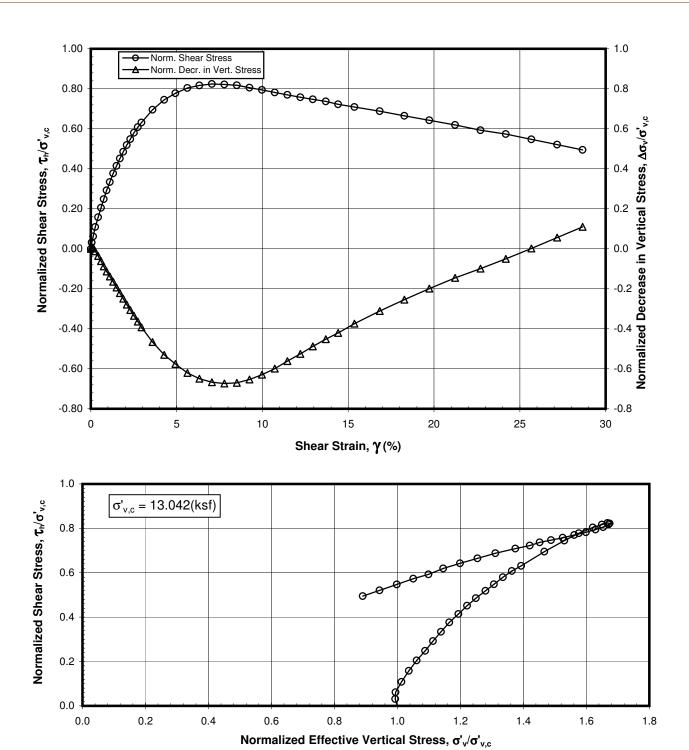







Sample: 16b - Depth: 110.65 ft. Induced OCR = 1
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California

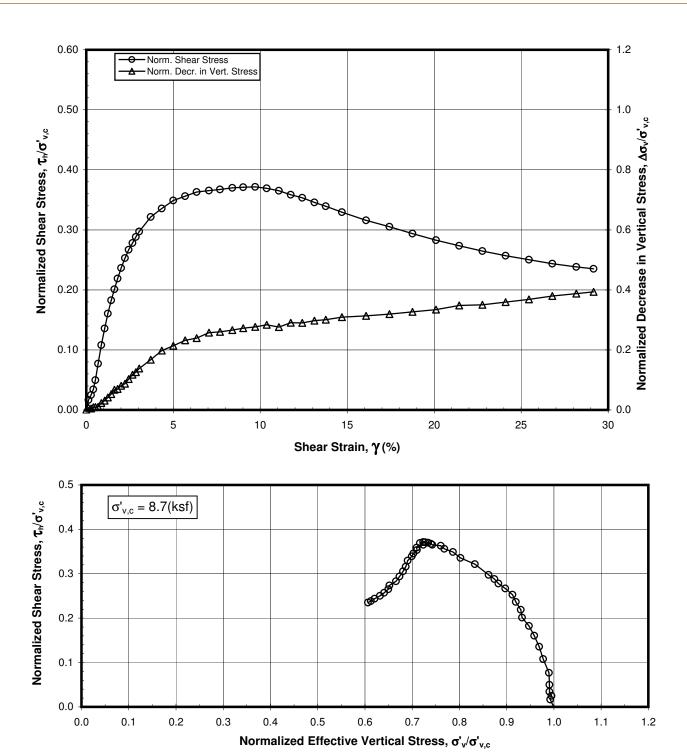







Sample: 21a - Depth: 127.50 ft. Induced OCR = 1
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California

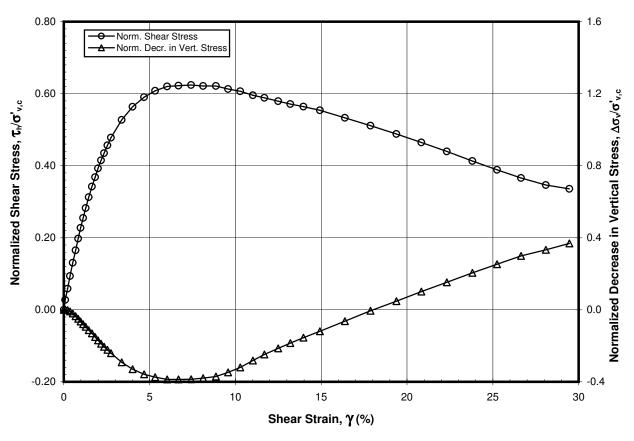


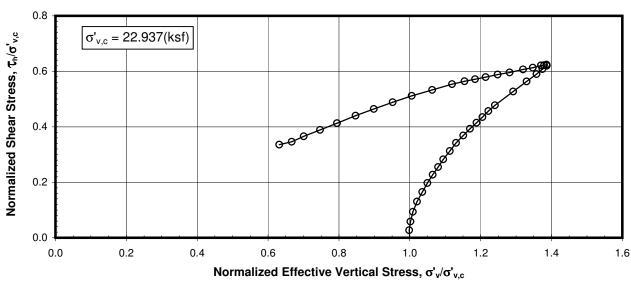





Sample: 21b - Depth: 127.35 ft. Induced OCR = 4.99
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California






Sample: 17a - Depth: 137.00 ft. Induced OCR = 1
Boring B-33
Tunnel Segment of SVRT Project
San Jose, California

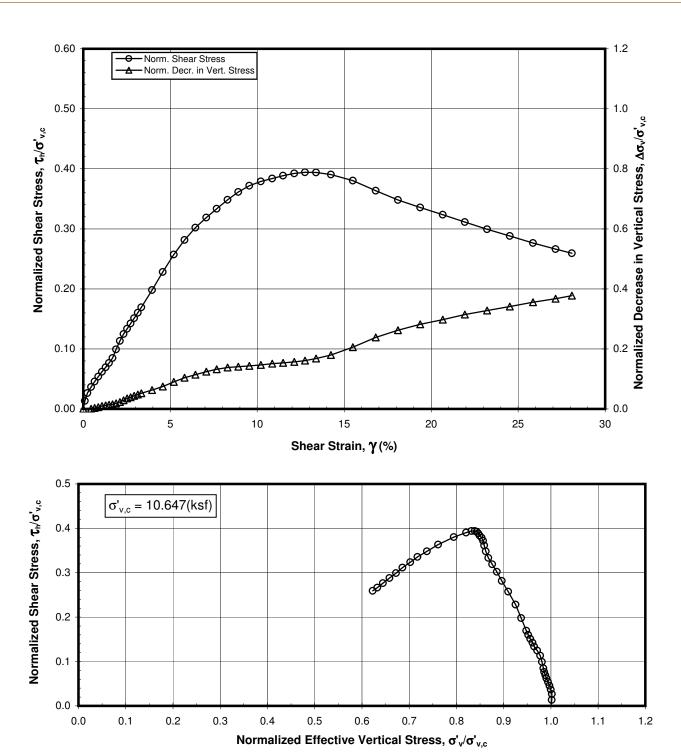








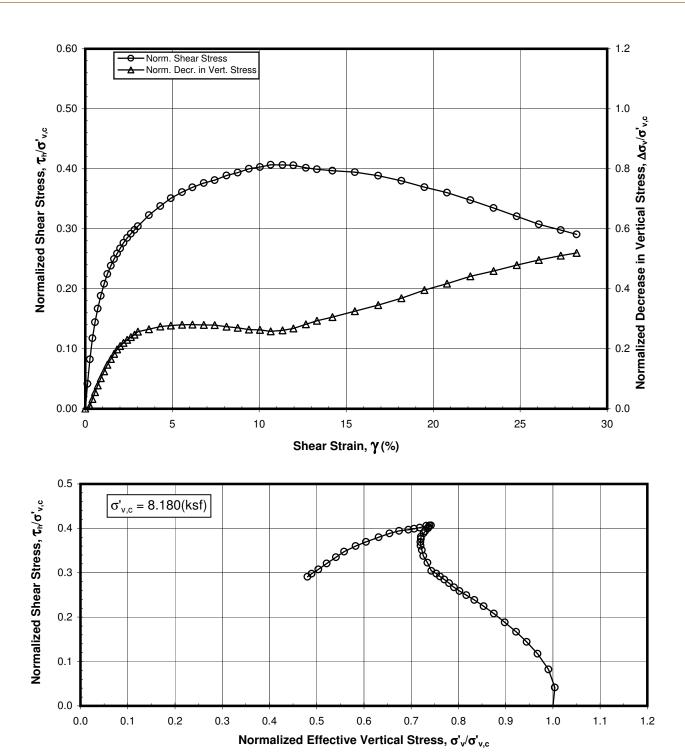
Sample: 26b - Depth: 131.35 ft. Induced OCR = 3.5


Boring B-55

Tunnel Segment of SVRT Project

San Jose, California

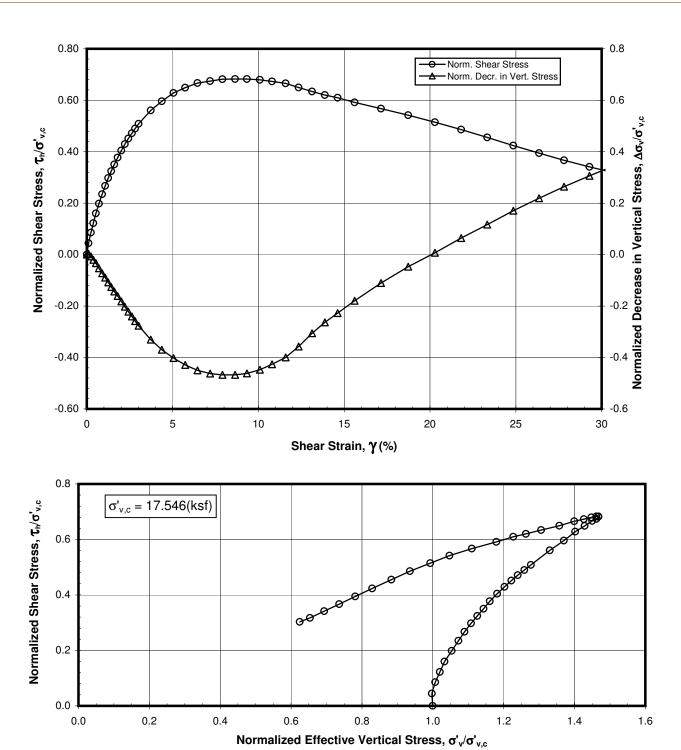







Sample: 17b - Depth: 169.85 ft. Induced OCR = 1
Boring B-59
Tunnel Segment of SVRT Project
San Jose, California

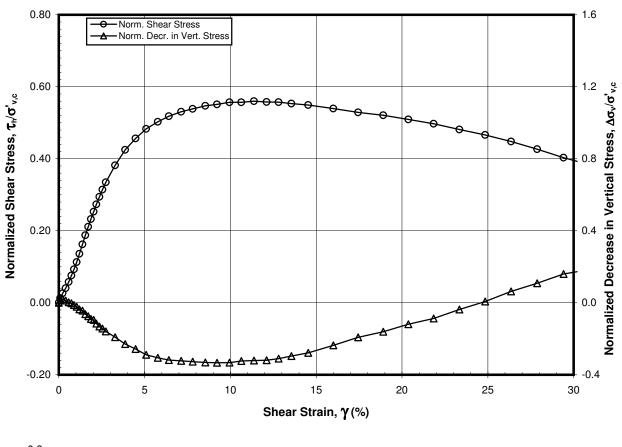


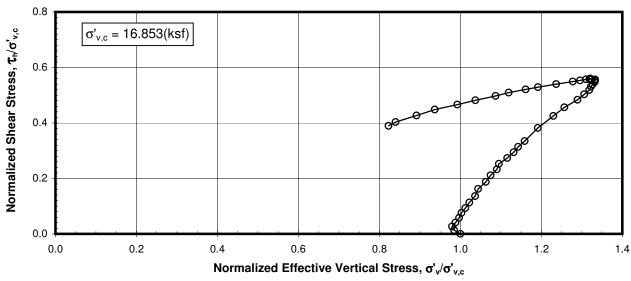





Sample: 15b - Depth: 125.70 ft. Induced OCR = 1
Boring B-61
Tunnel Segment of SVRT Project
San Jose, California



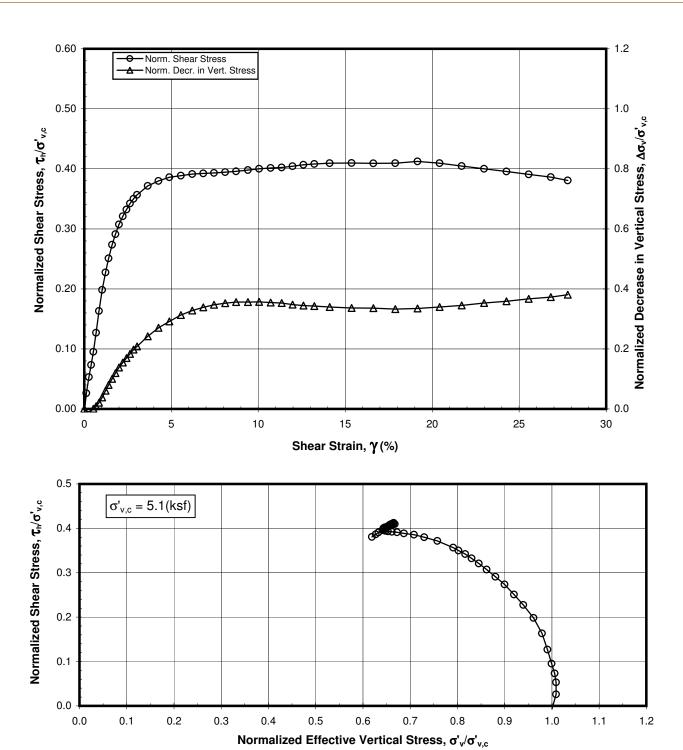



Sample: 15f - Depth: 127.10 ft. Induced OCR = 4
Boring B-61
Tunnel Segment of SVRT Project
San Jose, California



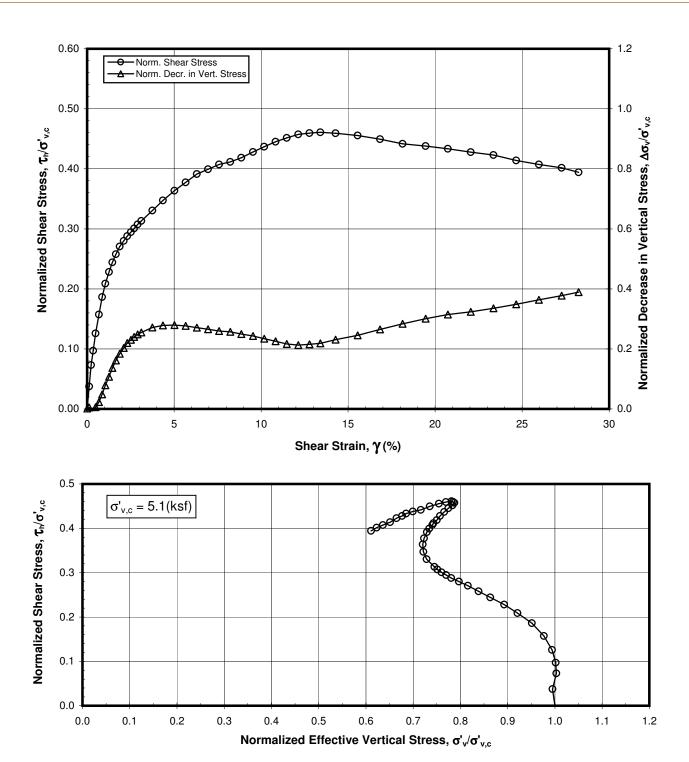







Sample: 17c - Depth: 136.00 ft. Induced OCR = 2.99
Boring B-61
Tunnel Segment of SVRT Project
San Jose, California

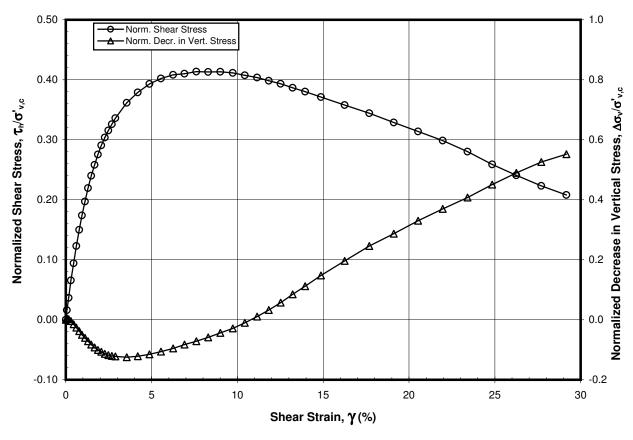


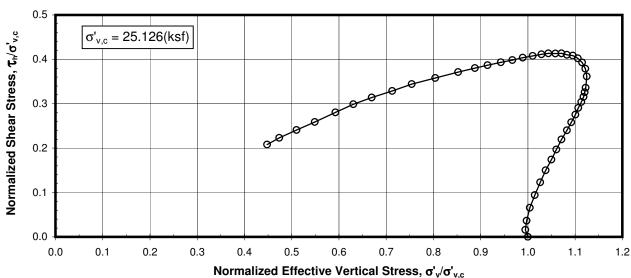





Sample: 18a - Depth: 148.90 ft. Induced OCR = 1
Boring B-68
Tunnel Segment of SVRT Project
San Jose, California

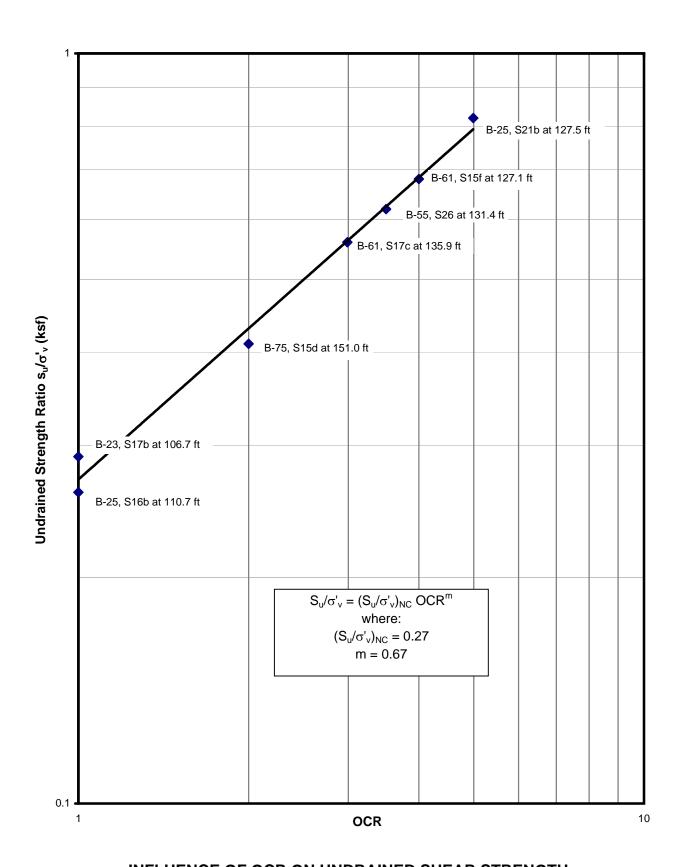





Sample: 15a- Depth: 151.00 ft. Induced OCR = 1
Boring B-75
Tunnel Segment of SVRT Project
San Jose, California










Sample: 15d - Depth: 150.05 ft. Induced OCR = 2
Boring B-75
Tunnel Segment of SVRT Project
San Jose, California





### INFLUENCE OF OCR ON UNDRAINED SHEAR STRENGTH

**Geotechnical Data Report** 

## APPENDIX 15

## CONSOLIDATED DRAINED TRIAXIAL COMPRESSION TEST RESULTS

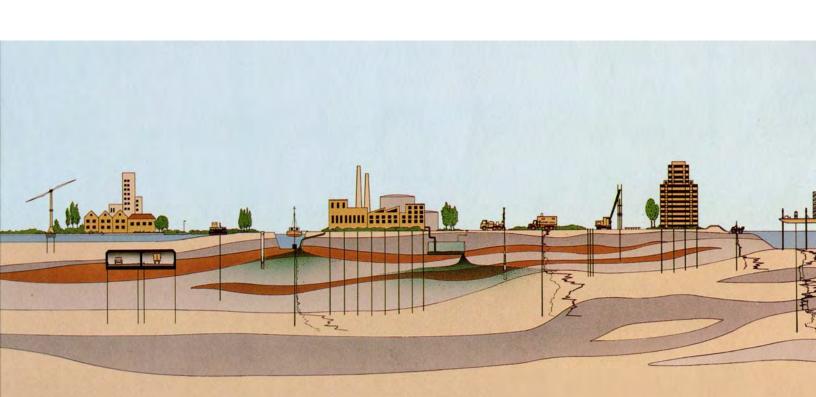
Rev. 0 9/23/2005

**Geotechnical Data Report** 

Appendix 15 presents the laboratory results of the Consolidated Drained Triaxial Compression tests performed by Fugro.

9/23/2005 Rev. 0




# APPENDIX 15 CONSOLIDATED DRAINED TRIAXIAL COMPRESSION TEST RESULTS

### GEOTECHNICAL EXPLORATION PROGRAM TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA

Prepared for: HMM/BECHTEL

**JULY 2005** 

Project No. 1637.001





### REPORT DOCKET

### **APPROVAL**

This document is approved by the following:

Name	Title	Signature	Issue Date
Jon W. Mitchell	Project Manager	Ju w M Fhith	July 20, 2005

### **REVISION HISTORY**

Revision	Date	Change	Approval
0	June 3, 2005	Draft Report: Appendix 15 Consolidated Drained Triaxial Compression Test Results	fun
1	July 20, 2005	Final Report: Appendix 15 Consolidated Drained Triaxial Compression Test Results with Bechtel comments from 6/10/05 & 7/13/05	h



### **FUGRO WEST, INC.**



1000 Broadway, Suite 200 Oakland, California 94607 **Tel: (510) 268-0461** Fax: (510) 268-0137

July 20, 2005 Project No. 1637.001

HMM/Bechtel 3103 North First Street San Jose, California 95134

Attention: Mr. Ignacio Arango

Subject: Appendix 15 – Consolidated Drained Triaxial Compression Test Results

Tunnel Segment of SVRT Project

San Jose, California

Dear Mr. Arango:

Fugro West, Inc., is pleased to submit this copy of "Appendix 15 – Consolidated Drained Triaxial Compression Test Results," presenting the results of the Consolidated Drained Triaxial Compression tests performed by geotechnical laboratory of Fugro Consultants LP in Houston, Texas, for the tunnel segment of the SVRT Project in San Jose, California.

We appreciate this opportunity to be of continued service to HMM/Bechtel. Please contact Jon Mitchell at (510) 267-4430 if you have any questions regarding the information presented in this appendix.

Sincerely,

FUGRO WEST, INC.

Linda Al Atik

Staff Engineer

Jon W. Mitchell

Staff Engineer

Ronald L. Bajunieni, P.E. G.E.

Principal Consultant

LAA/JWM/RLB:rp

Copies Submitted: (pdf) Addressee





### **CONTENTS**

		Page
1.0	INTRODUCTION	1
	1.1 Project Description	1
	1.2 Geotechnical Exploration Program Overview	
	1.3 Laboratory Testing Program Overview	
	1.3.1 Testing Overview	
	1.3.2 Program Description	
	1.3.4 Overview of Consolidated Drained Triaxial Compression Test Program .	
2.0	CONSOLIDATED DRAINED TRIAXIAL TEST COMPRESSION PROCEDURES	4
	2.1 Introduction	4
	2.2 Consolidated Drained Triaxial Compression Test Standards and Procedures	
3.0	CONSOLIDATED DRAINED TRIAXIAL COMPRESSION TEST RESULTS	5
4.0	LIMITATIONS	6
5.0	REFERENCES	7
	TABLES	
		Table
Sum	nmary of Lab Tests Performed	A15-1
Sum	nmary of Consolidated Drained Triaxial Compression Test Results	A15-2
	FIGURES	
	F	Figure
Test	t Sample Location Map	A15-1
	solidated Drained Triaxial Compression Test Results A15-2 to A	



### 1.0 INTRODUCTION

This appendix presents the results of the Consolidated Drained Triaxial Compression (CDTX) tests conducted by the geotechnical laboratory of Fugro Consultants LP in Houston, Texas, (Fugro Consultants) as a part of the advanced laboratory testing program for the Tunnel Segment of the SVRT Project. The CDTX compression tests were performed on soil samples from boring locations situated along the tunnel segment alignment of the Silicon Valley Rapid Transit (SVRT) Project, as shown on the Test Sample Location Map, Figure A15-1.

### 1.1 PROJECT DESCRIPTION

The Santa Clara Valley Transportation Authority (VTA) intends to construct the SVRT Project in San Jose, California. This will be a 26.2-km (16.3-mile) extension of the Bay Area Rapid Transit (BART) heavy rail rapid transit system from its planned terminus at the end of the Warms Springs Extension in Fremont, to San Jose. The proposed alignment currently includes six stations (three above-grade and three below-grade), a proposed future station, and vehicle storage and maintenance facilities. The alignment is composed of two major segments;

- 1. A line segment which will be approximately 11.5 miles of at-grade, elevated and cutand-cover track from Warm Springs to San Jose; and
- 2. A 5.1-mile-long tunnel segment, consisting of twin bored tunnels and cut-and-cover structures through downtown San Jose (see Figure A15-1).

As currently planned, the tunnel segment includes at-grade and open cut track, three cut-and-cover stations, and a cut-and-cover track crossover structure. The cut-and-cover stations and the crossover structures have a cumulative length of approximately 4,970 feet. The remaining 4.14 miles of the alignment will be twin 19.5-foot-diameter tunnels.

This investigation and report cover the 5.1-mile-long tunnel segment section only.

### 1.2 GEOTECHNICAL EXPLORATION PROGRAM OVERVIEW

The joint venture of Hatch Mott MacDonald T & T, Inc., and Bechtel Infrastructure Corporation (HMM/Bechtel) is providing engineering design services for the tunnel segments (Segments 3 and 4) of the SVRT Project to the VTA. HMM/Bechtel has subcontracted with a number of companies to conduct the geotechnical field exploration program for the project. HMM/Bechtel's primary subcontractors for the geotechnical exploration program included Fugro West, Inc., (Fugro), Parikh Consultants (Parikh), and Pitcher Drilling Company (Pitcher).

The three companies, Fugro, Parikh, and Pitcher, conducted the majority of the geotechnical field exploration program for the tunnel segments of the SVRT Project from October 15, 2004, to March 5, 2005. The intent of the geotechnical field investigation program was to obtain geotechnical data that would aid in the design and construction of the proposed tunnel and cut-and-cover structures.



In general, the geotechnical field investigations explored subsurface conditions along the proposed tunnel alignment within the vicinity of the proposed Eastern and Western Portals, at the two proposed ventilation structures, and at the proposed stations including Alum Rock Station, Downtown San Jose Station, and Diridon/Arena Station. The geotechnical exploration program included:

- 76 rotary wash borings, and
- 146 cone penetration tests (CPTs).

Figure A15-1 provides a map of the exploration locations. These locations were selected by HMM/Bechtel based on the following considerations: 1) the data requirements of the tunnel designer; 2) the location of existing geotechnical data; 3) the avoidance of private property; and 4) the avoidance of existing underground and overhead utilities. For CPT correlation purposes approximately 16 sets of borings and CPTs were conducted within 15 feet of each other.

The boring investigation program was conducted by the two companies, Parikh and Pitcher. The investigation included soil sampling and in situ testing. Soil sampling consisted of Pitcher Barrel sampling, Shelby tube sampling, SPT sampling and California sampling. The in situ testing conducted in the borings consisted of field vane shear testing, pressuremeter testing, downhole geophysical logging, and piezometer installation. For further details regarding the boring investigation program and results, please refer to the main report.

### 1.3 LABORATORY TESTING PROGRAM OVERVIEW

### 1.3.1 Testing Overview

Fugro Consultants' geotechnical laboratory conducted the advanced laboratory testing program for the Tunnel Segment of the SVRT Project. This program was conducted on samples provided by Parikh from soil borings located along the tunnel segment. Table A15-1, below, summarizes the numbers and types of different tests conducted. The purpose of this advanced laboratory testing program was to determine selected index and engineering properties of the sampled soils. This appendix provides a detailed description for the consolidated drained triaxial compression tests along with a summary of the interpreted parameters.

Table A15-1. Summary of Advanced Laboratory Testing Program

Test Description	Number of Tests
Constant Rate of Strain (CRS) Consolidation	37
Static Direct Simple Shear	15
K ₀ -Consolidated Undrained Triaxial Compression	20
K ₀ -Consolidated Undrained Triaxial Extension	16
K ₀ -Consolidated Bishop's Procedure	12
Consolidated Drained Triaxial Compression	30

2



### 1.3.2 Program Description

The physical properties of the soils tested during the advanced laboratory testing program are separated into two categories, i.e., index and engineering. The index properties include items such as water content, specific gravity, unit weight, void ratio, and degree of saturation. The engineering properties include items such as compressibility (consolidation), strength, and hydraulic conductivity (permeability). The advanced tests conducted as part of this laboratory testing program are discussed in more detail below.

- Constant Rate of Strain Consolidation (CRS) tests were conducted to determine the rate and magnitude of soil consolidation as well as stress history for a soil sample that is restrained laterally and drained axially. The one-dimensional consolidation tests typically involved constant rate-of-loading, one unload-reload cycle, and one rebound stage from the maximum applied stress. Detailed discussion of the CRS consolidation tests is provided in Appendix 13.
- Static Direct Simple Shear (DSS) tests were conducted to measure constant volume (undrained) shear strength and stress strain-characteristics of cohesive soils after one-dimensional consolidation using a constant rate of simple shear deformation. Detailed discussion of the DSS tests is provided in Appendix 14.
- Isotropically Consolidated Drained Triaxial Drained tests were conducted to evaluate the drained strength characteristics, such as friction angle and stress-strain relationship of the soils encountered in the borings. A detailed discussion of the consolidated drained triaxial tests is provided in this appendix.
- K₀-Consolidated Undrained Triaxial Compression and Extension (CK₀UC & CK₀UE) tests were conducted to estimate the static strength parameters and stress-strain characteristics of fine-grained soils under a range of confining stresses and overconsolidation ratios (OCRs). In the K₀-consolidated test, the sample was consolidated under drained conditions to the assigned vertical stress while maintaining a constant diameter of the cylindrical specimen (the horizontal confining stress was automatically adjusted to maintain the constant diameter). For detailed discussion of the K₀ triaxial compression and extension tests, refer to Appendix 16.
- **K**₀ **Bishop's Procedure Triaxial** tests were conducted to determine the at-rest lateral earth pressure coefficient (K₀) as a function of the overconsolidation ratio (OCR). For detailed discussion of the K₀ Bishop's tests, refer to Appendix 17.

The scope of the advanced laboratory testing program also included the x-raying of assigned soil samples. Discussion of the x-ray testing procedures and a summary of results are provided in Section 2.0 of Appendix 13, with x-ray images shown in Appendix 20.

### 1.3.3 Sample Recovery and Handling

Soil sampling was conducted by Parikh at intervals typically ranging from 5 to 10 feet in accordance with the project specifications. Upon sample recovery, undisturbed portions of the



soil sample tubes were sealed and transported to Parikh's lab. For further details regarding sample recovery and handling, refer to the main report.

Soil samples assigned for advanced laboratory testing were transported in wooden Shelby tube holders designed to maintain the tubes vertical orientation during transit to Fugro's laboratory in Oakland, California. The samples where then packed in specially fabricated, padded containers designed to minimize disturbance, and maintain an upright (vertical) orientation of the samples during shipping. The samples were finally shipped to Fugro Consultants' geotechnical laboratory for testing.

### 1.3.4 Overview of Consolidated Drained Triaxial Compression Test Program

Fugro Consultants' geotechnical laboratory conducted CDTX compression tests on 32 samples, as assigned by HMM/Bechtel. CDTX compression tests are performed to evaluate the drained strength characteristics (e.g., friction angle and stress-strain relationship) of the soils encountered in the borings. The samples were consolidated to the assigned test stresses under isotropic stress conditions (i.e., the same vertical and horizontal effective confining stresses).

In the CDTX compression test method, the shear characteristics are measured under drained conditions. This test method is applicable to field conditions where soils have been consolidated under the existing normal stresses, and are then sheared under drained conditions. The CDTX compression test may be used to determine strength and stress-strain relationships of a cylindrical specimen of either an undisturbed or remolded non-cohesive soils or sands. This test provides data useful in determining strength and deformation properties such as Mohr strength envelopes. Often, two to three specimens from each sample tube are tested at different effective consolidation stresses to define a strength envelope.

### 2.0 CONSOLIDATED DRAINED TRIAXIAL TEST COMPRESSION PROCEDURES

### 2.1 INTRODUCTION

The CDTX compression tests were conducted in general accordance with the U.S. Army Corps of Engineers' tests standard EM 1110 (1986), as well as the proposed ASTM test method that is currently in development. In the CDTX compression test, the sample is consolidated under drained conditions to the assigned vertical stress. The sample is then sheared to failure under drained conditions. This test method provides for the calculation of effective stresses, and axial compression by measurement of axial load, axial deformation, and pore water pressure.

## 2.2 CONSOLIDATED DRAINED TRIAXIAL COMPRESSION TEST STANDARDS AND PROCEDURES

CDTX compression tests were performed using the same system used to conduct the  $K_0$ -Consolidated Undrained Triaxial test, which is an automated system developed by Fugro Consultants and Trautwein and Germaine (at the Massachusetts Institute of Technology). The test procedure followed the technical requirements of the ASTM Test Method for Consolidated



Drained Triaxial Compression Tests for Soils that is currently under development. The procedure for the Consolidated Drained Triaxial tests typically consists of five steps:

- 1. *Cell Preparation*: Using the assigned confining pressure, strength estimates and specimen area, the proper load cell and pressure transducers are selected.
- 2. Specimen Preparation: The selected portions of the tubes were cut into segments with a mechanical hacksaw (18 teeth per inch). A wire saw was used to separate the soil from the surrounding tube in an effort to reduce potential disturbance upon extrusion. In addition, each tube is marked such that all test specimens, will have the same orientation when sheared. The sample is then extruded from the cut portion of the tube using a hydraulically actuated ram.
- 3. Test specimens are typically trimmed to a 2.0-inch diameter by 4-inch height. After specimens are trimmed, they are mounted in the triaxial testing apparatus and aligned with the cell base with porous stones at each end. Each specimen had top, bottom and radial drainage boundaries during consolidation. The radial drainage was provided by spirally oriented ¼ inch wide, Whatman No. 1 filter strips placed at about ¼-inch spacing.
- 4. *Back Pressure Saturation:* Specimen saturation is usually achieved through back pressuring at either, an effective isotropic-confining stress of 3 to 7 psi (21 to 48 Kpa), a stress that prevents swelling or the assigned stress, whichever was smaller.
- 5. Consolidation: The soil specimen is isotropically-consolidated, to the assigned vertical stress. The samples are typically consolidated at a controlled rate of strain of about 0.1 to 0.5 percent/hr, depending upon its liquid limit. The duration of all consolidation increments is such that at least 95 percent consolidation is achieved. The assigned confining stresses ranged from below the present overburden to above the past maximum pressure as determined in the consolidation tests.
- 6. Drained Axial Shearing: During shearing, the chamber pressure is kept constant and specimen drainage is permitted. An axial loading piston is advanced into (shearing compression) the cell at a specific rate of strain. The applied rate of strain is slow enough to produce approximate equalization of excess pore water pressures throughout the specimen at failure. For this program the specimens were sheared at strain rates between 0.007 and 1 percent/hour depending on the drainage rate determined from the consolidation portion of the test.

### 3.0 CONSOLIDATED DRAINED TRIAXIAL COMPRESSION TEST RESULTS

During consolidation and shearing the necessary data (time, vertical and horizontal forces, shear deformations, pore pressures and transducer excitation voltage) were recorded using an automated data-acquisition system and electronically filed. Specialized Excel worksheets, along with a Visual Basic code (VBA) were used to reduce the data files into engineering units in tabular and graphical format. Figures A15-2a through A15-12c present the CDTX compression test results.

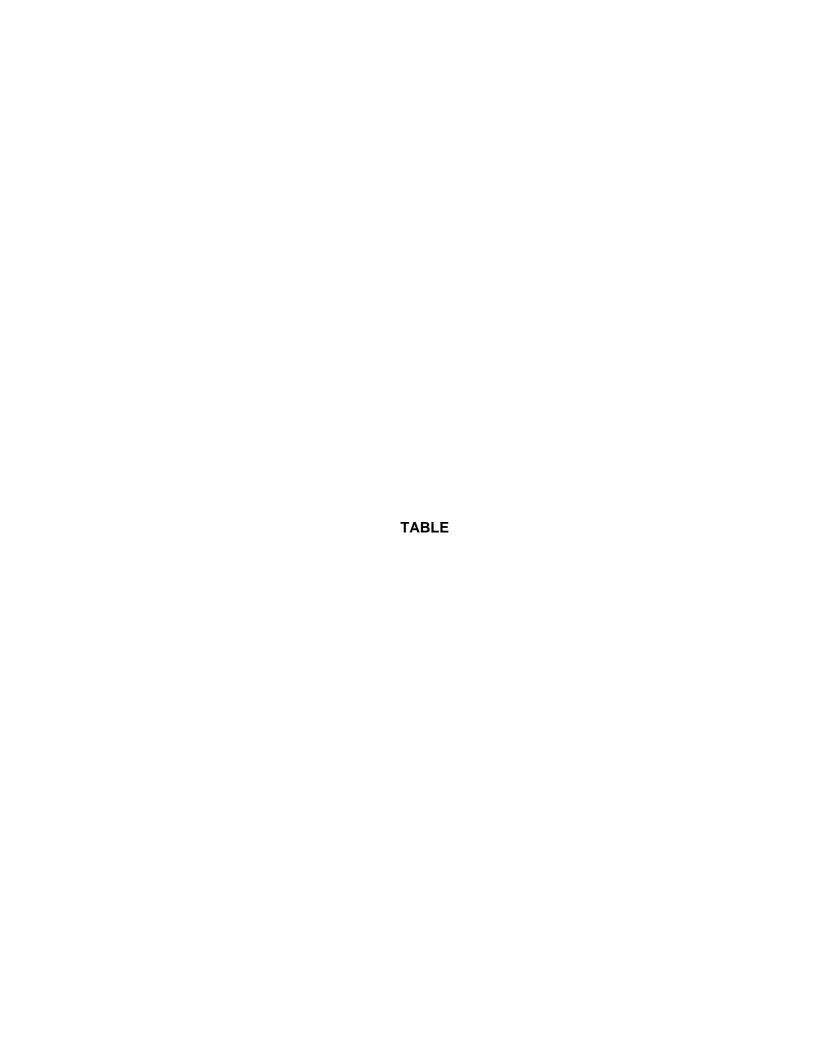


For each test performed, the shear stress (q) and the volume change are plotted versus axial strain on one page while obliquity  $(\sigma_1'/\sigma_3')$  is plotted versus axial strain on a second page of plots. In addition, where two or more CDTX compression tests were conducted at various confining pressures from a single sample tube, a Mohr's circle is plotted for each specimen. The Mohr's circle is a plot of the shear stress at failure versus the effective normal (vertical) stress.

Results such as moisture content, Atterberg limits, initial unit weight, soil type, void ratio, initial total unit weight, estimated in situ vertical stress, vertical effective consolidation stress, the confinement pressure, axial strain at the maximum shear stress, the maximum shear stress, maximum obliquity, and the coefficient of cohesion and effective friction angle determined from the Mohr's circles plots are summarized in "Table A15-2 – Summary of CDTX Test Results." The estimated in situ vertical effective stress was estimated by developing a unit weight profile from the boring data with either measured or estimated ground water levels.

### 4.0 LIMITATIONS

Our services consist of laboratory testing, and data evaluations that are made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.


The laboratory data provided in this appendix is from the laboratory testing of subsurface explorations conducted by others. These explorations indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. Variations may exist and conditions not observed or described in this report could be encountered during construction. Our laboratory tests results presented in this appendix are based on the standards and procedures indicated herein. The laboratory assignments were provided by HMM/Bechtel.

This appendix has been prepared for the exclusive use of HMM/Bechtel and their consultants for specific application to the SVRT project as described herein. In the event that there are any changes in the ownership, nature, design, or location of the proposed project, or if any future additions are planned, the results contained in this appendix should not be considered valid unless 1) the project changes are reviewed by Fugro, and 2) results presented in this appendix are modified or verified in writing. Reliance on this report by others must be at their risk unless we are consulted on the use or limitations. We cannot be responsible for the impacts of any changes in geotechnical standards, practices, or regulations subsequent to performance of services without our further consultation. We can neither vouch for the accuracy of information supplied by others, nor accept consequences for unconsulted use of segregated portions of this report.



### 5.0 REFERENCES

U.S. Army Corps of Engineers. "Laboratory Soils Testing," U.S. Army Corps of Engineers Engineering Manual, EM 1110-2-1906, November 30, 1970. Change 2, dated 20 August 1986.





Boring Number	B-9	B-9	B-21	B-21	B-21	B-24	P.04	70 a	20.0	20.0
Sample Number	4a	4b	ба	- eb		99	9	- P9	22a	22b
Penetration Depth (ft)	57.20	56.80	45.50	46.30	45.90	22.35	21.95	21.55	129.50	129.10
Soil Type	ᆼ	ᆼ	CL	JG	ر ان	ರ	ರ	ರ	2	ō
Atterberg Limits (%) Liquid Limit, LL Plastic Limit, PL	50	50	69	69	69	OS 60	90	30	48	48
Water Content (%)				3	C.	S	02	ρZ	7.7	21
	21.8	21.6	35.4	33.3	33.6	26.1	27.1	25.6	25.1	24.5
Final Water Content After Consolidation, Wr	21.8 18.2	20.6 17.1	34.2 40.1	33.0 28.0	33.9	27.0	25.6	26.7	24.9	24.9
Void Ratio Initial Void Ratio, e _o	0.63	0.62	0.95	0.91	0.93	0.74	990	0.70	7.4.2	0.52
Final Void Ratio, e,	0.51	0.47	0.92	0.75	0.68	09:0	0.60	0.57	0.40	0.70
Initial Total Unit Weight, Y _{to} (pcf)	128	128	118	119	119	123	127	124	123	124
In Situ Vertical Effective Stress, σ' _{vo} (ksf)	4.03	4.00	3.15	3.18	3.20	1.96	1.93	1.91	9:56	9.52
Vertical Effective Consolidation Stress (Pre- Shear), o' _{ve} (ksf)	18.96	27.89	1.63	16.61	24.86	0.95	1.80	90.9	50.15	4.30
Test Induced Overconsolidation, OCR	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Axial Strain at Max Shear Stress, e.a. (%)	11.5	14.7	5.5	18.4	18.7	8.3	9.8	15.7	16.4	10.5
Axial Strain at Max Obliquity, e. (%)	10.4	14.7	6.0	18.7	18.7	9.0	9.3	11.6	16.1	10.5
Maximum Shear Stress (ksf)	12.50	16.98	2.00	10.42	15.07	1.62	2.61	8.18	41.88	4.62
Maximum Obliquity (o' ₁ /o' ₃ )	2.33	2.22	3.35	2.27	2.22	4.51	3.97	3.73	2.68	3.2
Friction Angle, ¢' (degrees) At Max. Shear Stress, c' = 0	23.6	22.2	33	22.6	22.2	39.2	36.2	34.4	26.6	31.6
From Multi-Specimen Mohr Circle Plot	16	9.8		21.1			33.4			26.6
Coefficient of Cohesion, C' (ksf)		2		8.0			0.3		0	6.0
Notes: NA = Test Not Assigned										

NA = Test Not Assigned
Interpreted from Mutil-Specimen Mohr's circle plot

SUMMARY OF CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS
Tunnel Segment of SVRT Project
San Jose, California





Boring Number	B-33	B-33	B-33	B-38	B-38	B-60	B-60	B-60
Sample Number	7a	7b	7c	14b	14c	За	3b	ဗ္ဂ
Penetration Depth (ft)	62.50	62.05	61.65	75.85	75.45	17.50	17.05	16.65
Soil Type	ರ	ರ	ರ	ಠ	Ö	IO/ IM	I) IM	j N
Atterberg Limits (%)							70	INCO.
Liquid Limit, LL	39	33	33	37	37	27	27	22
Plastic Limit, PL	6	19	19	. &	. 82	; 8	3 8	3 6
Water Content (%)	0.40	0.70	0 00	0				
	24.3	24.3	22.8	23.3	23.2	26.1	22.2	16.3
	24.7	25.1	22.9	23.7	23.2	26.0	52.6	16.3
Final Water Content After Consolidation, W _f	23.7	20.4	18.1	22.2	24.0	24.3	21.3	15.0
Vold Hatio Initial Void Ratio, e ₀	0.72	0.73	0.67	69.0	0.68	0.70	0.63	0.46
Final Void Ratio, e,	0.65	0.59	0.51	0.63	99.0	0.68	0.59	0.44
Initial Total Unit Weight, 11,0 (pcf)	124	124	126	126	126	127	129	137
In Situ Vertical Effective Stress, o'vo (ksf)	4.40	4.37	4.34	5.37	5.35	1.49	1.46	1.44
Vertical Effective Consolidation Stress (Pre- Shear), σ' _{ve} (ksf)	4.35	12.23	20.89	5.22	2.84	0.97	1.84	6.86
Test Induced Overconsolidation, OCR	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Axial Strain at Max Shear Stress, $\epsilon_{\rm s}$ (%)	18.4	19.0	19.5	10.8	3.2	4.8	4.8	7.3
Axial Strain at Max Obliquity, e. (%)	16.0	19.0	19.5	10.5	3.7	4.8	5.1	7.0
Maximum Shear Stress (ksf)	5.02	13.23	25.11	6.47	3.84	1.44	3.09	11.98
Maximum Obliquity (o' ₁ /o' ₃ )	3.38	3.22	3.42	3.5	3.82	4.22	4.63	4.52
Friction Angle, ¢' (degrees) At Max. Shear Stress, c' = 0	32.8	21.6	33	34.3	35.6	38.5	40	39.2
From Multi-Specimen Mohr Circle Plot		33			31.5		39.7	
Coefficient of Cohesion, C' (ksf)		0		0	0.5		0	

NA = Test Not Assigned
* Interpreted from Mutil-Specimen Mohr's circle plot

# SUMMARY OF CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS Tunnel Segment of SVRT Project San Jose, California





Boring Number	B-61	B-61	B-61	B-64	B-64	B-64	B-66	B-66	B-66
Sample Number	15c	15d	15e	18b	18c	18d	<b>6</b> a	q9	p ₉
Penetration Depth (ft)	126.00	126.50	126.90	106.90	106.50	106.10	27.40	27.00	25.80
Soil Type	ᆼ	ᆼ	ᆼ	CL	CL	ರ	ರ	ر ا	ರ
Atterberg Limits (%) Liquid Limit, LL Plastic Limit, PL	14	41	41	A A	4 V	4 4 2 2	36	36	36
Water Content (%) In Situ Water Content, W _o	23.5	24.1	26.6	22.0	20.3	<u> </u>	22.2	20.0	23.3
Initial Water Content Before Consolidation, Wi Final Water Content After Consolidation, W.	24.2	23.8	27.0	21.9	20.6	20.6	22.7	21.9	22.5
Vold Ratio Initial Void Ratio, e ₀	0.75	0.77	0.78	84.0	ה	25 2	0.02	C. 12	20.0
Final Void Ratio, e,	0.74	0.76	0.69	0.54	0.49	0.43	0.56	0.62	0.58
Initial Total Unit Weight, Y _{1.0} (pcf)	122	120	123	129	130	130	127	121	119
In Situ Vertical Effective Stress, σ'νο (kst)	8.65	8.68	8.70	7.14	7.17	7.14	2.06	2.00	1.95
Vertical Effective Consolidation Stress (Pre- Shear), σ' _{ve} (ksf)	4.15	8.27	16.11	3.74	6.91	18.73	7.03	11.74	18.15
Test Induced Overconsolidation, OCR	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Axial Strain at Max Shear Stress, $\epsilon_{a}$ (%)	10.3	17.4	19.4	5.9	11.7	11.8	17.8	20.5	19.1
Axial Strain at Max Obliquity, $\varepsilon_a$ (%)	10.3	18.0	19.7	5.9	11.7	11.8	19.7	20.1	19.1
Maximum Shear Stress (ksf)	5.07	8.72	14.18	6.04	11.31	27.22	7.49	11.53	16.95
Maximum Obliquity (σ' ₁ /σ' ₃ )	3.53	3.13	2.77	4.32	4.29	3.92	3.14	2.98	2.87
Friction Angle, ¢' (degrees) At Max. Shear Stress, c' = 0	34.3	30.8	28.1	39.1	38.4	36.2	30.7	30.1	29
From Multi-Specimen Mohr Circle Plot		24.7			35.8			27.5	
Coefficient of Cohesion, C' (ksf)		1.8			0,5			6.0	

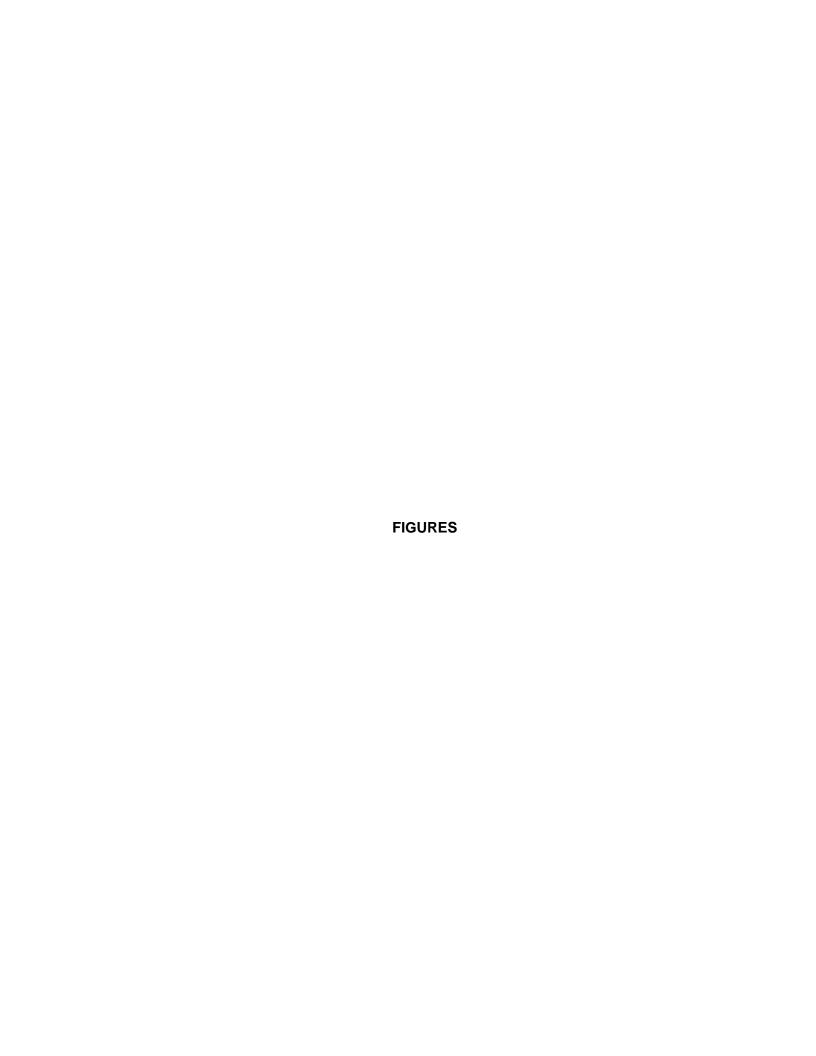
Notes: NA = Test Not Assigned
* Interpreted from Mutti-Specimen Mohr's circle plot

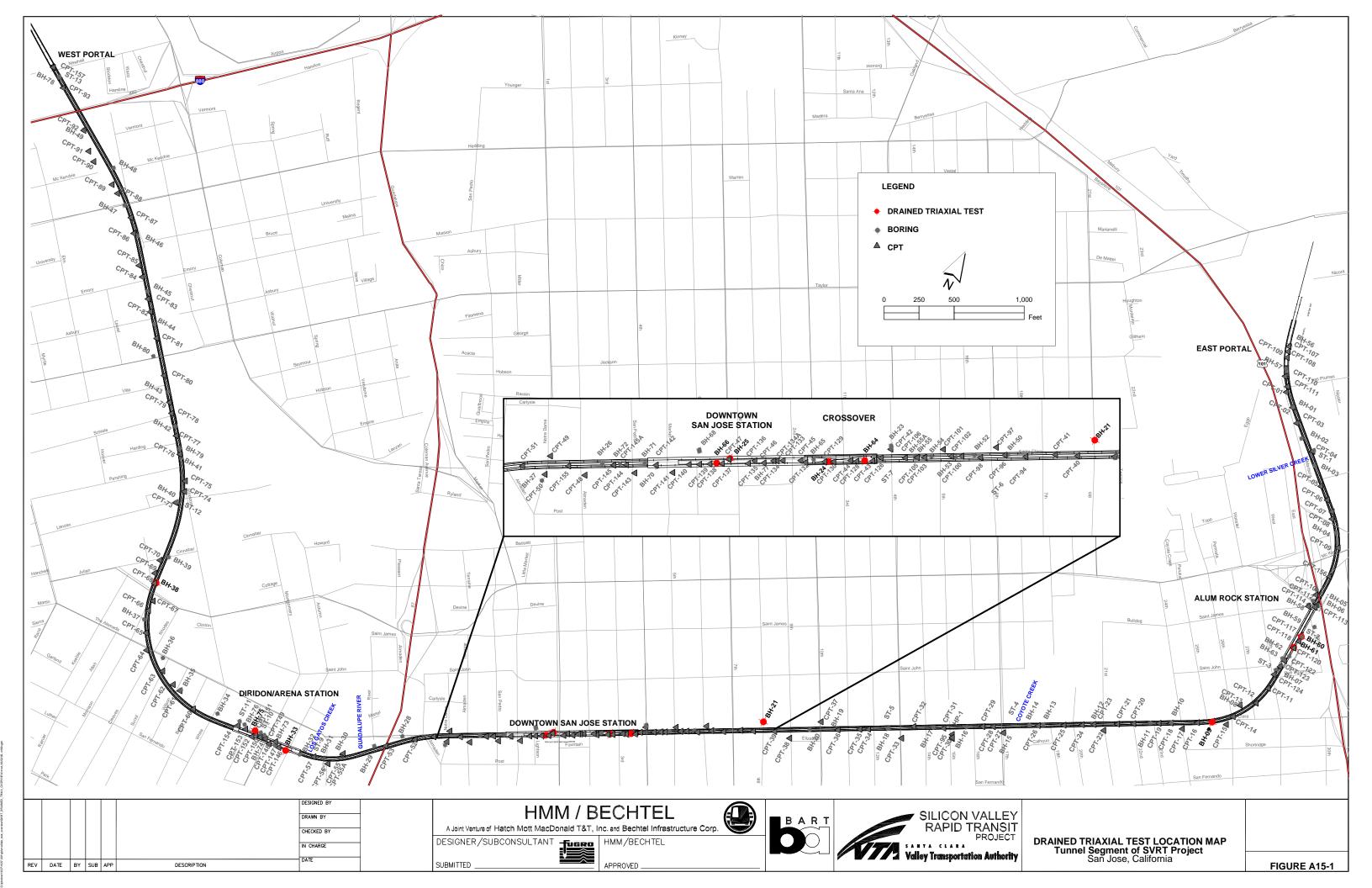
# SUMMARY OF CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS

Tunnel Segment of SVRT Project San Jose, California

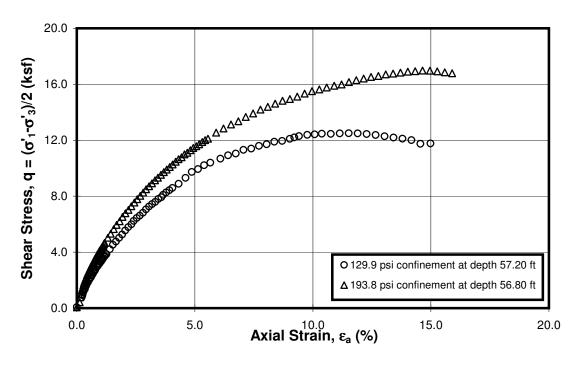


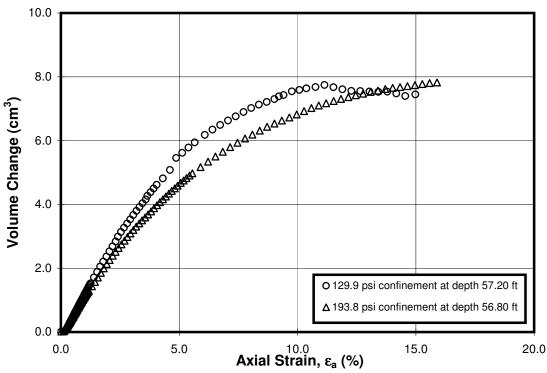



Boring Number Sample Number	B-75 14a	B-75 14b	B-75 14c
Penetration Depth (ft)	141.00	140.60	140.20
Soil Type	ರ	ರ	ರ
Atterberg Limits (%)			
Liquid Limit, LL.	62	59	59
Plastic Limit, PL	21	2	24
Water Content (%)			
In Situ Water Content, Wo	18.6	19.8	18.9
Initial Water Content Before Consolidation, Wi	19.0	20.6	18.2
Final Water Content After Consolidation, W _t	22.2	18.7	16.8
Void Ratio			
Initial Void Ratio, e ₀	0.59	0.62	0.53
Final Void Ratio, e _f	0.58	0.54	0.45
Initial Total Unit Weight, 14.0 (pcf)	126	125	130
In Situ Vertical Effective Stress, o've (ksf)	9.59	9:26	9.54
Vertical Effective Consolidation Stress (Pre- Shear), σ' _{vc} (ksf)	8.96	23.09	38.13
Test Induced Overconsolidation, OCR	1.00	1.00	1.00
Axial Strain at Max Shear Stress, $\epsilon_a$ (%)	19.7	14.9	14.8
Axial Strain at Max Obliquity, e.g. (%)	20.2	14.9	14.8
Maximum Shear Stress (ksf)	12.66	30.88	39.87
Maximum Obliquity ( $\sigma'_1/\sigma'_3$ )	3.84	3.68	3.1
Friction Angle, ¢' (degrees) At Max. Shear Stress, c' = 0	35.8	35.1	30.5
From Multi-Specimen Mohr Circle Plot		28.8	
Coefficient of Cohesion, C' (ksf)		3	


Notes: NA = Test Not Assigned
* Interpreted from Mutil-Specimen Mohr's circle plot

# SUMMARY OF CONSOLIDATED DRAINED TRIAXIAL TEST RESULTS

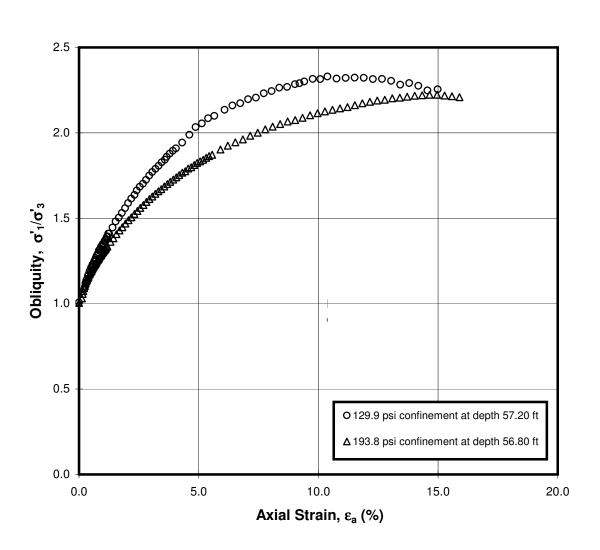

Tunnel Segment of SVRT Project San Jose, California







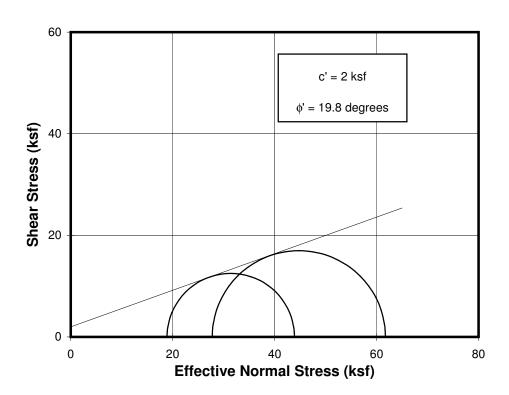





Isotropically Consolidated
Sample: 4a and b - Depth: 57.20 and 56.80 ft
Boring B-9
Tunnel Segment of SVRT Project
San Jose, California

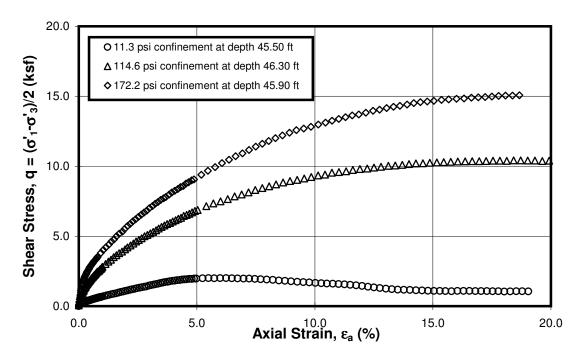


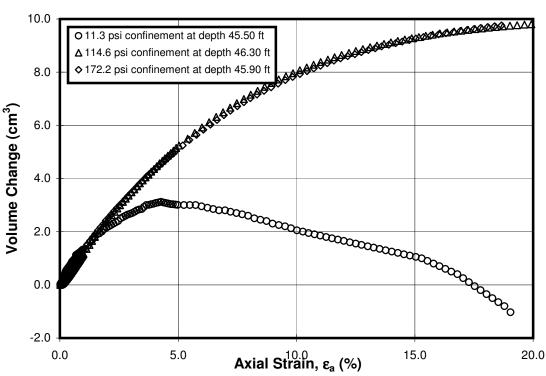





Isotropically Consolidated
Sample: 4a and b - Depth: 57.20 and 56.80 ft
Boring B-9
Tunnel Segment of SVRT Project
San Jose, California



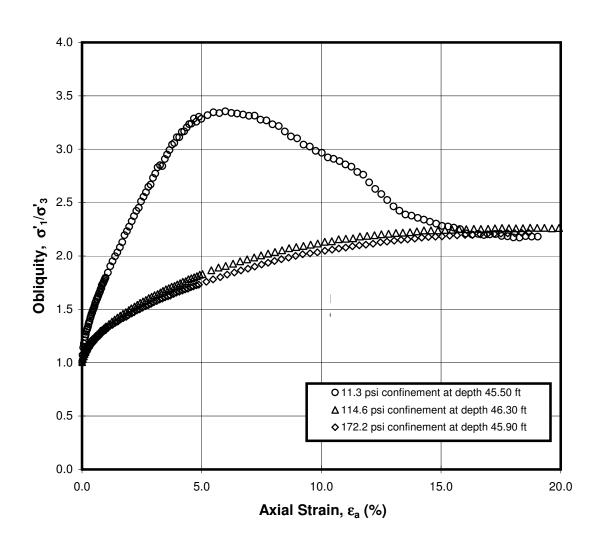



Isotropically Consolidated
Sample: 4a and b - Depth: 57.20 and 56.80 ft
Boring B-9
Tunnel Segment of SVRT Project
San Jose, California



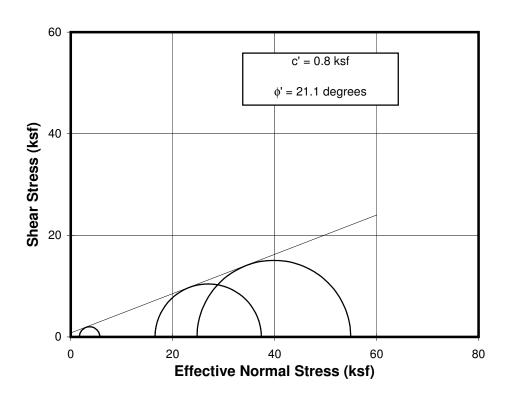







Isotropically Consolidated
Sample: 6a, b, and c - Depth: 45.50, 46.30, and 45.90 ft
Boring B-21
Tunnel Segment of SVRT Project
San Jose, California

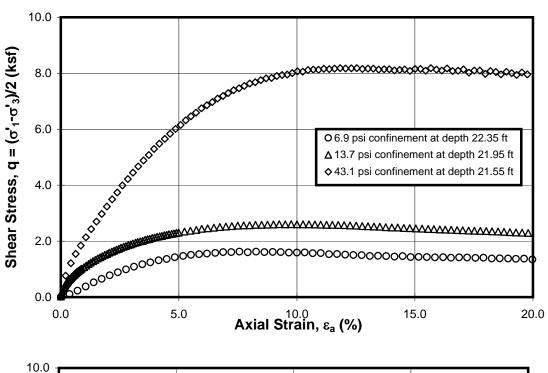


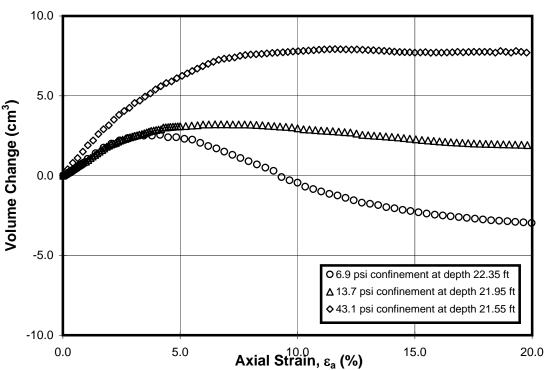





Isotropically Consolidated
Sample: 6a, b, and c - Depth: 45.50, 46.30, and 45.90 ft
Boring B-21
Tunnel Segment of SVRT Project
San Jose, California



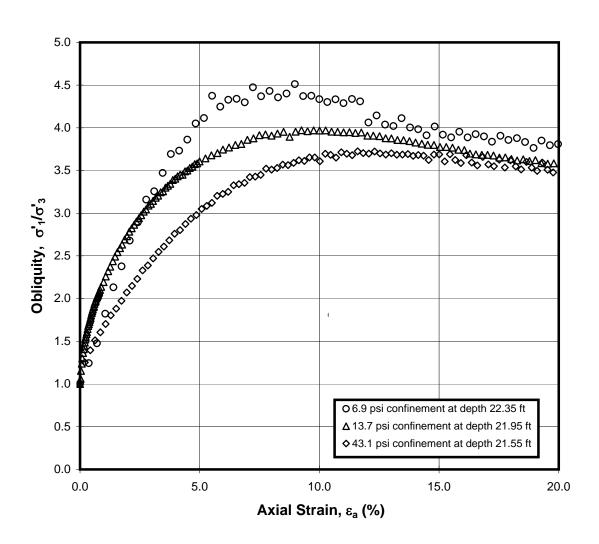



Isotropically Consolidated
Sample: 6a, b, and c - Depth: 45.50, 46.30, and 45.90 ft
Boring B-21
Tunnel Segment of SVRT Project
San Jose, California



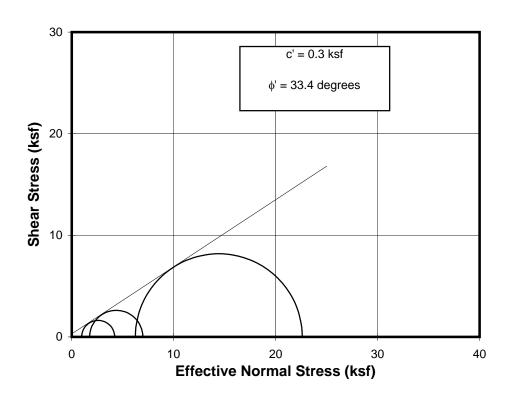







Isotropically Consolidated
Sample: 6b, c, and d - Depth 22.35, 21.95 and 21.55 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California

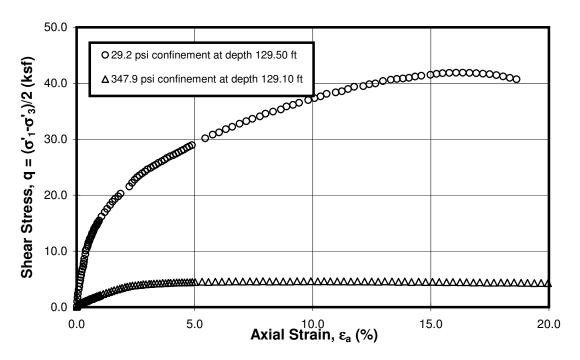


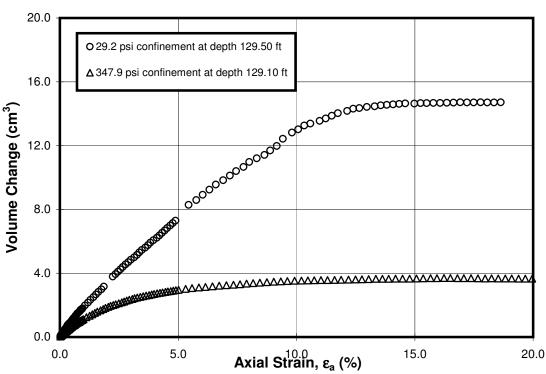





Isotropically Consolidated
Sample: 6 b, c, and d - Depth 22.35, 21.95 and 21.55 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California



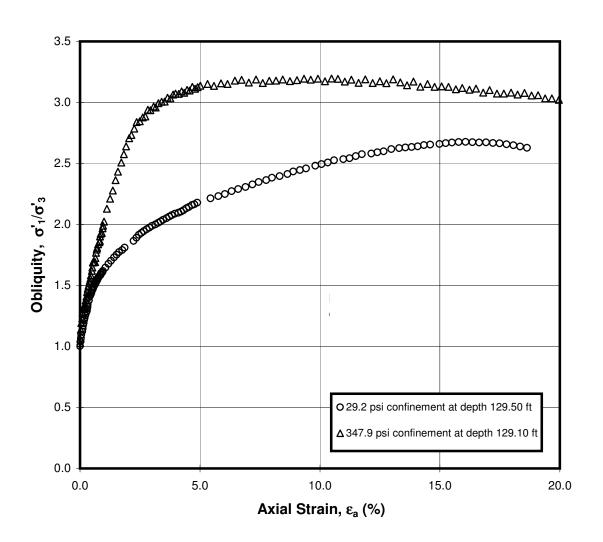



Isotropically Consolidated
Sample: 6b, c and d - Depth 22.35, 21.95 and 21.55 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California



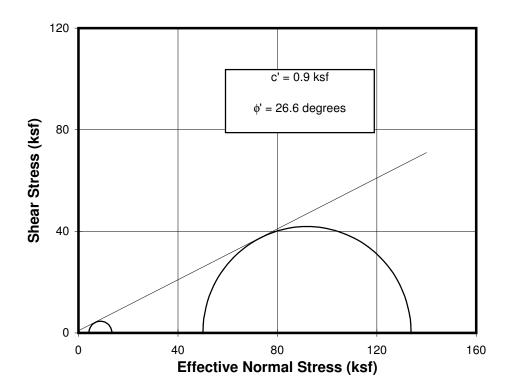







Isotropically Consolidated
Sample: 22a and b - Depth 129.50 and 129.10 ft
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California

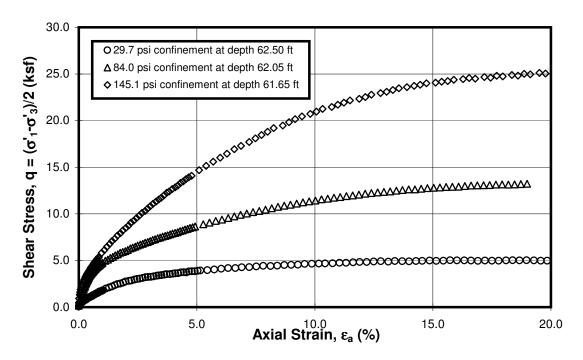


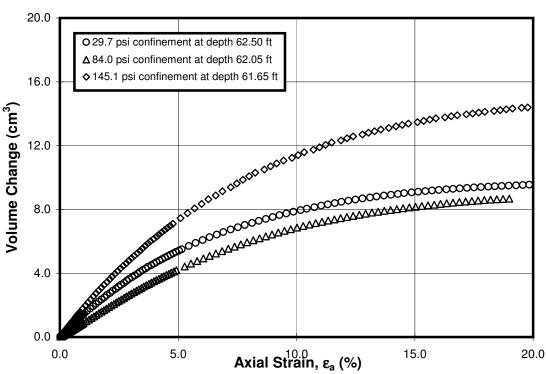





Isotropically Consolidated
Sample: 22a and b - Depth 129.50 and 129.10 ft
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California



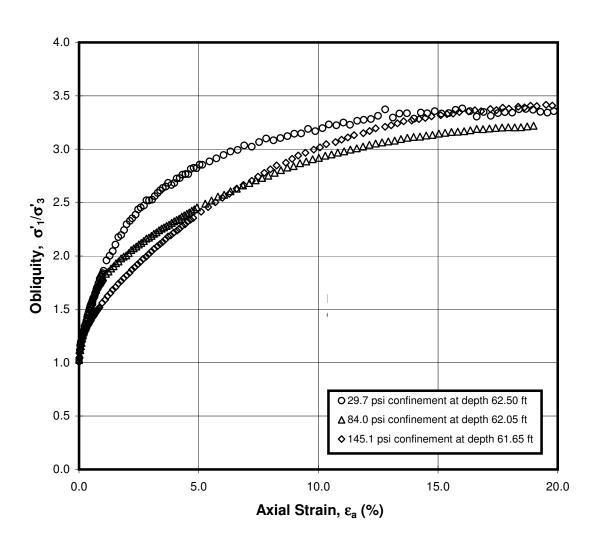



Isotropically Consolidated
Sample: 22a and b - Depth 129.50 and 129.10 ft
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California



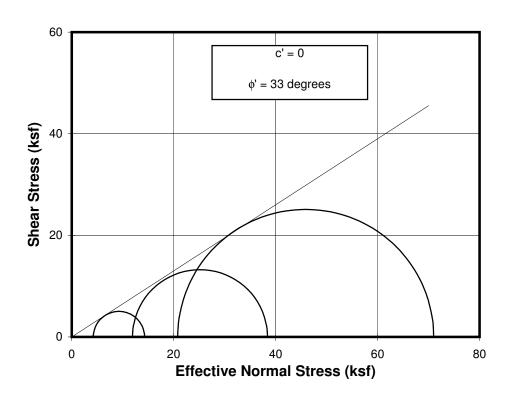







Isotropically Consolidated
Sample: 7a, b and c - Depth 62.50, 62.05 and 61.65 ft
Boring B-33
Tunnel Segment of SVRT Project
San Jose, California

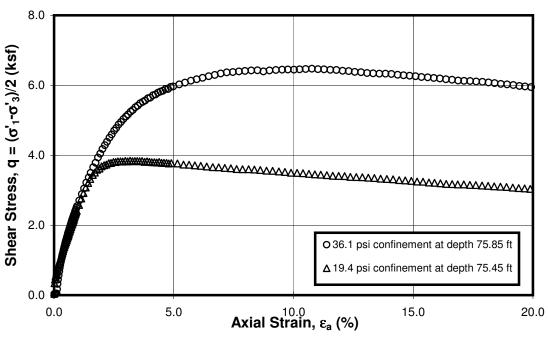


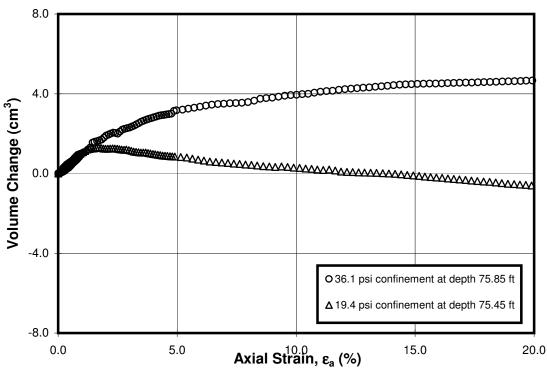





Isotropically Consolidated-Sample: 7a, b and c - Depth 62.50, 62.05 and 61.65 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California



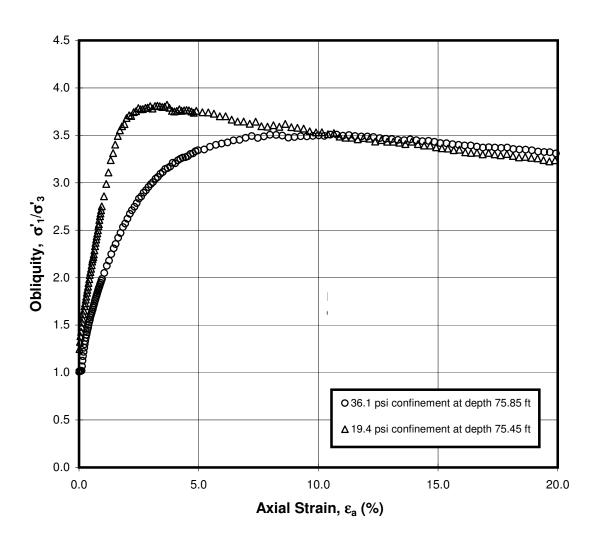



Isotropically Consolidated
Sample: 7a, b and c - Depth 62.50, 62.05 and 61.65 ft
Boring B-33
Tunnel Segment of SVRT Project
San Jose, California



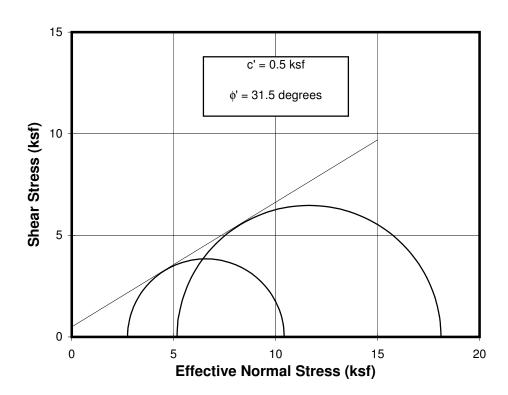







Isotropically Consolidated
Sample: 14b and c - Depth: 75.85 and 75.45 ft
Boring B-38
Tunnel Segment of SVRT Project
San Jose, California

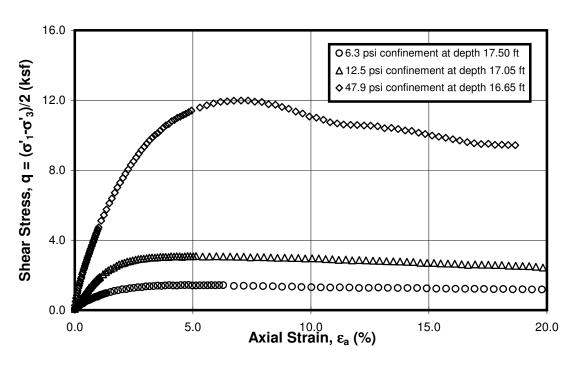


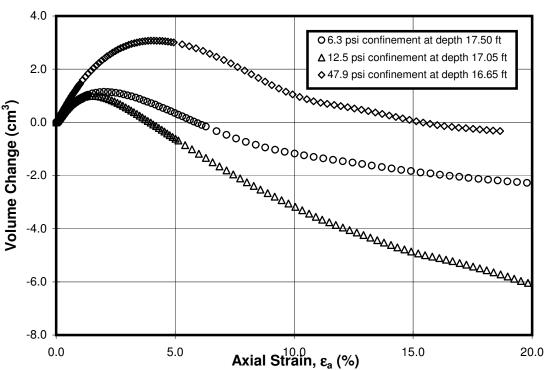





Isotropically Consolidated
Sample: 14b and c - Depth: 75.85 and 75.45 ft
Boring B-38
Tunnel Segment of SVRT Project
San Jose, California





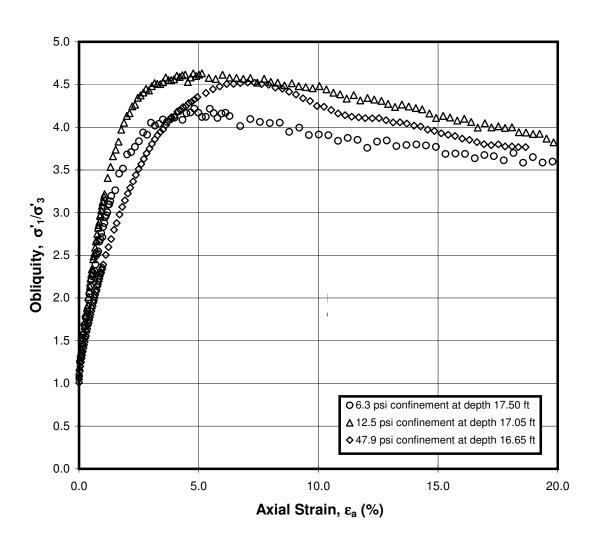




Isotropically Consolidated
Sample: 14b and c - Depth: 75.85 and 75.45 ft
Boring B-38
Tunnel Segment of SVRT Project
San Jose, California





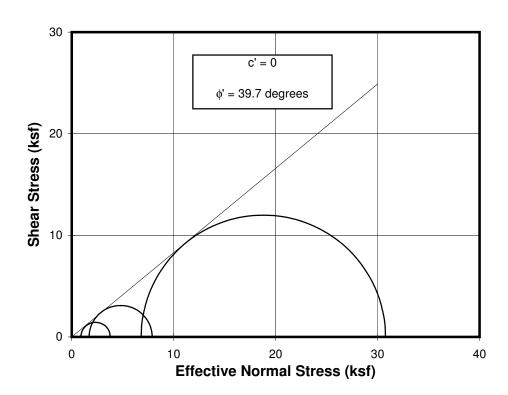





Isotropically Consolidated
Sample: 3a, b and c - Depth: 17.50, 17.05 and 16.65 ft
Boring B-60
Tunnel Segment of SVRT Project

Innel Segment of SVRT Project
San Jose, California

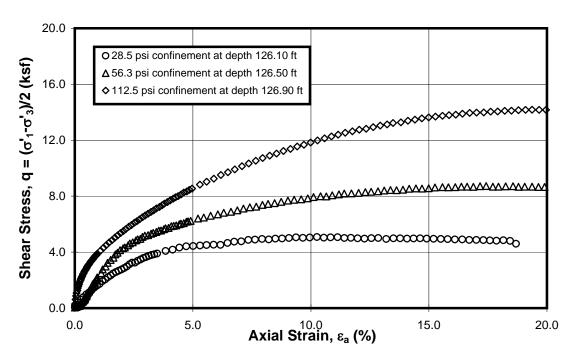


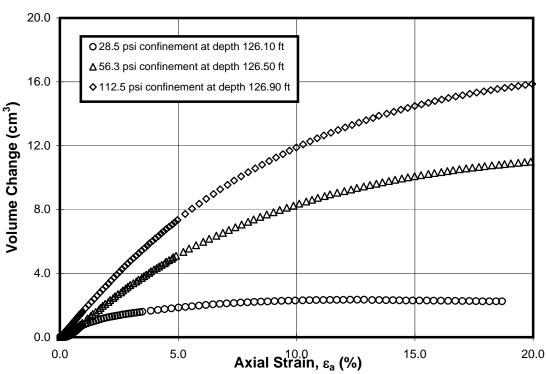





Isotropically Consolidated
Sample: 3a, b and c - Depth: 17.50, 17.05 and 16.65 ft
Boring B-60
Tunnel Segment of SVRT Project
San Jose, California






Isotropically Consolidated
Sample: 3a, b and c - Depth: 17.50, 17.05 and16.65 ft
Boring B-60
Tunnel Segment of SVRT Project
San Jose, California

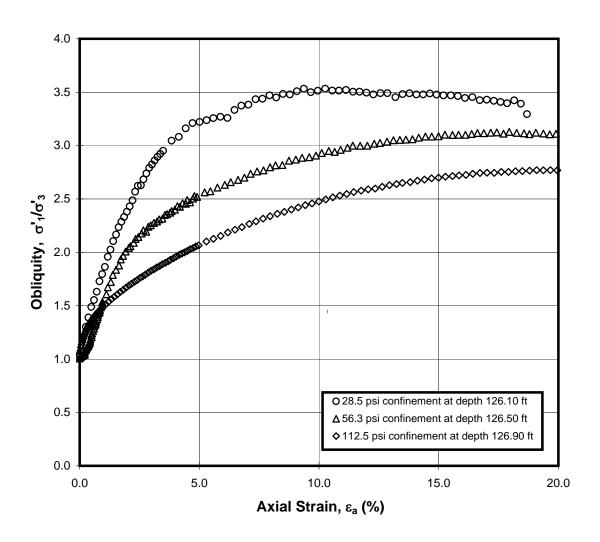








#### **MULTISTAGE DRAINED TRIAXIAL COMPRESSION TEST**


Isotropically Consolidated le: 15c, d and e - Depth: 126.10, 126.50 and 1

Sample: 15c, d and e - Depth: 126.10, 126.50 and 126.90 ft
Boring B-61
Tunnel Segment of SVRT Project

San Jose, California



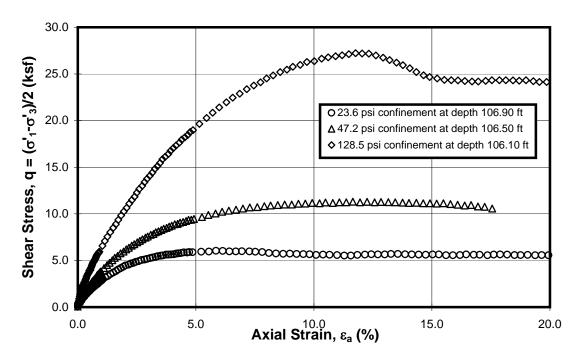


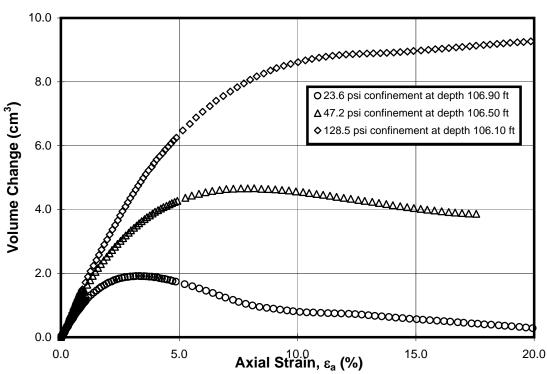


#### **MULTISTAGE DRAINED TRIAXIAL COMPRESSION TEST**

Isotropically Consolidated
Sample:15- Depth: 126.10, 126.50 and 126.90 ft
Boring B-61
Tunnel Segment of SVRT Project
San Jose, California





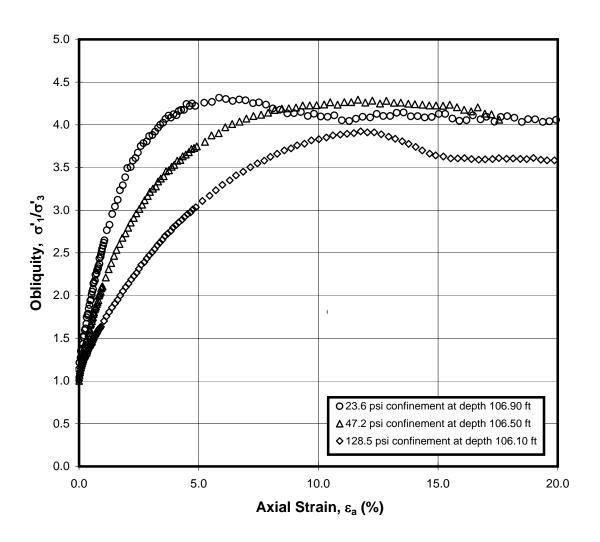




Isotropically Consolidated
Sample: 15c, d and e - Depth: 126.10, 126.50 and 126.90 ft
Boring B-61
Tunnel Segment of SVRT Project
San Jose, California





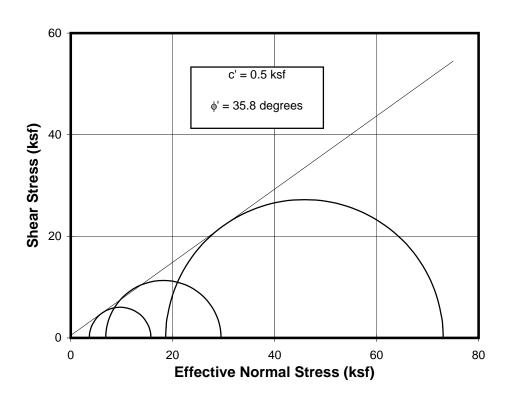





Isotropically Consolidated Sample: 18b, c, and d - Depth: 106.90, 106.50, 106.10 ft Boring B-64 Tunnel Segment of SVRT Project

San Jose, California

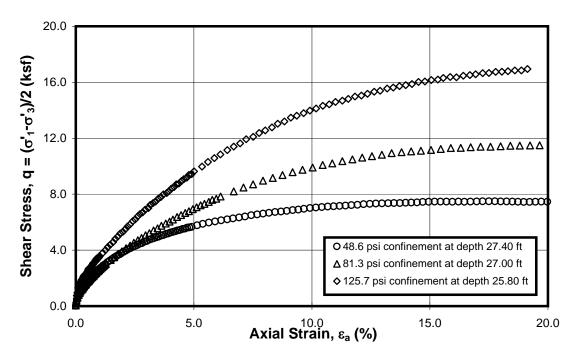


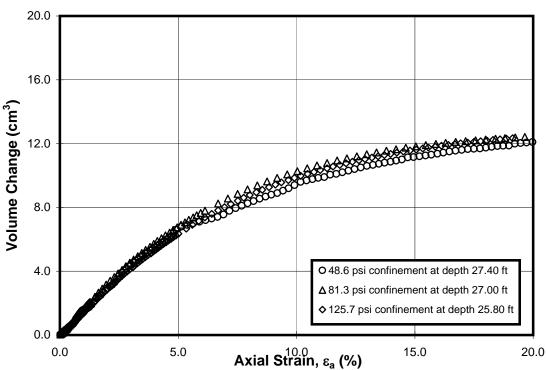





Isotropically Consolidated
Sample: 18b, c, and d - Depth: 106.90, 106.50, 106.10 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California



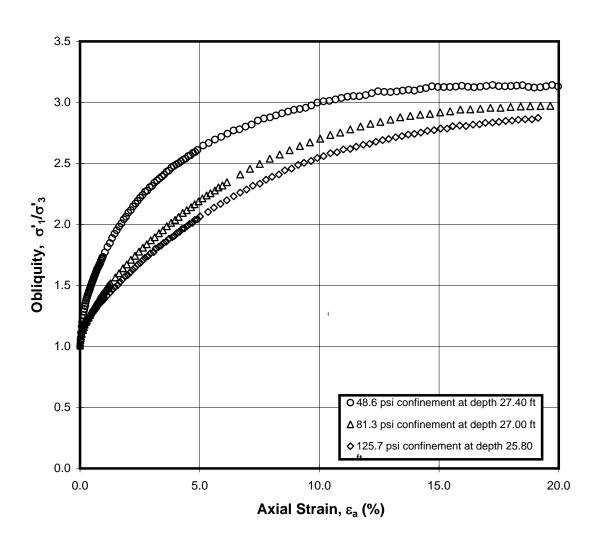



Isotropically Consolidated
Sample:18b, c and d - Depth: 106.90, 106.50 and 106.10 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California



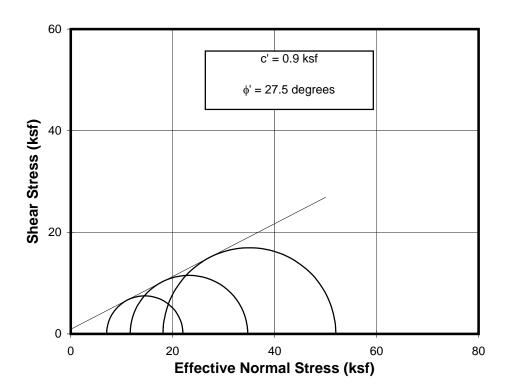







Isotropically Consolidated
Sample: 6a, b and d - Depth: 27.40, 27.00 and 25.80 ft
Boring B-66
Tunnel Segment of SVRT Project
San Jose, California

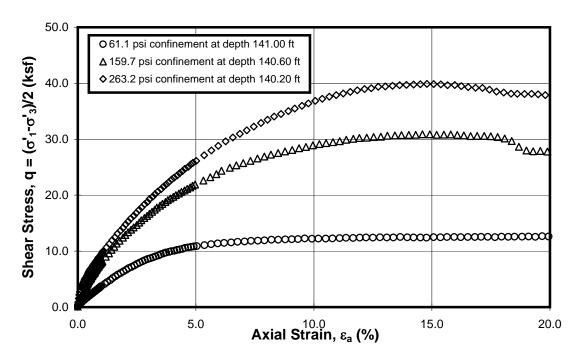


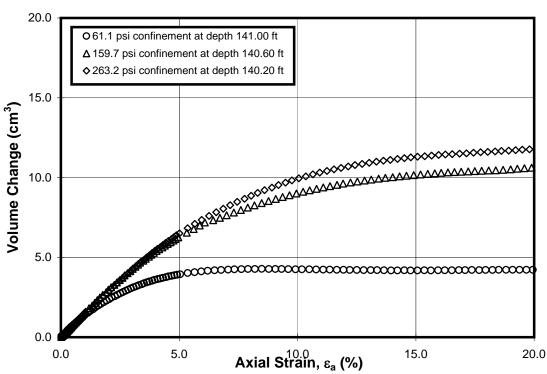





Isotropically Consolidated
Sample: 6a, b and d - Depth: 27.40, 27.00 and 25.80 ft
Boring B-66
Tunnel Segment of SVRT Project
San Jose, California





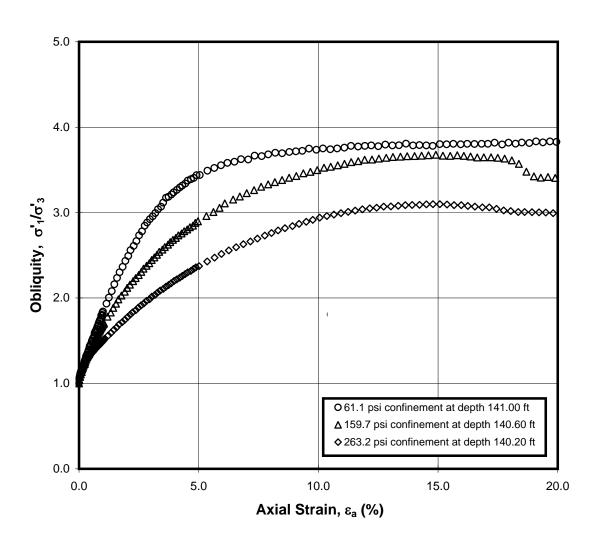




Isotropically Consolidated
Sample: 6a, b and d - Depth: 27.40, 27.00 and 25.80 ft
Boring B-66
Tunnel Segment of SVRT Project
San Jose, California





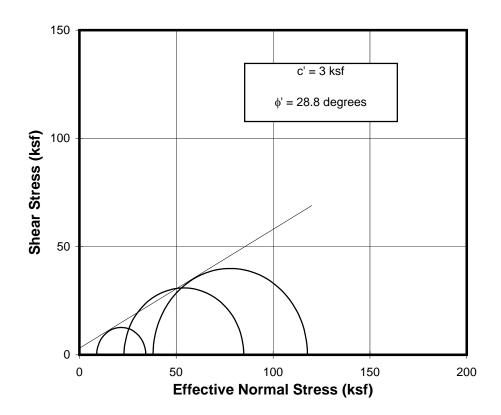





Isotropically Consolidated
b. and c - Depth: 141 00, 140 60 and

Samples: 14a, b, and c - Depth: 141.00, 140.60 and 140.20 ft
Boring B-75
Tunnel Segment of SVRT Project
San Jose, California








Isotropically Consolidated
Samples: 14a, b, and c - Depth: 141.00, 140.60 and 140.20 ft
Boring B-75
Tunnel Segment of SVRT Project
San Jose, California
FI







Isotropically Consolidated
Samples: 14a, b, and c - Depth: 141.00, 140.60 and 140.20 ft
Boring B-75
Tunnel Segment of SVRT Project
San Jose, California



**Geotechnical Data Report** 

### **APPENDIX 16**

# $K_0$ -CONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS

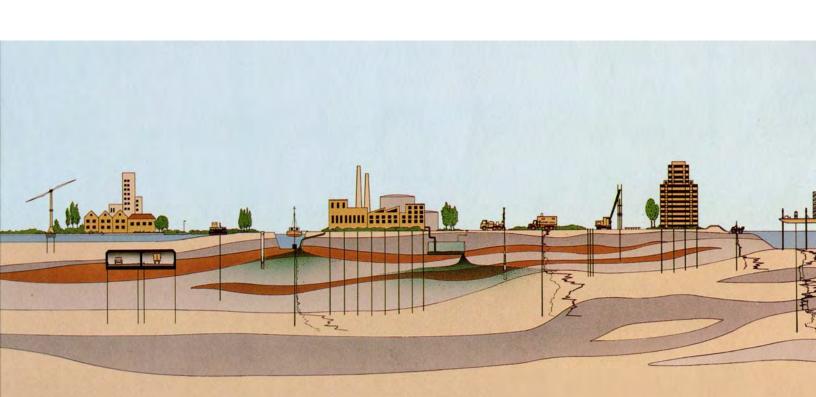
Rev. 0 9/23/2005

**Geotechnical Data Report** 

Appendix 16 presents the laboratory results of the  $K_0$ -Consolidated Undrained Triaxial tests performed by Fugro.

9/23/2005 Rev. 0




# APPENDIX 16 K₀-CONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS

## GEOTECHNICAL EXPLORATION PROGRAM TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA

Prepared for: HMM/BECHTEL

**JULY 2005** 

Project No. 1637.001





#### REPORT DOCKET

#### **APPROVAL**

This document is approved by the following:

Name	Title	Signature	Issue Date
Jon W. Mitchell	Project Manager	Jum w Matatal	July 20, 2005

#### **REVISION HISTORY**

Revision	Date	Change	Approval
0	June 3, 2005	Draft Report: Appendix 16 K ₀ -Consolidated Undrained Triaxial Test Results	In
1	July 20, 2005	Draft Report: Appendix 16 K ₀ -Consolidated Undrained Triaxial Test Results with Bechtel comments from 6/10/05 & 7/13/05	Ju



#### **FUGRO WEST, INC.**



1000 Broadway, Suite 200 Oakland, California 94607 Tel: (510) 268-0461

Fax: (510) 268-0137

July 20, 2005 Project No. 1637.001

HMM/Bechtel 3103 North First Street San Jose, California 95134

Attention: Mr. Ignacio Arango

Subject: Appendix 16 – K₀-Consolidated Undrained Triaxial Compression and Extension Test

Results

Tunnel Segment of SVRT Project

San Jose, California

Dear Mr. Arango:

Fugro West, Inc., is pleased to submit this draft copy of "Appendix 16 - K₀-Consolidated Undrained Triaxial Compression and Extension Test Results," presenting the results of the K₀-Consolidated Undrained Triaxial Compression and Extension tests conducted by the geotechnical laboratory of Fugro Consultants LP in Houston, Texas, for the Tunnel Segment of SVRT Project in San Jose, California.

We appreciate this opportunity to be of continued service to HMM/Bechtel. Please contact Jon Mitchell at (510) 267-4430 if you have any questions regarding the information presented in this appendix.

Sincerely,

FUGRO WEST, INC.

Linda Al Atik Staff Engineer

Jon W. Mitchell

Senior Engineer

Ronald L. Bajuniemi, P.E.

Principal Consultan

LAA/JWM/RLB:rp

Copies Submitted: (pdf) Addressee





#### **CONTENTS**

		Page
1.0	INTRODUCTION	1
	1.1 Project Description	1
	1.2 Geotechnical Exploration Program Overview	
	1.3 Laboratory Testing Program Overview	
	1.3.1 Testing Overview	
	1.3.2 Program Description	
	1.3.3 Sample Recovery and Handling	
	1.3.4 Overview of K ₀ -Consolidated Undrained Triaxial Compression and Test Program	
2.0	K₀-CONSOLIDATED UNDRAINED TRIAXIAL TEST PROCEDURES	4
	2.1 Introduction	4
	2.2 K ₀ -Consolidated Undrained Triaxial Test Standards and Procedures	
3.0	K₀-CONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS	6
4.0	LIMITATIONS	6
5.0	REFERENCES	7
	TABLES	
		Table
Sum	nmary of Lab Tests Performed	A16-1
	nmary of K ₀ -Consolidated Undrained Triaxial Test Results	
	FIGURES	
		Figure
Test	t Sample Location Map	A16-1
	Consolidated Undrained Extension Triaxial Test Results	
	Consolidated Undrained Compression Triaxial Test Results	



#### 1.0 INTRODUCTION

This appendix presents the results of the  $K_0$ -Consolidated Undrained Triaxial Compression and Extension (CK $_0$ UC & CK $_0$ UE) Tests conducted by the Houston geotechnical laboratory of Fugro Consultants LP (Fugro Consultants) as a part of the advanced laboratory testing program for the Tunnel Segment of Silicon Valley Rapid Transit (SVRT) Project. The  $K_0$ -consolidated tests were performed on soil samples from boring locations situated along the tunnel segment alignment of SVRT Project, as shown on the Test Sample Location Map, Figure A16-1.

#### 1.1 PROJECT DESCRIPTION

The Santa Clara Valley Transportation Authority (VTA) intends to construct the SVRT Project in San Jose, California. This will be a 26.2-km (16.3-mile) extension of the Bay Area Rapid Transit (BART) heavy rail rapid transit system from its planned terminus at the end of the Warms Springs Extension in Fremont, to San Jose. The proposed alignment currently includes six stations (three above-grade and three below-grade), a proposed future station, and vehicle storage and maintenance facilities. The alignment is composed of two major segments;

- 1) A line segment which will be approximately 11.5 miles of at-grade, elevated and cutand-cover track from Warm Springs to San Jose; and
- 2) A 5.1-mile-long Tunnel Segment, consisting of twin bored tunnels and cut-and-cover structures through downtown San Jose (see Figure A16-1).

As currently planned, the tunnel segment includes an at-grade and open cut track, three cut-and-cover stations, and a cut-and-cover track crossover structure. The cut-and cover stations and the crossover structures have a cumulative length of approximately 4,970 feet. The remaining 4.14 miles of the alignment will be twin 19.5-foot-diameter tunnels.

This investigation and report cover the 5.1-mile-long tunnel segment section only.

#### 1.2 GEOTECHNICAL EXPLORATION PROGRAM OVERVIEW

The joint venture of Hatch Mott MacDonald T & T, Inc., and Bechtel Infrastructure Corporation (HMM/Bechtel) is providing engineering design services for the tunnel segments (Segments 3 and 4) of the SVRT Project to the VTA. HMM/Bechtel has subcontracted with a number of companies to conduct the geotechnical field exploration program for the project. HMM/Bechtel's primary subcontractors for the geotechnical exploration program included Fugro West, Inc., (Fugro), Parikh Consultants (Parikh) and Pitcher Drilling Company (Pitcher).

The three companies, Fugro, Parikh, and Pitcher, conducted the majority of the geotechnical field exploration program for the tunnel segments of the SVRT Project from October 15, 2004, to March 5, 2005. The intent of the geotechnical field investigation program was to obtain geotechnical data that will aid in the design and construction of the proposed tunnel and cut-and-cover structures.



In general, the geotechnical field investigations explored subsurface conditions along the proposed tunnel alignment, within the vicinity of the proposed Eastern and Western Portals, at the two proposed ventilation structures, and at the proposed stations including Alum Rock Station, Downtown San Jose Station, and Diridon/Arena Station. The geotechnical exploration program included:

- 76 rotary wash borings, and
- 146 cone penetration tests (CPTs).

Figure A16-1 provides a map of the exploration locations. These locations were selected by HMM/Bechtel based on the following considerations: 1) the data requirements of the tunnel designer, 2) the location of existing geotechnical data, 3) the avoidance of private property, and 4) the avoidance of existing underground and overhead utilities. For CPT correlation purposes, approximately 16 sets of borings and CPTs were conducted within 15 feet of each other.

The boring investigation program was conducted by the two companies, Parikh and Pitcher. The investigation included soil sampling and in situ testing. Soil sampling consisted of Pitcher Barrel sampling, Shelby tube sampling, SPT sampling and California sampling. The in situ testing conducted in the borings consisted of field vane shear testing, pressuremeter testing, downhole geophysical logging, and piezometer installation. For further details regarding the boring investigation program and results refer to the main report.

#### 1.3 LABORATORY TESTING PROGRAM OVERVIEW

#### 1.3.1 Testing Overview

Fugro Consultants' geotechnical laboratory conducted the advanced laboratory testing program for the Tunnel Segment of SVRT Project. This program was conducted on samples provided by Parikh from soil borings located along the tunnel segment. Table A16-1, below, summarizes the numbers and types of different tests conducted. The purpose of this advanced laboratory testing program was to determine selected index and engineering properties of the sampled soils. This appendix provides a detailed description for the K₀-Consolidated Undrained Triaxial tests along with a summary of the interpreted parameters.

Table A16-1. Summary of Advanced Laboratory Testing Program

Test Description	Number of Tests
Constant Rate of Strain (CRS) Consolidation	37
Static Direct Simple Shear	15
K ₀ -Consolidated Undrained Triaxial Compression	20
K ₀ -Consolidated Undrained Triaxial Extension	16
K ₀ -Consolidated Bishop's Procedure	12
Isotropically-Consolidated Drained Triaxial Compression	30



#### 1.3.2 Program Description

The physical properties of the soils tested during the advanced laboratory testing program are separated into two categories, index and engineering. The index properties include items such as water content, specific gravity, unit weight, void ratio, and degree of saturation. The engineering properties would include items such as compressibility (consolidation), strength, and hydraulic conductivity (permeability). The advanced tests conducted as part of this laboratory testing program are discussed in more detail below.

- Constant Rate of Strain Consolidation (CRS) tests were conducted to determine
  the rate and magnitude of soil consolidation as well as stress history for a soil
  sample that is restrained laterally and drained axially. The one-dimensional
  consolidation tests typically involved constant rate-of-loading, one unload-reload
  cycle, and one rebound stage from the maximum applied stress. Detailed discussion
  of the CRS consolidation tests is provided in Appendix 13.
- Static Direct Simple Shear (DSS) tests were conducted to measure constant volume (undrained) shear strength and stress strain-characteristics of cohesive soils after one-dimensional consolidation using a constant rate of simple shear deformation. Detailed discussion of the DSS tests is provided in Appendix 14.
- Isotropically Consolidated Triaxial Drained (CDTX) tests were conducted to evaluate the drained strength characteristics, such as friction angle and stress-strain relationship of the soils encountered in the borings. For detailed discussion of the consolidated drained triaxial tests, refer to Appendix 15.
- K₀-Consolidated Undrained Triaxial Compression and Extension (CK₀UC & CK₀UE) tests were conducted to estimate the static strength parameters and stress-strain characteristics of fine-grained soils under a range of confining stresses and overconsolidation ratios (OCRs). In a K₀-consolidated test, the sample is consolidated under drained conditions to the assigned vertical stress while maintaining a constant diameter of the cylindrical specimen (the horizontal confining stress was automatically adjusted to maintain the constant diameter). A detailed discussion of the K₀ triaxial compression and extension tests is provided in Appendix 16 (this appendix).
- **K**₀ **Bishop's Procedure Triaxial** tests were conducted to determine the at-rest lateral earth pressure coefficient (K₀) as a function of the overconsolidation ratio (OCR). For detailed discussion of the K₀ Bishop's tests, refer to Appendix 17.

The scope of the advanced laboratory testing program also included x-raying of assigned soil samples. Discussion of the x-ray testing procedures and a summary of results are provided in Section 2.0 of Appendix 13, with x-ray images shown in Appendix 20.

#### 1.3.3 Sample Recovery and Handling

Soil sampling was conducted by Parikh at intervals typically ranging from 5 to 10 feet in accordance with the project specifications. Upon sample recovery, undisturbed portions of the



soil sample tubes were sealed and transported to Parikh's laboratory. For further details regarding sample recovery and handling, refer to the main report.

Soil samples assigned for advanced laboratory testing were transported in wooden Shelby tube holders designed to maintain the tubes vertical orientation during transit to Fugro's Laboratory in Oakland. The samples were then packed in specially fabricated, padded containers designed to minimize disturbance and maintain an upright (vertical) orientation of the samples during shipping. The samples were finally shipped to Fugro Consultants' geotechnical laboratory for testing.

### 1.3.4 Overview of $K_0$ -Consolidated Undrained Triaxial Compression and Extension Test Program

Fugro Consultants' geotechnical laboratory conducted  $K_0$ -Consolidated Undrained Triaxial Compression tests on 19 samples and Extension tests on 16 samples, as assigned by HMM/Bechtel.  $K_0$ -consolidated tests are conducted to estimate the static strength parameters and stress-strain characteristics of fine-grained soils under a range of confining stresses and overconsolidation ratios (OCR). The  $K_0$  method of consolidation is used to better model the in situ stress conditions of the soil. The test is applicable to field conditions where soils that have been fully consolidated under a set of stresses, are subjected to a change in stress without time for further consolidation to take place (undrained conditions).

The shear strength determined from the  $K_0$ -consolidated tests, expressed in terms of total stresses (undrained conditions) or effective stresses (drained conditions), are commonly used in stability analyses, earth pressure calculations and foundation design.

 $CK_0UE$  (extension) tests are conducted by consolidating the test specimen under  $K_0$  conditions as per the  $CK_0UC$  tests and then sheared to failure by maintaining a constant horizontal stress and decreasing the total vertical stress. Extension loading simulates loading under passive failure conditions as may be encountered at the bottom of a supported excavation.

The normalized undrained shear strength  $(S_u/\sigma'_{vc})$  can be estimated as the ratio of the maximum observed shear stress (q) to the effective vertical consolidation stress  $(\sigma'_{vc})$  prior to undrained loading. The in situ undrained shear strength may then be estimated by multiplying the normalized undrained shear strength with the estimated in situ effective overburden pressure (for normally consolidated samples).

### 2.0 K₀-CONSOLIDATED UNDRAINED TRIAXIAL TEST PROCEDURES

### 2.1 INTRODUCTION

The  $K_0$ -Consolidated Undrained Triaxial tests were conducted in general accordance with ASTM Test Method D 4767. In a  $K_0$ -consolidated test the sample is consolidated under drained conditions to the assigned vertical stress while maintaining a constant diameter of the



cylindrical specimen (the horizontal confining stress is automatically adjusted to maintain the constant diameter). The sample is then sheared to failure under undrained conditions with pore water pressure measurements. By measuring the pore-water pressures generated during the test, the shear strength determined from the test can be expressed in terms of effective stress. This test method provides for the calculation of total and effective stresses, and axial compression or extension by measurement of axial load, axial deformation, and pore water pressure.

### 2.2 K₀-CONSOLIDATED UNDRAINED TRIAXIAL TEST STANDARDS AND PROCEDURES

K₀-Consolidated Undrained Triaxial tests were performed using an automated system (TruePath) developed by Fugro Consultants, Trautwein and Germaine (of the Massachusetts Institute of Technology). The test procedure followed the technical requirements of ASTM Test Method D4767-95 except for the following: a) TruePath K₀ consolidation; b) some minor calculation methodologies (volume of specimen before shearing, membrane correction, and area correction during shearing); and c) shearing in extension, when performed. The procedure for K₀-Consolidated Undrained Triaxial tests typically consists of five steps:

- 1. *Cell Preparation*: Using the assigned confining pressure, strength estimates and specimen area, the proper load cell and pressure transducers are selected.
- 2. Specimen Preparation: The selected portions of the tubes were cut into segments with a mechanical hacksaw (18 teeth per inch). A wire saw was used to separate the soil from the surrounding tube in an effort to reduce potential disturbance upon extrusion. In addition, each tube is marked such that all test specimens, will have the same orientation when sheared. The sample is then extruded from the cut portion of the tube using a hydraulically actuated ram.
  - Test specimens are typically trimmed to a 2.0-inch diameter by 4-inch height. After specimens are trimmed, they are mounted in the triaxial testing apparatus and aligned with the cell base with porous stones at each end. Each specimen had top, bottom and radial drainage boundaries during consolidation. The radial drainage was provided by spirally oriented ¼-inch-wide Whatman No. 1 filter strips placed at about ¼-inch spacing.
- 3. Back Pressure Saturation: Specimen saturation is usually achieved through back pressuring at either, an effective isotropic-confining stress of 3 to 7 psi (21 to 48 Kpa), a stress which prevents swelling or the assigned stress, whichever was smaller.
- 4. Consolidation: Using the SHANSEP methodology, the soil specimen is K₀-consolidated, in which the sample is consolidated, under drained conditions, to the assigned vertical stress while maintaining a constant diameter of the cylindrical specimen (the horizontal confining stress is automatically adjusted to maintain the constant diameter). The samples are typically consolidated at a controlled rate of strain of about 0.1 to 0.5 percent/hr, depending upon its liquid limit. The duration of all consolidation increments shall be such that at least 95 percent consolidation is



- achieved. If a test required the specimen to have an OCR greater than one, as in this program, the specimen was first consolidated to an induced OCR = 1 and cured (as mentioned above, but with  $\sigma'_{v,c} = \sigma'_{vc,max}$ ); then rebounded in increments to  $\sigma'_{v,c}$  and cured (thereby obtaining the appropriate OCR > 1); and, finally, sheared.
- 5. Undrained Axial Shearing: During shearing, the chamber pressure is kept constant and specimen drainage is not permitted. An axial loading piston is advanced into (shearing compression), or retracted from (shearing in extension) the cell at a specific rate of strain. The applied rate-of-strain was slow enough (about 0.1 to 0.5 percent/h, depending upon the specimen's liquid limit) to produce approximate equalization of excess pore-water pressures (PWP) throughout the specimen at failure. The static stresses and excess PWPs (ΔU) were used to express the measured stress parameters in terms of effective stresses.

### 3.0 K₀-CONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS

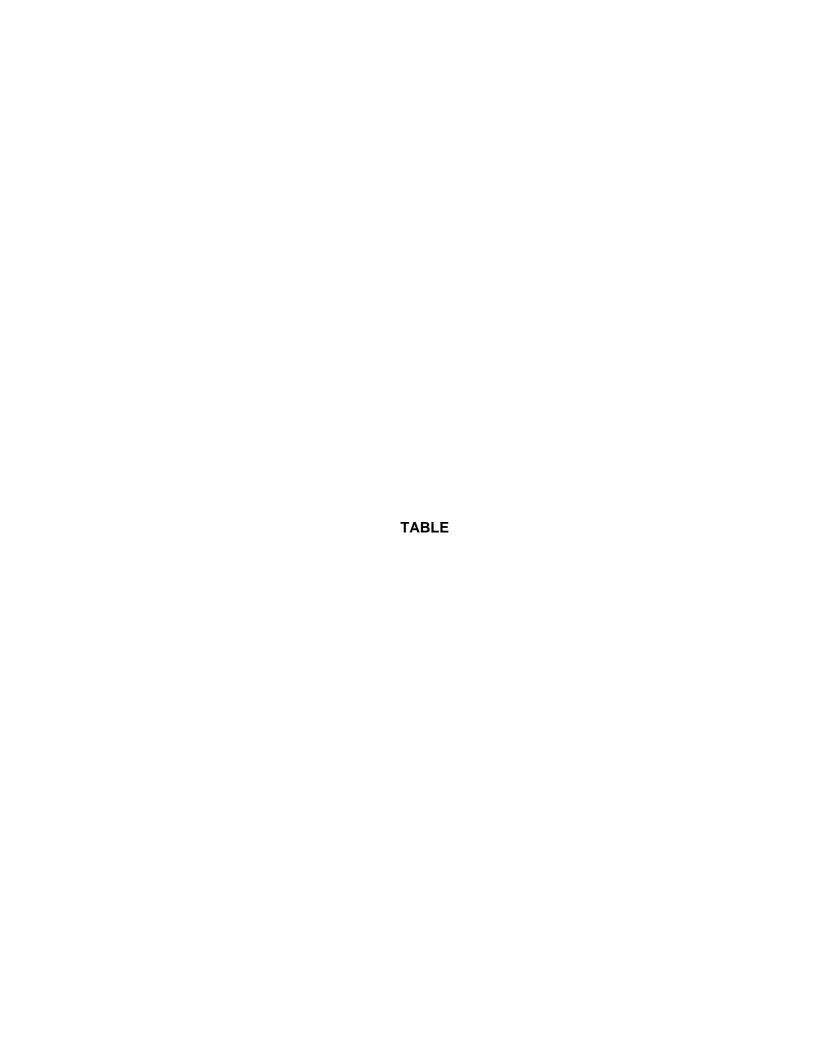
During consolidation and shearing the necessary data (time, vertical and horizontal forces, shear deformations, pore pressures and transducer excitation voltage) were recorded using an automated data-acquisition system and electronically filed. Specialized Excel worksheets, along with a Visual Basic code (VBA) were used to reduce the data files into engineering units in tabular and graphical format. Figures A16-2 through A16-17 present the  $CK_0UE$  test results, and Figures A16-18 through A16-37 present the  $CK_0UC$  test results. For each test performed, normalized shear stress (ratio of the horizontal shear stress to the pre shear effective vertical stress [ $\tau_h/\sigma'_{v,c}$ ]), the normalized excess pore water pressure and obliquity versus shear strain ( $\gamma$ %) are plotted on three separate plots on one page while the  $K_0$  and axial strain are plotted versus effective vertical stress, and normalized shear stress ( $\tau_h/\sigma'_{v,c}$ ) versus normalized average effective vertical stress ( $p/\sigma'_{v,c}$ ) are shown on a second page of plots.

Results such as moisture content, Atterberg limits, initial unit weight, soil type, interpreted preconsolidation pressure, estimated in situ vertical stress, overconsolidation ratio, undrained shear strength and maximum shear strain are summarized in "Table A16-2 – Summary of  $CK_0U$  Test Results." The estimated in situ vertical effective stress was estimated by developing a unit weight profile from the boring data with either measured or estimated ground water levels.

### 4.0 LIMITATIONS

Our services consist of laboratory testing, and data evaluations that are made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.

The test data provided in this appendix is from the laboratory testing of samples obtained from subsurface explorations conducted by others. These explorations indicate subsurface conditions only at specific locations and times, and only to the depths penetrated.




Variations may exist and conditions not observed or described in this report could be encountered during construction. Our laboratory tests results presented in this appendix are based on the standards and procedures indicated herein. The laboratory assignments were provided by HMM/Bechtel.

This appendix has been prepared for the exclusive use of HMM/Bechtel and their consultants for specific application to the SVRT project as described herein. In the event that there are any changes in the ownership, nature, design, or location of the proposed project, or if any future additions are planned, the results contained in this appendix should not be considered valid unless 1) the project changes are reviewed by Fugro, and 2) results presented in this appendix are modified or verified in writing. Reliance on this report by others must be at their risk unless we are consulted on the use or limitations. We cannot be responsible for the impacts of any changes in geotechnical standards, practices, or regulations subsequent to performance of services without our further consultation. We can neither vouch for the accuracy of information supplied by others, nor accept consequences for unconsulted use of segregated portions of this report.

### 5.0 REFERENCES

ASTM D4767, "Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, "ASTM International.





Boring Number	B-23	B-23	B-24	B-25	B-33	B-42	B-60
Sample Number	96	8	70	4a	- 6a	202	1 2
Test Type	CKUE	CKUE	CKUE	CKUE	CKUE	CKUE	CKUE
Penetration Depth (ft)	40.00	117.00	24.85	32.50	54.40	37.35	73.95
Soll Type	CL	CL	CL	ML	CL-ML	J _O	ر ا
Atterberg Limits (%) Liquid I imit 11	ć	Ö	3				
Plastic Limit, PL	5 5	9 4	23 16	98 8	35	33	7 8
Water Content (%)			2	1	2	2	
In Situ Water Content, Wo	22.6	20.1	22.6	30.8	26.7	22.9	21.5
Initial Water Content Before Consolidation, Wi	21.6	20.1	23.4	30.4	27.4	23.4	22.0
Final Water Content, W _t	15.6	15.7	18.6	25.2	21.6	16.7	15.6
Initial Total Unit Weight, vt.0 (pcf)	126	128	123	117	120	127	129
Vertical Effective Stress, o'vo (ksf)	2.95	7.93	1.94	3.10	3.88	2.76	4.74
rencal Elective Collsolidation Stress (Pfe-Shear), σ _{vc} (ksf)	65.85	14.17	14.23	7.81	10.84	11.22	49.89
Horizontal Effective Consolidation Stress (Pre-Shear), o' _{hc} (ksf)	31.80	9.50	7.30	4.95	9.16	7.91	24.28
Lateral Earth Pressure Coefficient After Consolidation, K	0.48	0.67	0.51	0.63	0.85	0.71	0.49
Preconsolidation Pressure (Casagrande), o'p (ksf)	9.2	25.6	5.2	8.6	11.6	13.1	16.2
Overconsolidation, OCR							
In Situ Test Induced	 	3.5	2.7	2.8	3.0	4.7	3.4
Compression Index C	0.1	6.7	0	J., I	4.4	5.1	1.0
ŀ	0.11	0.12	0.12	0.13	0.14	0.11	0.10
Axial Strain at Max Shear Stress, c _a (%):	6.8	1.5	9.5	9.4	9.0	10.3	9.9
Axial Strain at Max Obliquity, e _a (%);	6.1	5.8	8.8	8.4	8.5	10.5	5.6
Undrained Shear Strength, S _u (kst)	9.14	4.82	2.99	3.97	69.7	7.76	8.05
Undrained Shear Strength Ratio, Su/o've	0.14	0.34	0.21	0.51	0.71	0.69	0.16
Estimated Friction Angle at Maximum Obliquity, ¢' (degrees)	33	98	68	43	41	42	33
Notes: OKITE - K Consolidated Hadring Trianial First Line							

Notes: CKUE = K₀ Consolidated Undrained Triaxial Extension test

 $\label{eq:ckuc} \mbox{CKUC} = \mbox{K}_0 \mbox{ Consolidated Undrained Triaxial Compression test} \\ \mbox{NA} = \mbox{Test Not Assigned} \\$ 

# SUMMARY OF K₀ TRIAXIAL COMPRESSION AND EXTENSION TEST RESULTS





Boring Number	B-60	B-64	B-64	B-68	B-68	B-68	R-70
Sample Number	18b	20	190	සි	49	30	35.9
Test Type	CKUE	CKUE	CKUE	CKUE	CKUE	CKUE	CKUE
Penetration Depth (ft)	131.85	31.90	117.25	12.65	20.70	149.80	137.30
soil Type	CL	CL	CF	CF	끙	J J	IJ
Atterberg Limits							
Liquio Limit, L. Bisstic i imit Di	49	35	Š	51	44	38	52
riasuo ciriili, itt.	22	21	NA	24	24	18	16
water content (%)							
In Situ Water Content, Wo	26.4	30.0	23.2	36.8	36.1	26.9	24.9
Initial Water Content Before Consolidation, Wi	56.9	30.6	23.2	38.1	37.0	27.1	25.0
	20.8	23.7	21.6	30.0	28.7	22.4	19.3
Initial Total Unit Weight, vt,0 (pcf)	123	120	119	115	115	123	124
In Situ Vertical Effective Stress, o'w (ksf)	8.66	2.20	7.78	1.29	1.68	9.92	9.74
vertical Effective Consolidation Stress (Pre-Shear), σ' _{vc} (Ksf)	48.46	18.80	74.77	14.10	1.63	56.78	14.33
Horizontal Effective Consolidation Stress (Pre-Shear), σ' _{nc} (ksf)	28.44	9.24	35.79	7:37	2.06	33.96	11.04
Lateral Earth Pressure Coefficient After Consolidation, K	0.59	0.49	0.48	0.52	1.26	09:0	0.77
Preconsolidation Pressure (Casagrande), o'p (ksf)	17.9	6.8	28.3	4.9	3.6	30.8	22.5
Overconsolidation, OCR							
In Situ	2.1	3.1	3.6	3.8	2.2	3.1	2.3
lest induced	1.0	1.0	1.0	1.0	7.0	1.0	4.3
Compression Index, C _{e.c}	0.17	0.13	0.11	0.16	0.15	0.16	0.18
Axial Strain at Max Shear Stress, e _a (%):	12.9	11.3	2.4	13.7	3.9	6.6	6.9
Axial Strain at Max Obliquity, $\epsilon_{\rm a}$ (%):	11.8	6.0	2.4	12.9	3.9	9.4	6.9
Undrained Shear Strength, S _u (ksf)	9.80	2.97	9.25	3.24	1.40	12.09	7.44
	0.20	0.16	0.12	0.23	0.85	0.21	0.52
Estimated Friction Angle at Maximum Obliquity,   (degrees)	32	30	44	42	45	31	31
Notes: CKHE - K. Consolidated Hadrained Tricuial Extension toot							

Notes: CKUE = K₀ Consolidated Undrained Triaxial Extension test

 $\label{eq:ckuc} CKUC = K_0 \ Consolidated \ Undrained \ Triaxial \ Compression \ test \ NA = Test \ Not \ Assigned$ 

# SUMMARY OF K₀ TRIAXIAL COMPRESSION AND EXTENSION TEST RESULTS





Boring Number	B-75	B-77	B-9	B-18	B-23	B-23	B-24	B-24
Sample Number	15c	160	ဗ္ဂ	တိ	q6	17c	36	7b
Test Type	CKUE	CKUE	CKUC	CKUC	CKUC	CKUC	CKUC	CKUC
Penetration Depth (ft)	150.45	101.85	51.80	80.95	41.20	106.50	14.85	24.45
Soil Type	CF	CF	CH	CF	CL	CF	JO	J)
Atterberg Limits								
Liquid Limit, LL	53	ΑΝ	53	32	32	24	37	59
Plastic Limit, PL	16	NA	22	18	15	16	18	16
Water Content (%)								
In Situ Water Content, Wo	20.1	20.1	29.0	21.9	22.5	19.0	28.8	22.3
Initial Water Content Before Consolidation, W ₁	20.1	20.1	29.5	22.5	21.8	19.4	29.5	22.3
Final Water Content, W ₁	16.0	15.7	24.0	17.2	15.5	14.3	22.1	17.8
Initial Total Unit Weight, vt.0 (pcf)	128	128	120	127	126	132	121	124
In Situ Vertical Effective Stress, o'vo (ksf)	10.21	7.02	3.50	5.40	2.95	7.27	1.52	1.94
Vertical Effective Consolidation Stress (Pre-Shear), σ' _{vc} (ksf)	26.81	43.09	4.70	24.89	64.68	18.81	15.68	14.69
Horizontal Effective Consolidation Stress (Pre-Shear), o' _{ho} (ksf)	15.26	22.02	5.03	16.31	32.48	9.89	8.39	7.00
Lateral Earth Pressure Coefficient After Consolidation, K	0.57	0.51	1.07	99.0	0.50	0.53	0.54	0.48
Preconsolidation Pressure (Casagrande), σ'ρ (ksf)	26.1	15.7	11.5	17.3	9.4	25.6	4.1	5.0
Overconsolidation, OCR								
In Situ Test Induced	2.6	2.2	.3.3 1.3	3.2	3.2	ය. වැඩ	2.7	2.6
Compression Index, C _{e,c}	0.12	0.15	0.15	0.13	0.11	0.10	0.12	0.12
Axial Strain at Max Shear Stress, ea (%):	12.1	2.6	9.7	1.9	0.8	6.5	6.0	0.4
Axial Strain at Max Obliquity, $\epsilon_{\rm a}$ (%):	8.5	10.2	1.9	7.7	8.2	0.7	7.7	7.9
Undrained Shear Strength, Su (ksf)	9.41	5.63	5.86	14.04	20.34	17.56	4.58	4.66
Undrained Shear Strength Ratio, S _υ /σ' _{νc}	0.35	0.13	1.58	0.56	0.31	0.93	0.29	0.32
Estimated Friction Angle at Maximum Obliquity,   (degrees)	35	24	35	32	32	35	29	33
Notes: CKITE - K. Copeolidated Hadrained Tringial Extension test								

Notes: CKUE = K₀ Consolidated Undrained Triaxial Extension test

CKUC = K₀ Consolidated Undrained Triaxial Compression test NA = Test Not Assigned

# SUMMARY OF K₀ TRIAXIAL COMPRESSION AND EXTENSION TEST RESULTS





Boring Number	B-25	B-33	B-37	R-42	B-60	B_60	B-64
Somalo Mirabor	3 4	3 4	5 6	7 7	3 ;	5 5	<u> </u>
Sample Number Test Type	CK 50	0 X	S S	 C X	الم الم الم	T8a CKLC	CK IC
Penetration Depth (ft)	32.05	54.00	42.30	36.95	74.35	132.40	31.50
Soil Type	MI	CL-ML	겁	ر ا	J.	J _O	CL
Atterberg Limits							
Liquid Limit, LL	36	35	29	31	28	49	32
Plastic Limit, PL	24	19	50	13	17	22	21
Water Content (%)							
In Situ Water Content, Wo	36.1	23.8	24.1	21.5	20.1	24.4	30.4
Initial Water Content Before Consolidation, W,	37.0	24.6	24.5	22.2	20.7	24.8	31.3
Final Water Content, W _t	28.8	18.0	18.7	16.9	15.5	18.8	23.6
Initial Total Unit Weight, yt,0 (pcf)	106	124	125	127	130	126	117
In Situ Vertical Effective Stress, σ' _{νο} (ksf)	3.10	3.88	3.01	2.76	4.74	8.66	2.20
Vertical Effective Consolidation Stress (Pre-Shear), ດ່າດ (ksf)	8.04	11.08	47.59	11.42	50.85	48.87	25.91
Horizontal Effective Consolidation Stress (Pre-Shear), σ'າດ (ksf)	5.42	8.51	22.20	6.43	23.46	27.89	13.54
Lateral Earth Pressure Coefficient After Consolidation, K	0.67	0.77	0.47	0.56	0.46	0.57	0.52
Preconsolidation Pressure (Casagrande), σ' _p (ksf)	8.7	12.5	12.2	14.3	15.8	18.0	6.1
Overconsolidation, OCR							
In Situ	2.8	3.2	4.0	5.2	3.3	2.1	2.8
Test Induced	3.1	4.3	1.0	5.1	1.0	1.0	1.0
Compression Index, C _{e,c}	0.15	0.13	0.12	0.10	0.11	0.15	0.15
Axial Strain at Max Shear Stress, $\epsilon_a$ (%):	2.5	6.7	0.4	10.9	9.0	1.2	0.9
Axial Strain at Max Obliquity, $\epsilon_a$ (%):	8.7	6.7	2.7	9.0	7.8	0.7	8.8
Undrained Shear Strength, S _u (ksf)	6.51	12.36	15.34	15.08	16.58	14.15	7.58
Undrained Shear Strength Ratio, Su/o've	0.81	1.12	0.32	1.32	0.33	0.29	0.29
Estimated Friction Angle at Maximum Obliquity, ¢' (degrees)	36	34	34	36	34	28	32
Notes: CKIIE - K. Consolidated Hadrained Triavial Extension feet							

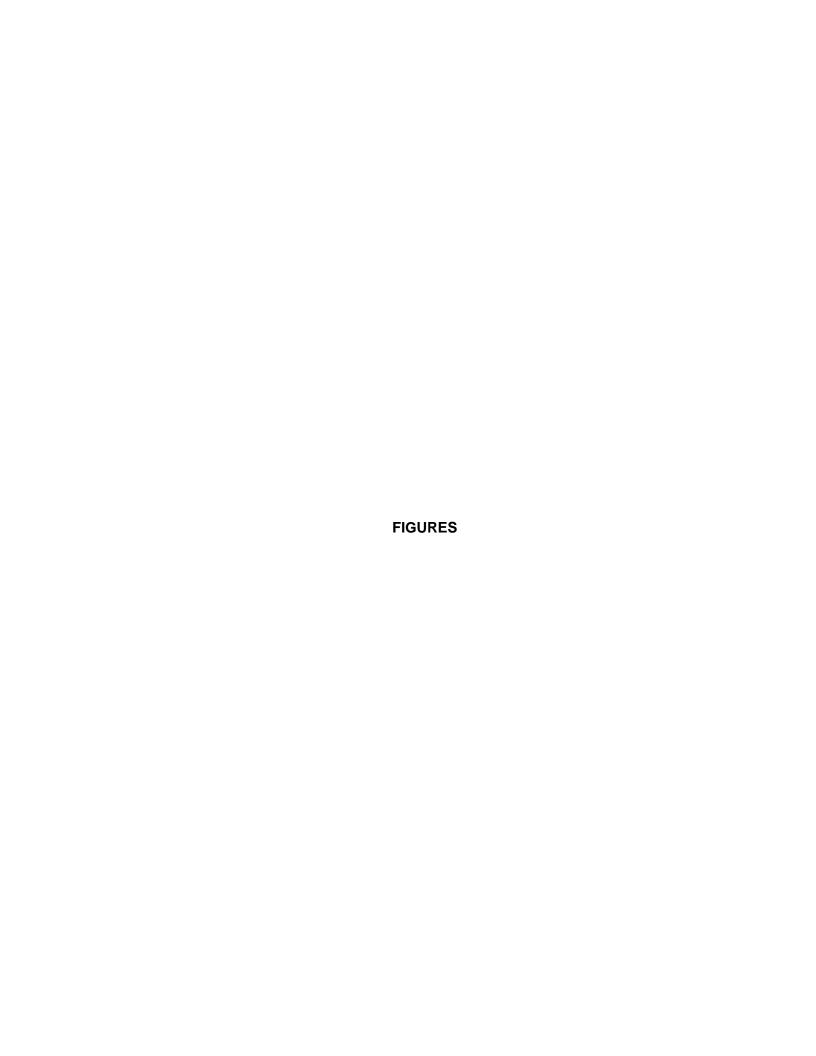
CKUE = K₀ Consolidated Undrained Triaxial Extension test Notes:

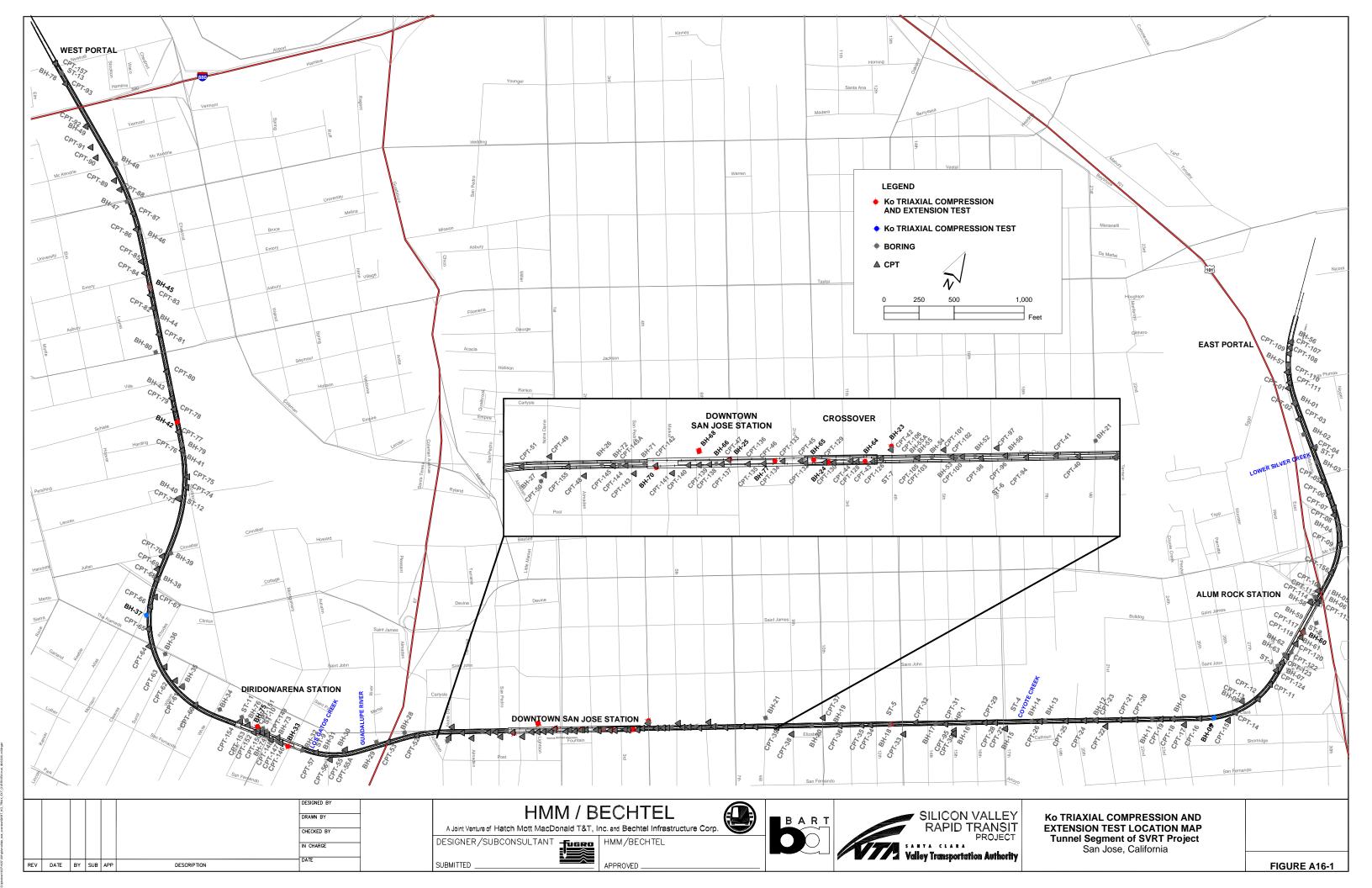
CKUC = K₀ Consolidated Undrained Triaxial Compression test NA = Test Not Assigned

# SUMMARY OF K₀ TRIAXIAL COMPRESSION AND EXTENSION TEST RESULTS

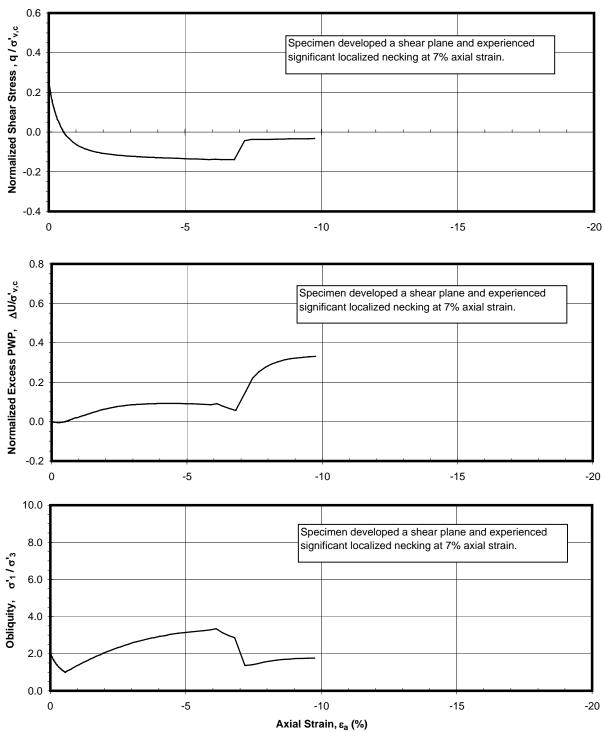





Boring Number	B-64	B-68	B-68	B-70	B-75	B-75	B-77
Sample Number	- <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> - <del>-</del> <del>-</del> - <del>-</del>	) e	1 8 8	37.0	1. C	 	- <del>6</del>
Test Type	CKUC	CKUC	CKUC	CKUC	CKUS CKUS CKUS CKUS CKUS CKUS CKUS CKUS	CKUC	CKUC CKUC
Penetration Depth (ft)	116.90	13.10	149.40	136.80	150.85	160.00	101.45
Soil Type	CL	CF	CF	HS	CL	J	CL CL
Atterberg Limits							
Liquid Limit, LL	Ϋ́	51	38	52	59	23	Ϋ́
Plastic Limit, PL	NA	24	18	16	16	19	Ϋ́
Water Content (%)							
In Situ Water Content, Wo	24.6	37.6	23.2	24.7	18.4	21.0	21.3
Initial Water Content Before Consolidation, W,	24.9	37.3	23.9	25.1	18.7	21.7	20.8
Final Water Content, W,	20.4	30.4	18.7	18.8	14.6	18.6	16.3
Initial Total Unit Weight, ላቲ,0 (pcf)	123	117	127	123	131	123	128
In Situ Vertical Effective Stress, σ' _{νο} (ksf)	7.78	1.29	9.92	9.74	10.21	10.87	7.02
Vertical Effective Consolidation Stress (Pre-Shear), ຜ _{vc} (ksf)	75.11	14.30	57.22	13.39	26.96	116.39	43.26
Horizontal Effective Consolidation Stress (Pre-Shear), σ' _{he} (ksf)	38.43	7.46	32.41	9.54	14.96	59.71	23.36
Lateral Earth Pressure Coefficient After Consolidation, K	0.51	0.52	0.57	0.71	0.56	0.49	0.54
Preconsolidation Pressure (Casagrande), σ' _p (ksf)	27.1	5.6	29.2	21.1	32.0	46.9	18.5
Overconsolidation, OCR							
In Situ	3.5	4.3	2.9	2.2	3.1	4.3	2.6
Test Induced	1.0	1.0	1.0	4.3	3.0	1.0	1.0
Compression Index, C _{e,c}	0.13	0.14	0.14	0.18	0.11	0.10	0.14
Axial Strain at Max Shear Stress, ea (%):	6.0	1.9	1.3	3.3	9.2	0.4	0.8
Axial Strain at Max Obliquity, $\epsilon_a$ (%):	6.2	7.7	4.9	1.9	6.0	8.9	8.5
Undrained Shear Strength, S _u (ksf)	22.62	4.39	16.54	14.28	20.65	36.78	13.08
Undrained Shear Strength Ratio, Sulc've	0:30	0.31	0.29	1.07	0.77	0.32	0:30
Estimated Friction Angle at Maximum Obliquity, ¢' (degrees)	30	28	28	36	32	98	30
Notes: CKUE = $K_0$ Consolidated Undrained Triaxial Extension test							


 $CKUE = K_0$  Consolidated Undrained Triaxial Extension test

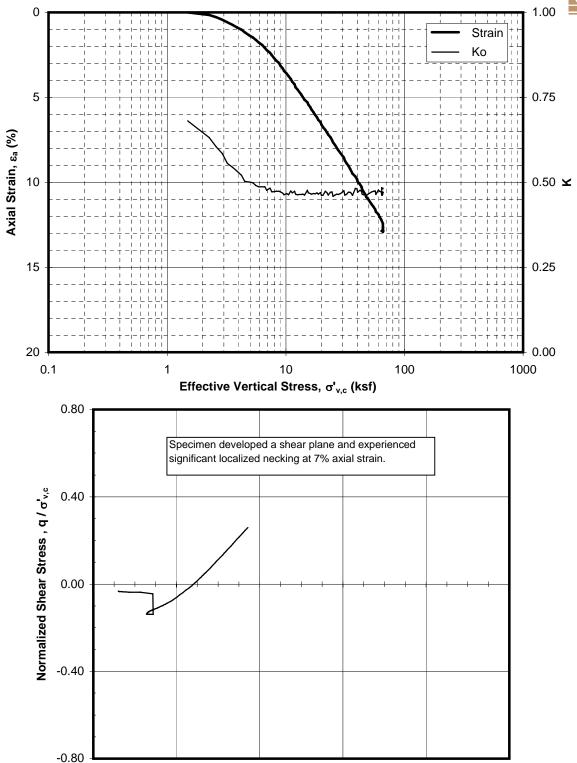
 $\label{eq:ckuc} CKUC = K_0 \, Consolidated \, Undrained \, Triaxial \, Compression \, test \, NA = Test \, Not \, Assigned$ 


# SUMMARY OF K₀ TRIAXIAL COMPRESSION AND EXTENSION TEST RESULTS Tunnel Segment of SVRT Project San Jose, California












Sample: 9c - Depth: 41.75 ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California







Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

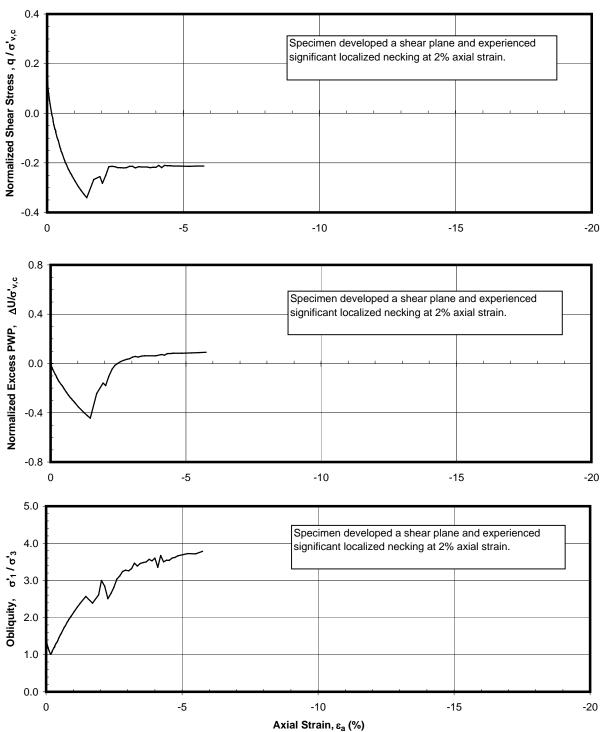
1.20

1.60

0.80

### Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 1

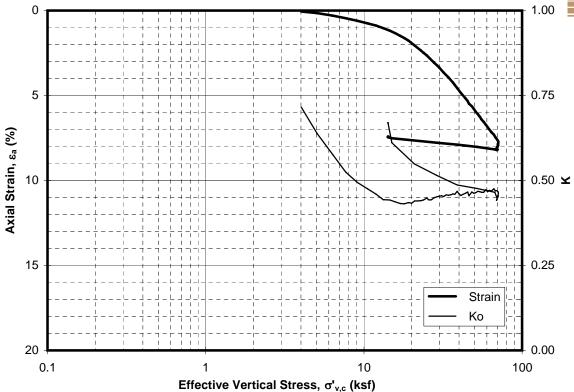
Sample: 9c - Depth: 41.75 ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California

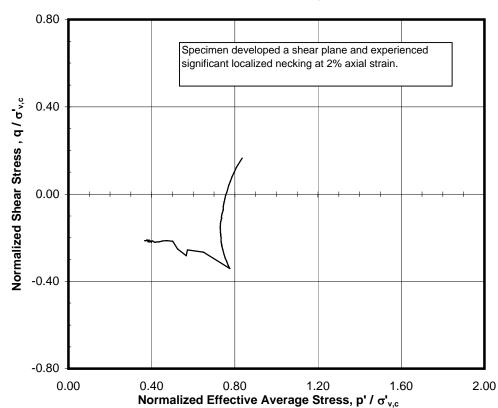



0.00

0.40

2.00

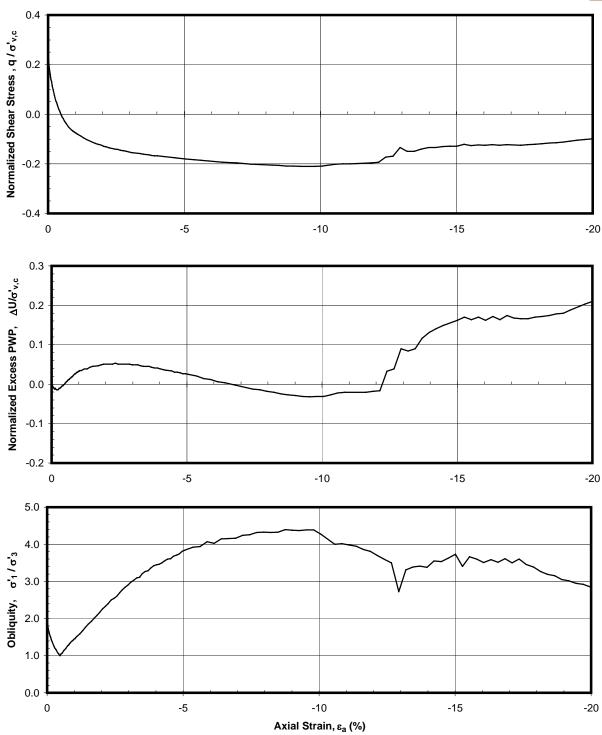



Sample: 18c - Depth: 114.7ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California



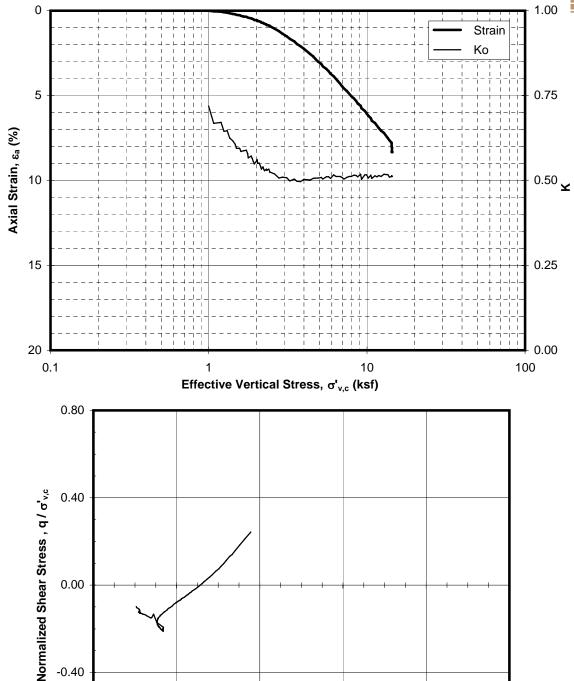







Sample: 18c - Depth: 114.7ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California








Sample: 7c - Depth: 24.85 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California







Normalized Effective Average Stress, p' / σ'_{v,c}

0.80

1.20

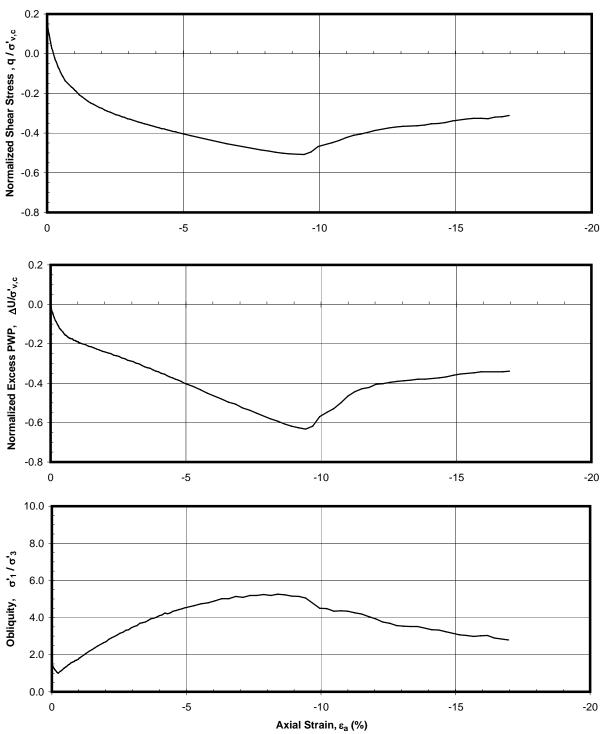
1.60

### **Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS** Test Induced OCR = 1

Sample: 7c - Depth: 24.85 ft Boring B-24 Tunnel Segment of SVRT Project San Jose, California



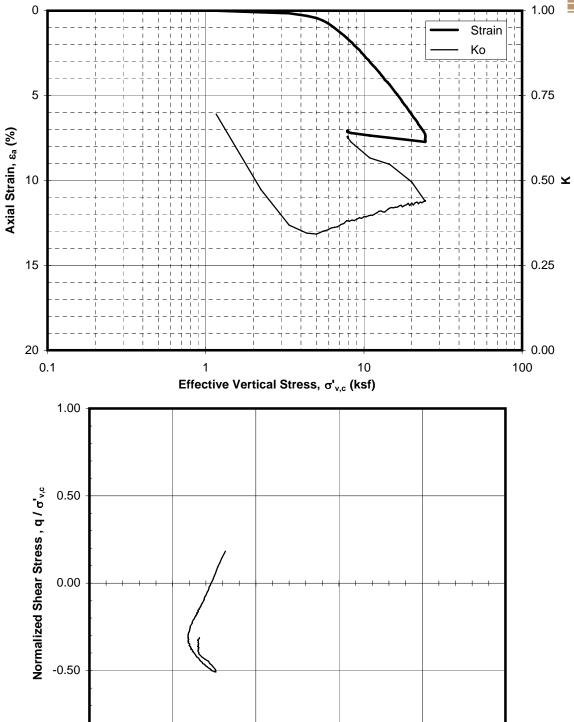
-0.40


-0.80

0.00

0.40

2.00






Sample: 4a - Depth: 32.50 ft Boring B-25 Tunnel Segment of SVRT Project San Jose, California







Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

1.50

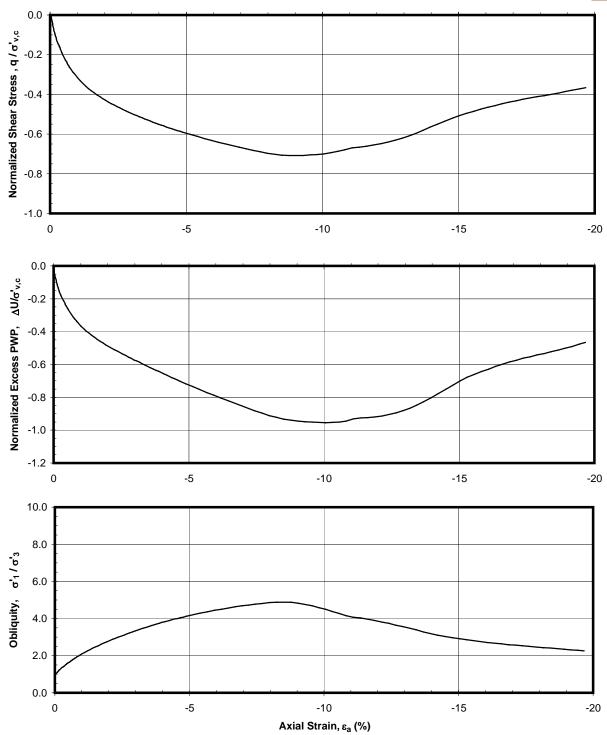
2.00

1.00

## Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 3.13

Sample: 4a - Depth: 32.50 ft
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California

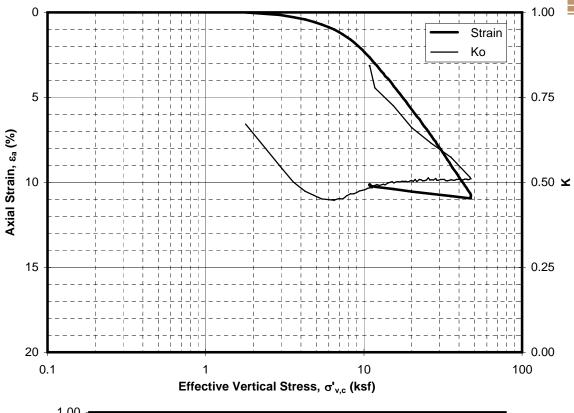


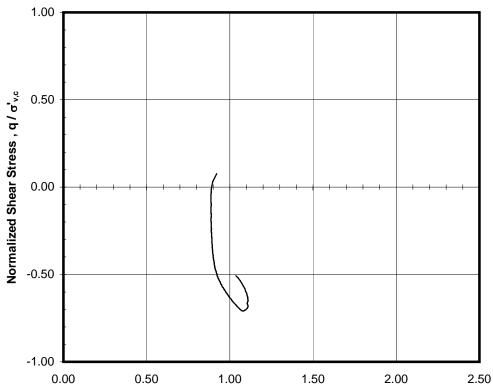

-1.00

0.00

0.50

2.50



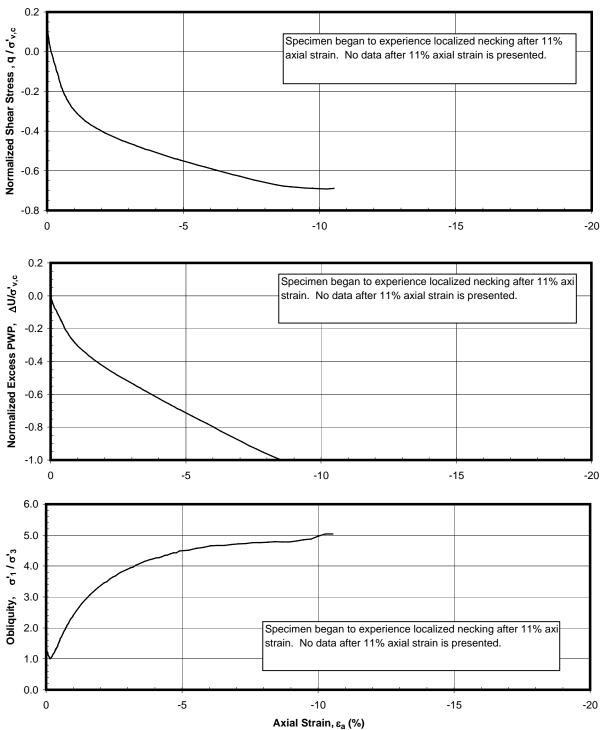

Sample: 6a - Depth: 54.40 ft
Boring B-33
Tunnel Segment of SVRT Project
San Jose, California







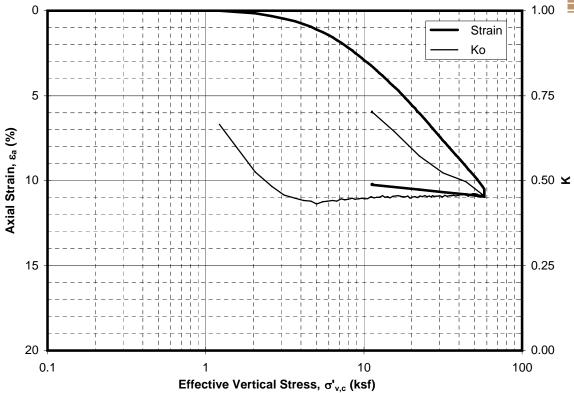


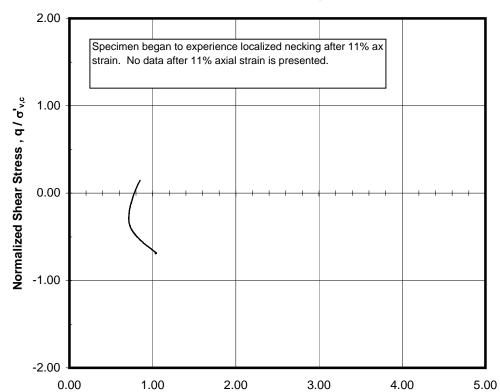

Normalized Effective Average Stress, p' / σ'_{v,c}

### **Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS**

Test Induced OCR = 4.37 Sample: 6a - Depth: 54.40 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California





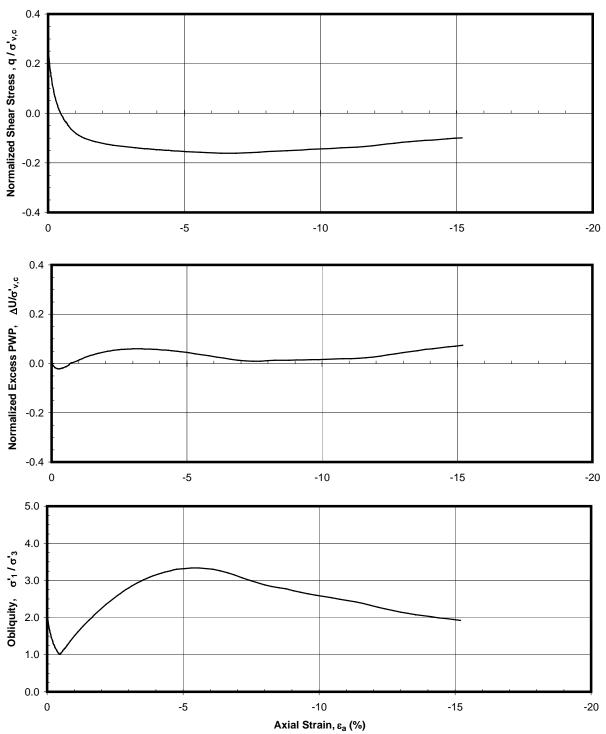

Sample: 7c - Depth: 34.45ft
Boring B-42
Tunnel Segment of SVRT Project
San Jose, California







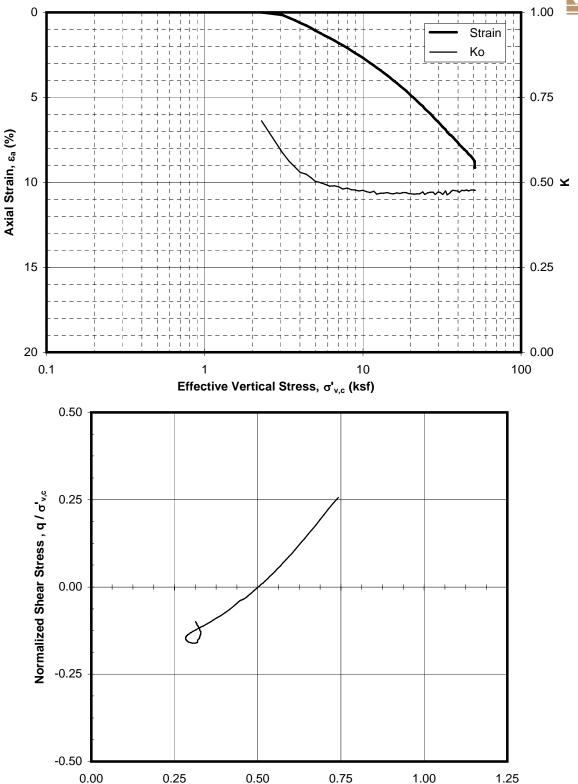



Normalized Effective Average Stress, p' / σ'_{v,c}

## Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 5.14

Sample: 7c - Depth: 34.45ft
Boring B-42
Tunnel Segment of SVRT Project
San Jose, California





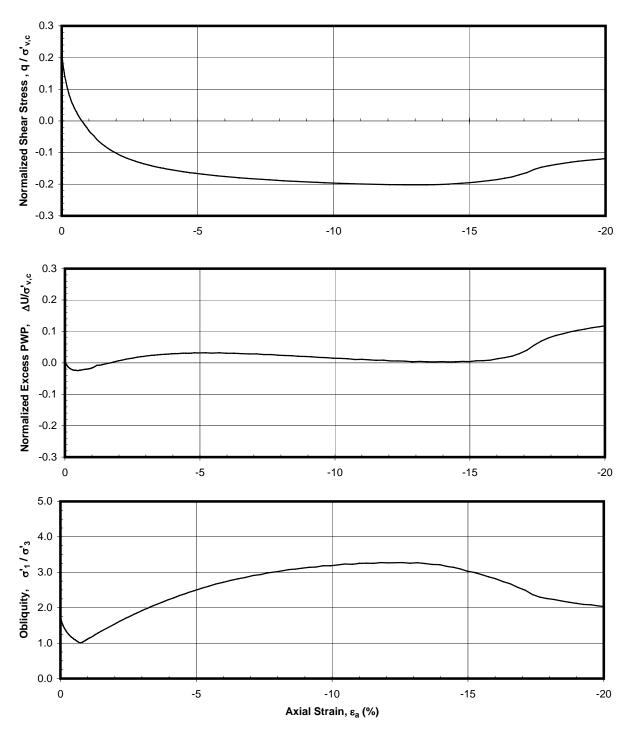



Sample: 11b - Depth: 73.95 ft
Boring B-60
Tunnel Segment of SVRT Project
San Jose, California








Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

### Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 1

Sample: 11b - Depth: 73.95 ft
Boring B-60
Tunnel Segment of SVRT Project
San Jose, California



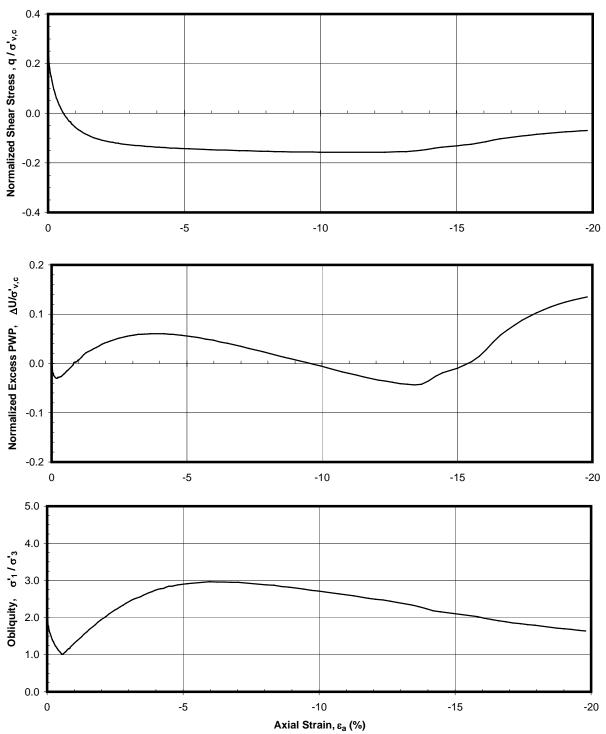




Sample: 18b - Depth: 131.85 ft Boring B-60 Tunnel Segment of SVRT Project San Jose, California



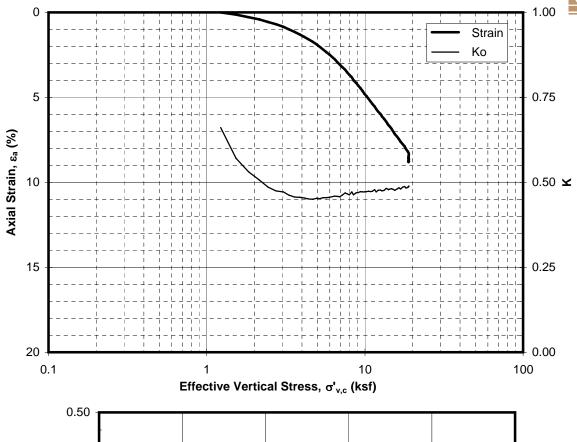
HMM/Bechtel Project No. 1637.001 0 1.00 Strain Κo 5 0.75 Axial Strain,  $\epsilon_a$  (%) 10 0.50 🗷 15 0.25 20 0.00 0.1 100 Effective Vertical Stress,  $\sigma'_{v,c}$  (ksf) 0.50 Normalized Shear Stress , q / σ'v,c 0.25 0.00 -0.25 -0.50 0.00 0.25 0.50 0.75 1.00 1.25

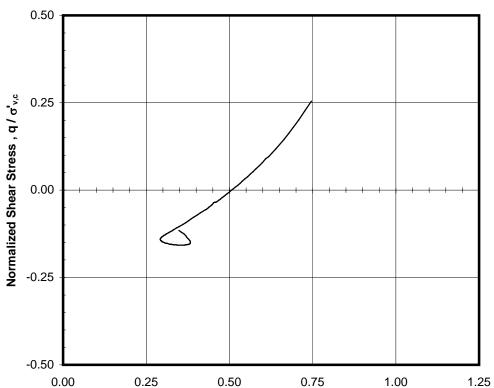

### Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 1

Normalized Effective Average Stress, p' /  $\sigma'_{v,c}$ 

Sample: 18b - Depth: 131.85 ft Boring B-60 Tunnel Segment of SVRT Project San Jose, California





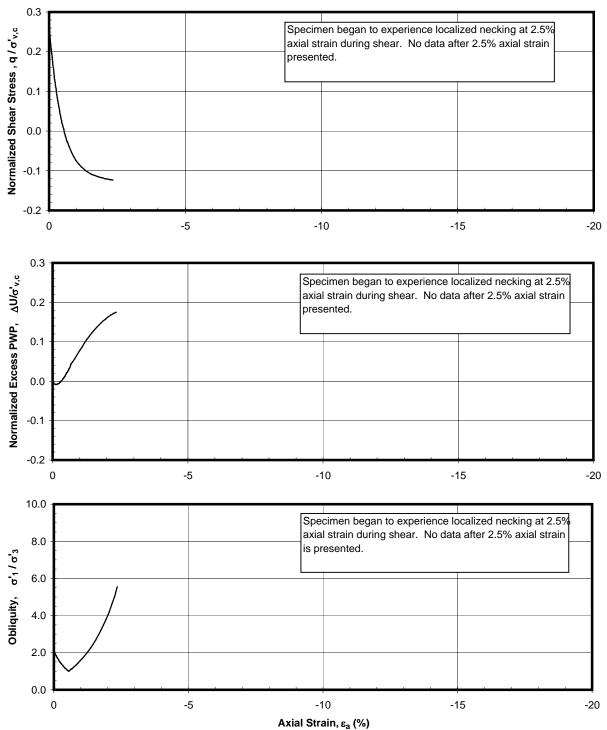

Sample: 5c - Depth: 31.90 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California







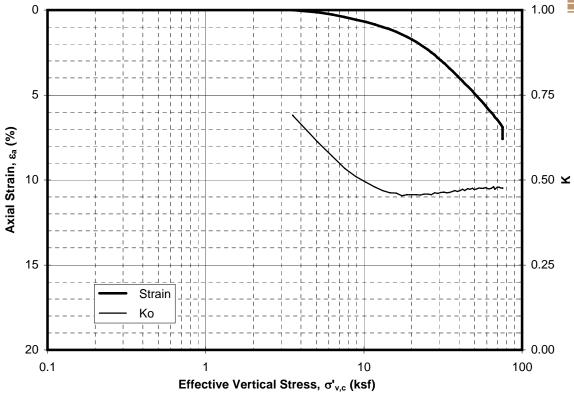


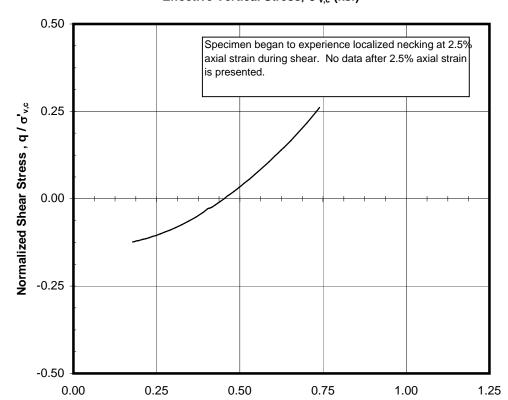

Normalized Effective Average Stress, p' /  $\sigma'_{v,c}$ 

### Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 1

Sample: 5c - Depth: 31.90 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California





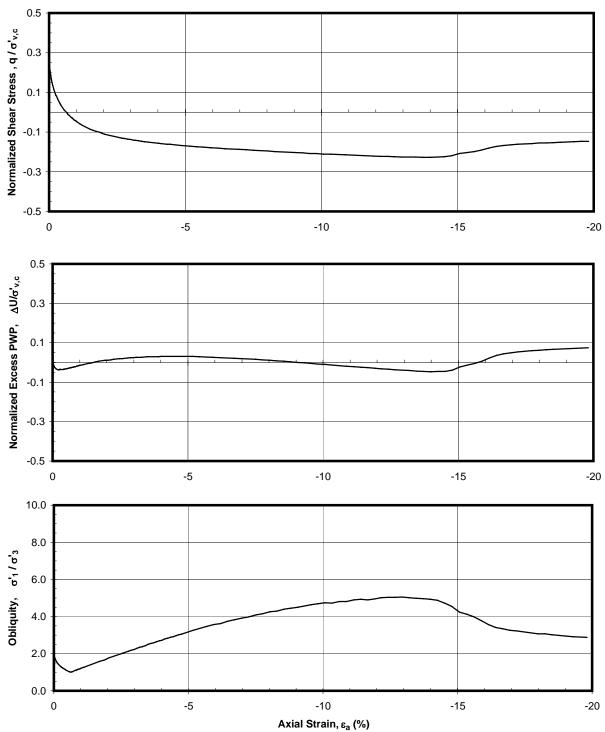

Sample: 19c - Depth: 117.25 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California







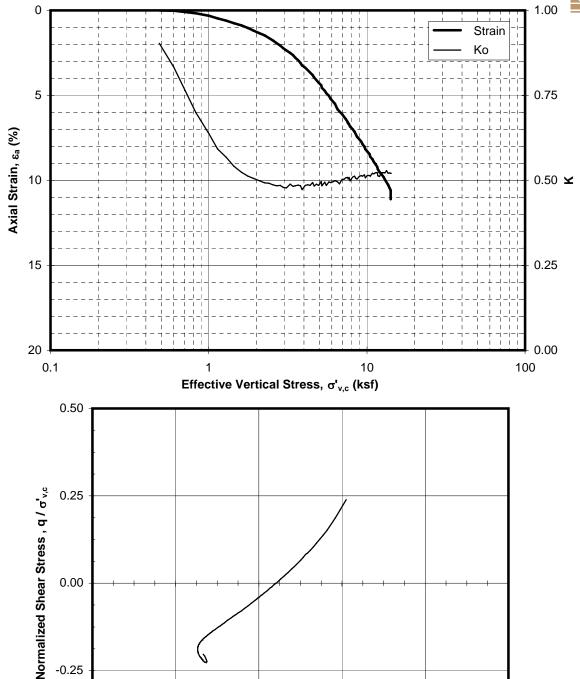



Normalized Effective Average Stress, p' /  $\sigma'_{v,c}$ 

### Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 1

Sample: 19c - Depth 117.25 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California








Sample: 3b - Depth: 12.65 ft
Boring B-68
Tunnel Segment of SVRT Project
San Jose, California







Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

0.75

1.00

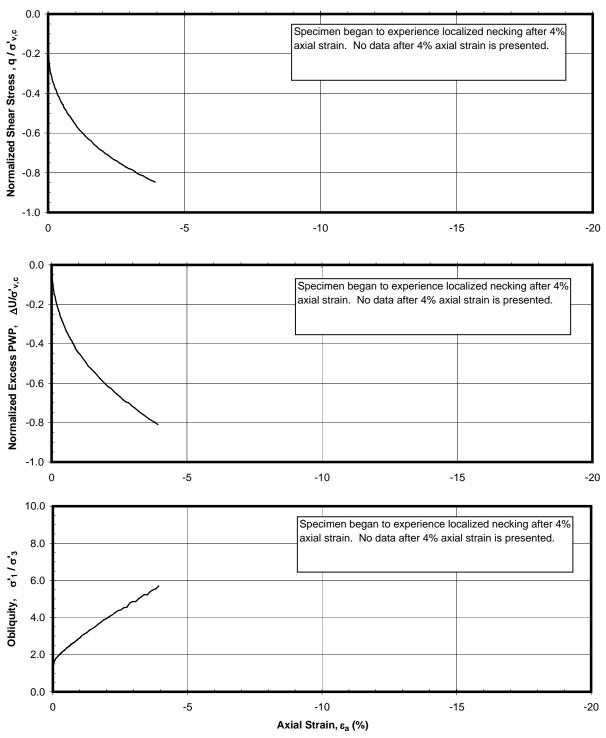
0.50

### **Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS** Test Induced OCR = 1

Sample: 3b - Depth: 12.65 ft Boring B-68 Tunnel Segment of SVRT Project San Jose, California



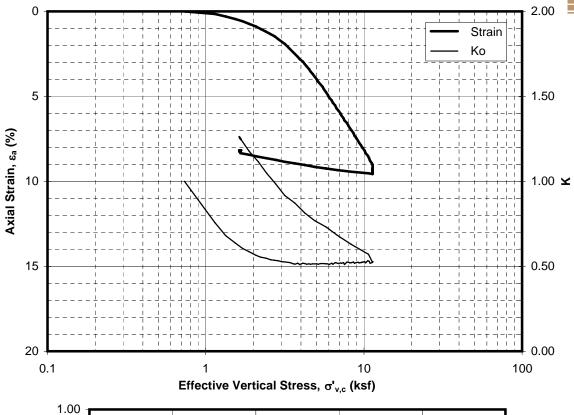
-0.25

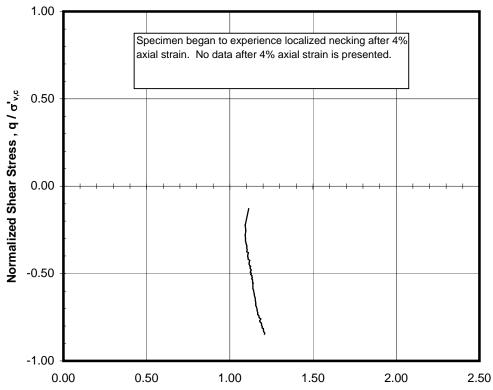

-0.50

0.00

0.25

1.25



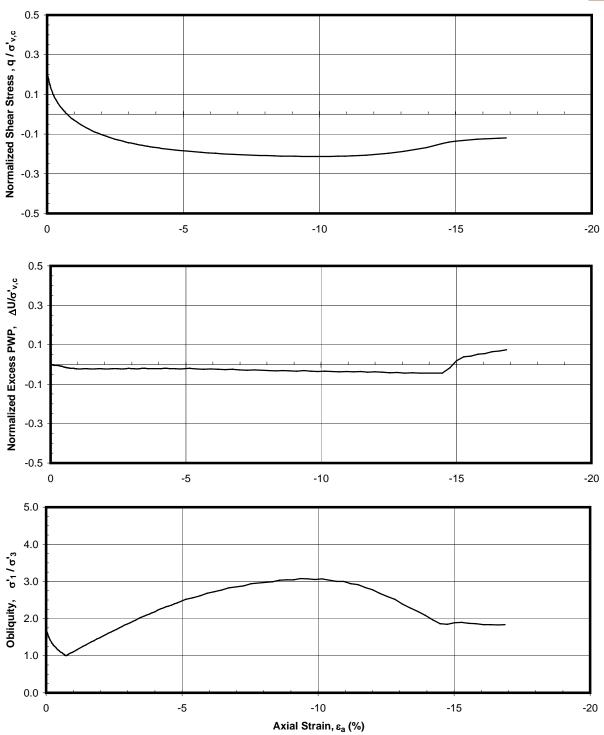

Sample: 4a - Depth: 20.70 ft
Boring B-68
Tunnel Segment of SVRT Project
San Jose, California







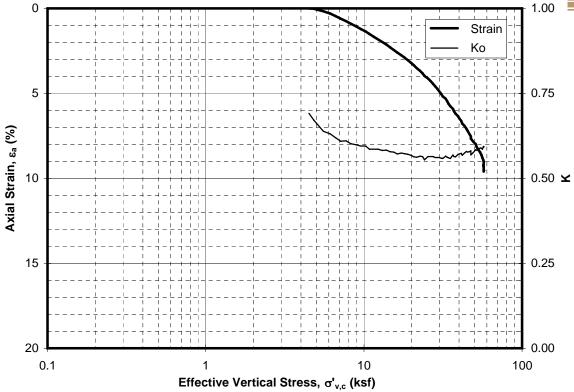


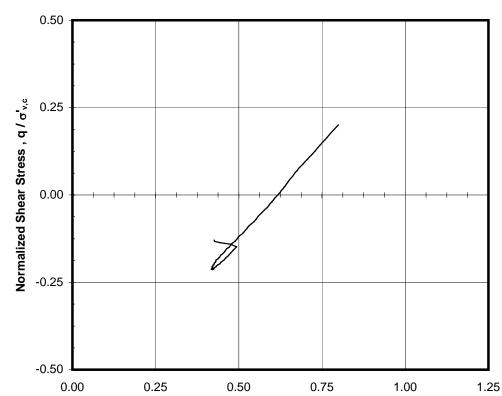

Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

# Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 6.95

Sample: 4a - Depth: 20.70 ft
Boring B-68
Tunnel Segment of SVRT Project
San Jose, California





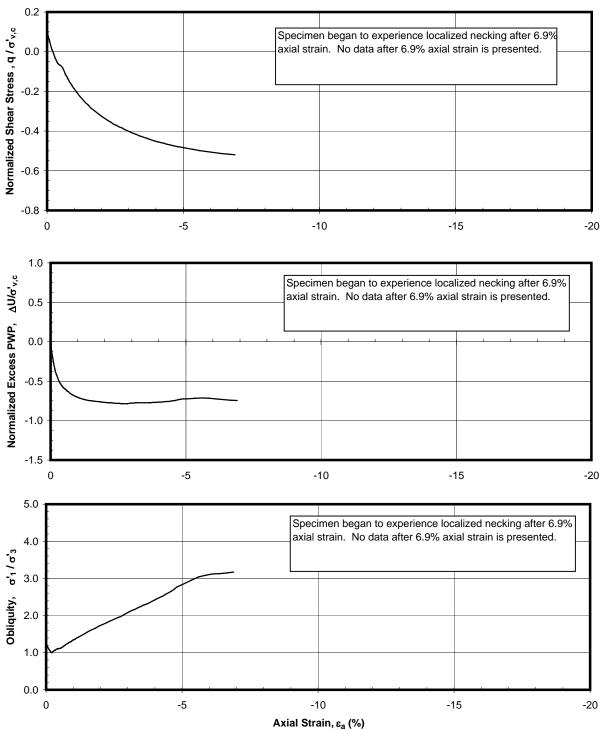

Sample: 18c - Depth: 149.80 ft Boring B-68 Tunnel Segment of SVRT Project San Jose, California







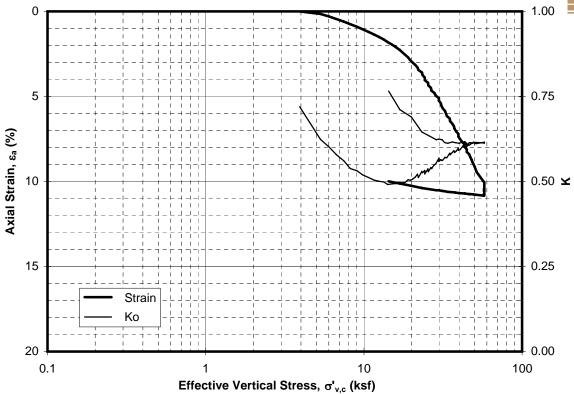


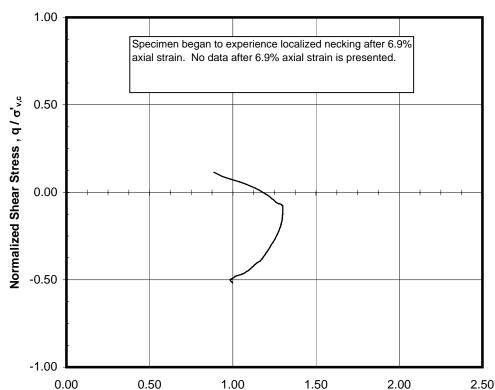

Normalized Effective Average Stress, p' / σ'_{v,c}

### Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 1

Sample: 18c - Depth: 149.80 ft
Boring B-68
Tunnel Segment of SVRT Project
San Jose, California






Sample: 35a - Depth: 135.0ft
Boring B-70
Tunnel Segment of SVRT Project
San Jose, California







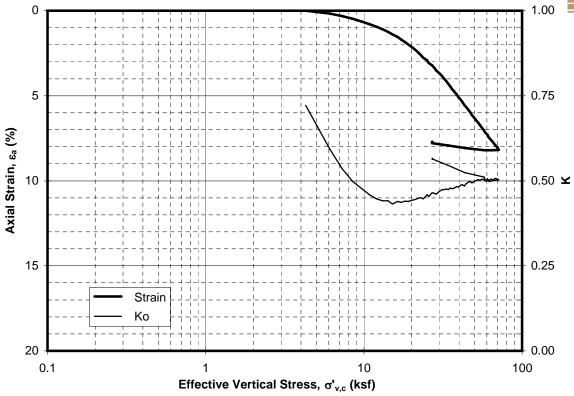


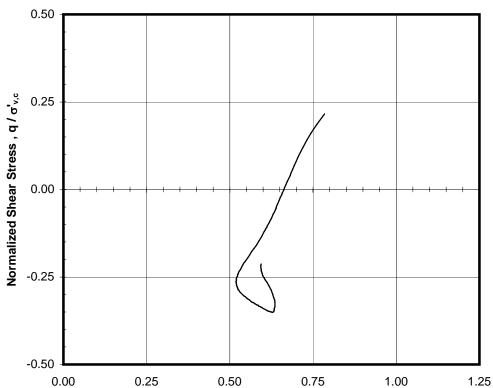
Normalized Effective Average Stress, p' / σ'_{v,c}

#### Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULT Test Induced OCR = 4.04

Sample: 35a - Depth: 135.0ft
Boring B-70
Tunnel Segment of SVRT Project
San Jose, California





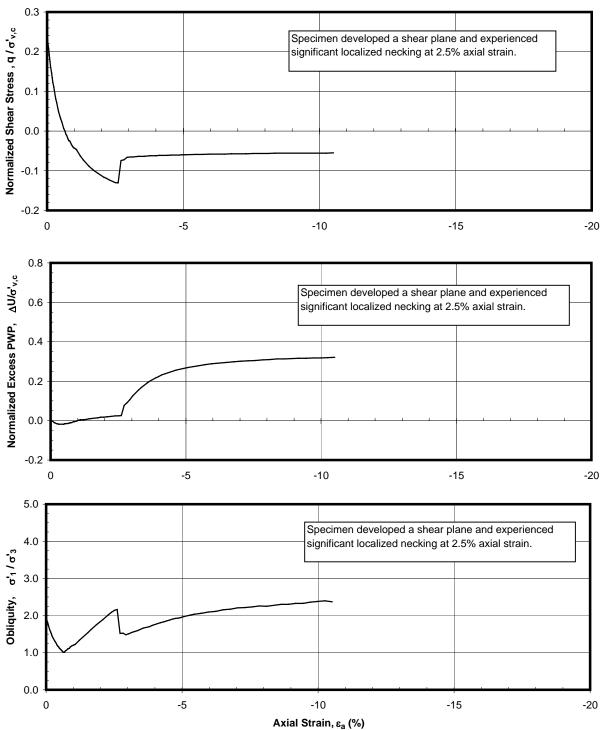

Sample: 15c - Depth: 150.45 ft Boring B-75 Tunnel Segment of SVRT Project San Jose, California







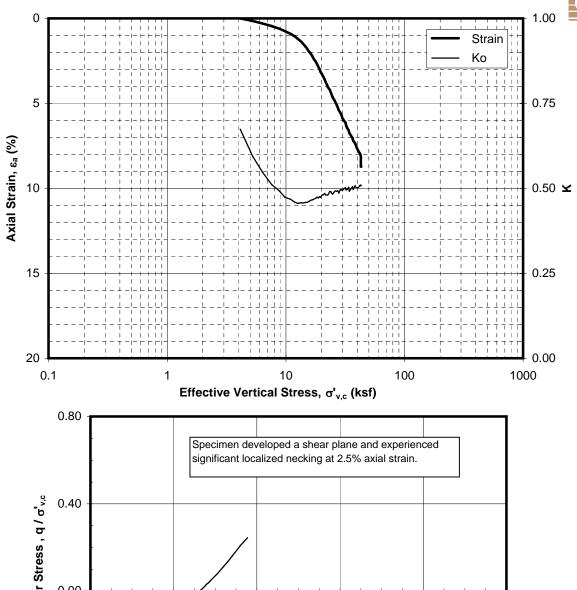


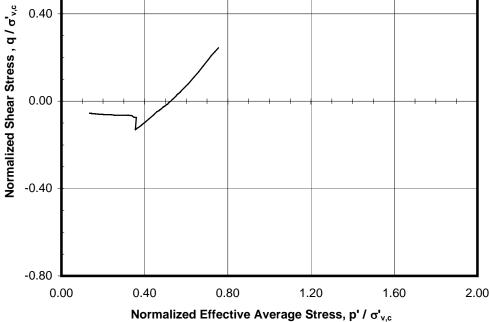

Normalized Effective Average Stress, p' / σ'_{v,c}

## Ko-CONSOLIDATED TRIAXIAL EXTENSION TEST RESULTS Test Induced OCR = 2.66

Sample: 15c - Depth: 150.45 ft Boring B-75 Tunnel Segment of SVRT Project San Jose, California



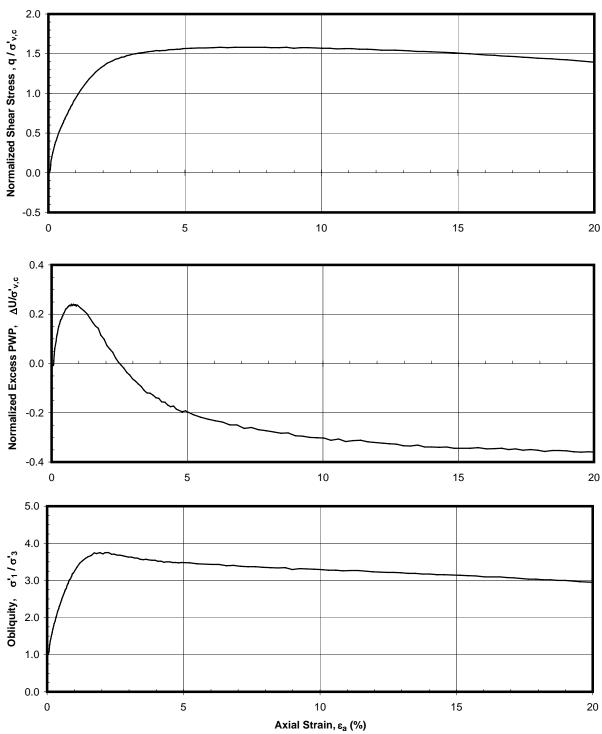



Sample: 16c - Depth: 101.85 ft Boring B-77 Tunnel Segment of SVRT Project San Jose, California



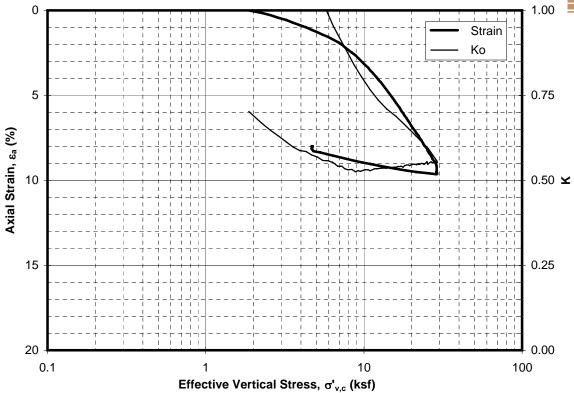


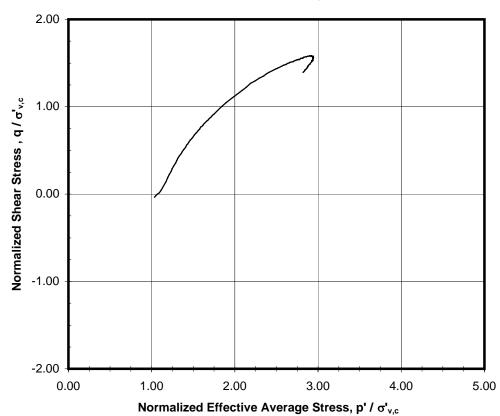





Sample: 16c - Depth: 101.85 ft
Boring B-77
Tunnel Segment of SVRT Project
San Jose, California





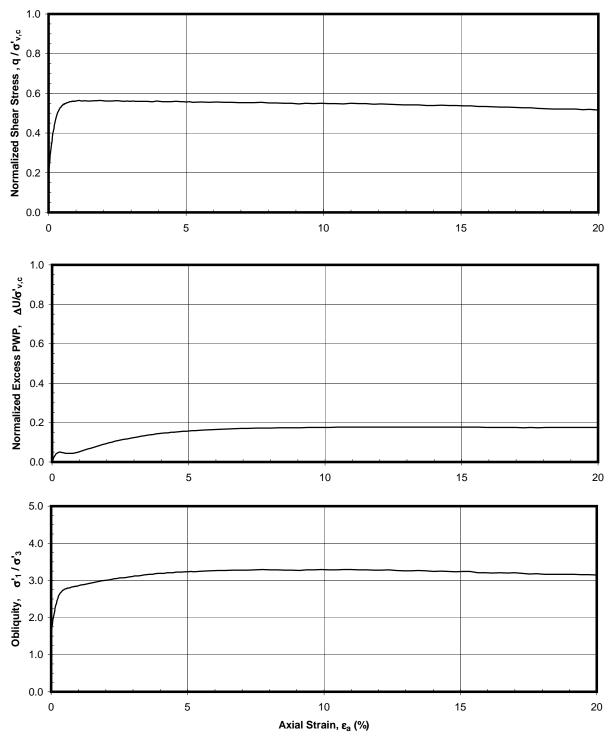




Sample: 3c - Depth: 51.80 ft Boring B-9 Tunnel Segment of SVRT Project San Jose, California





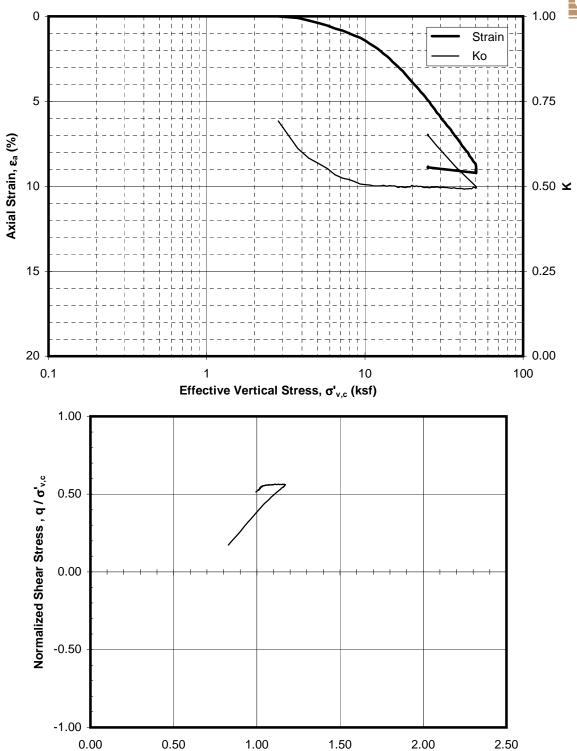





Sample: 3c - Depth: 51.80 ft
Boring B-9
Tunnel Segment of SVRT Project
San Jose, California

FIGURE A16-18b



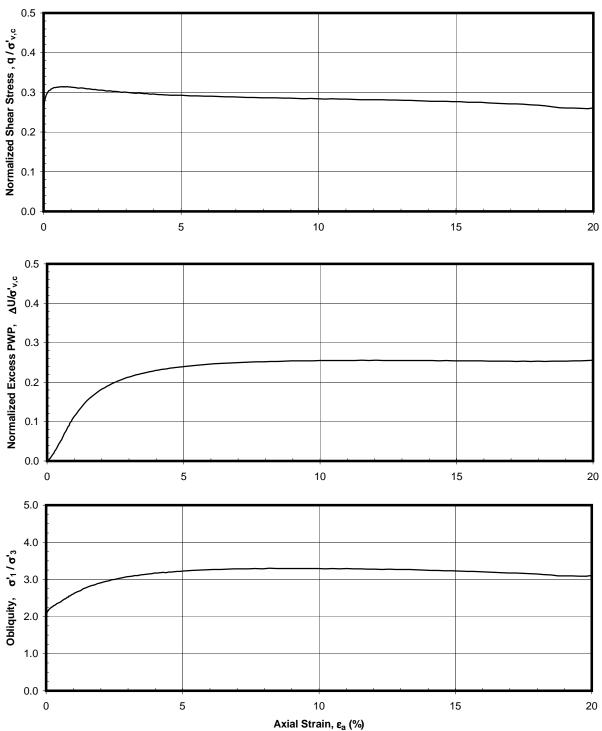





Sample: 9c - Depth: 80.95 ft Boring B-18 Tunnel Segment of SVRT Project San Jose, California



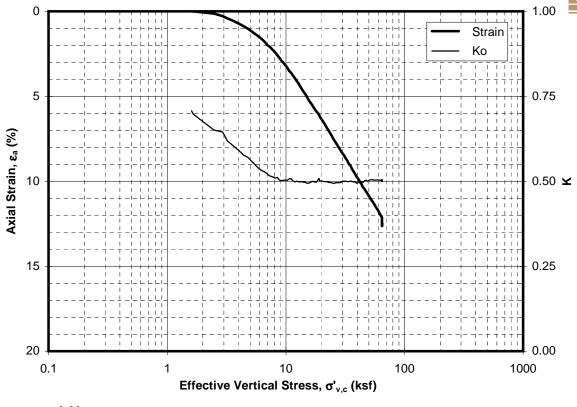


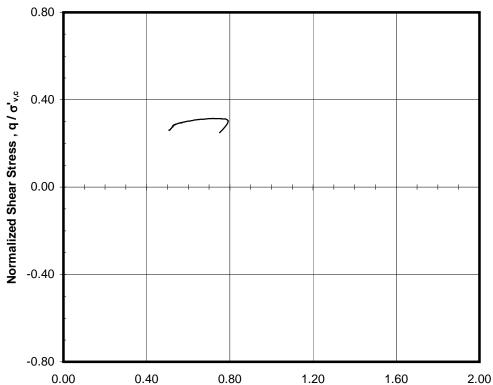



Normalized Effective Average Stress, p' /  $\sigma'_{v,c}$ 

Sample: 9c - Depth: 80.95 ft
Boring B-18
Tunnel Segment of SVRT Project
San Jose, California






Sample: 9b - Depth: 41.20 ft Boring B-23 Tunnel Segment of SVRT Project San Jose, California

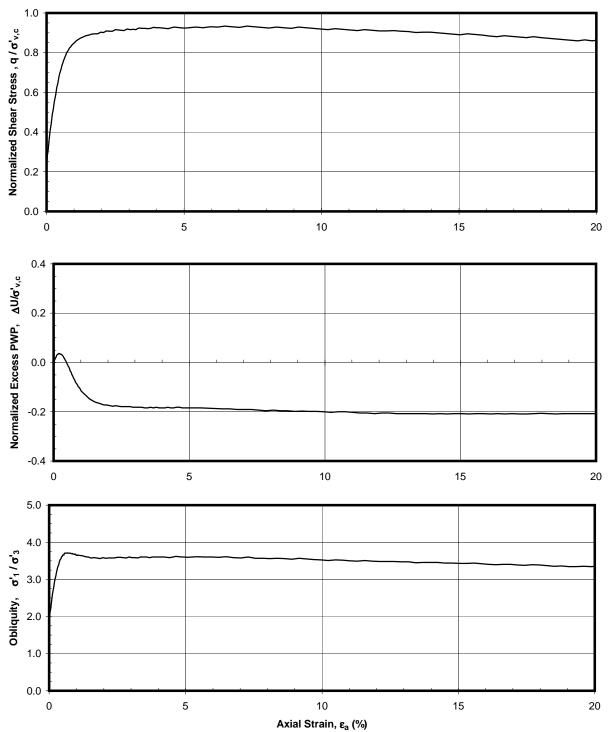








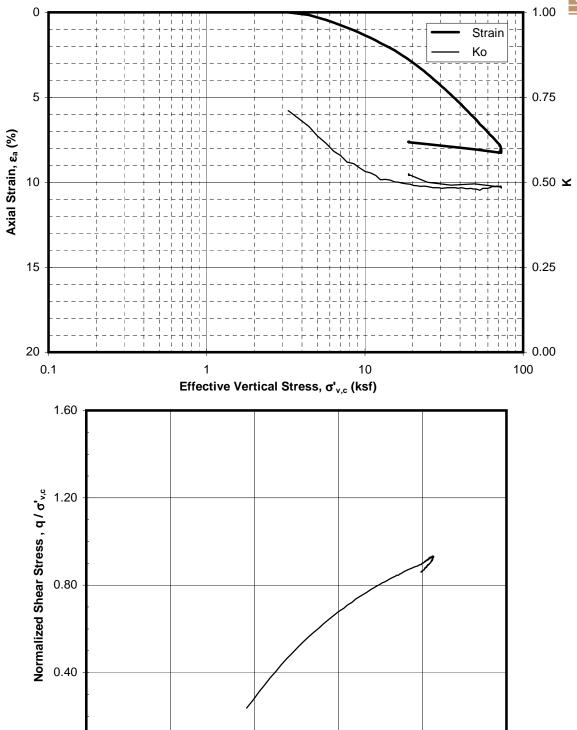
Normalized Effective Average Stress, p' / σ'_{v,c}


### Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 9b - Depth: 41.20 ft
Boring B-23
Tunnel Segment of SVRT Project
San Jose, California










Sample: 17c - Depth: 106.50 ft Boring B-23 Tunnel Segment of SVRT Project San Jose, California







Normalized Effective Average Stress, p' /  $\sigma'_{v,c}$ 

1.20

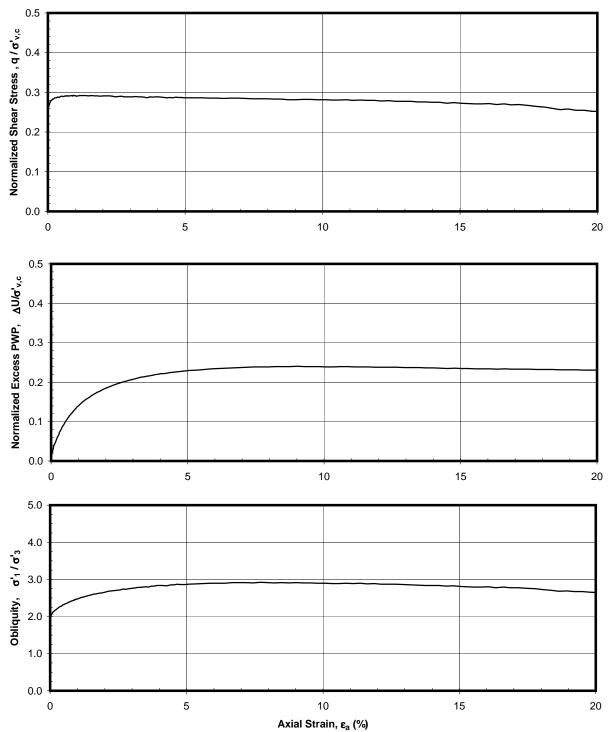
1.60

0.80

Sample: 17c - Depth: 106.50 ft Boring B-23 Tunnel Segment of SVRT Project San Jose, California



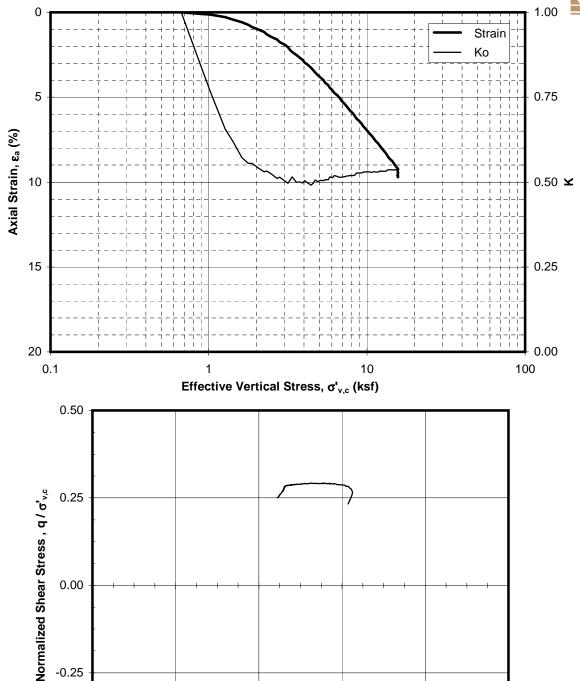
2.00




0.00

0.00

0.40






Sample: 3b - Depth: 14.85 ft Boring B-24 Tunnel Segment of SVRT Project San Jose, California







Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

0.75

1.00

0.50

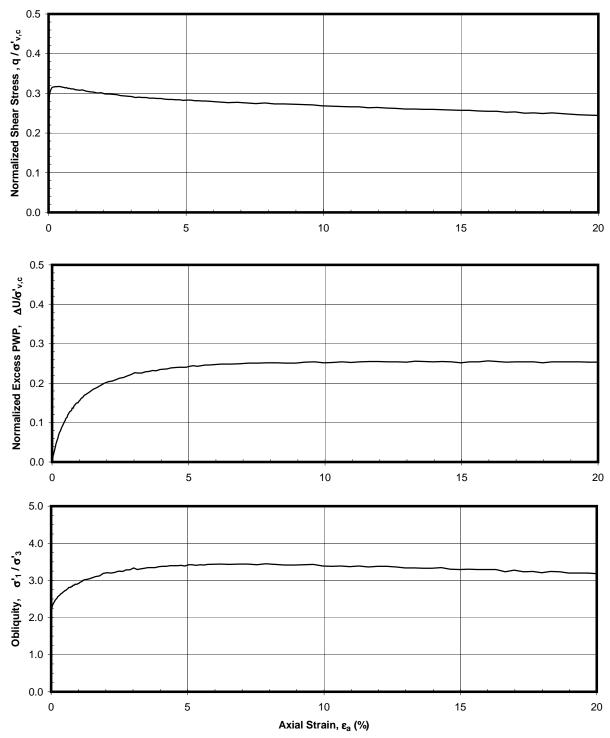
#### **Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS** Test Induced OCR = 1

Sample: 3b - Depth: 14.85 ft Boring B-24 Tunnel Segment of SVRT Project San Jose, California



1.25

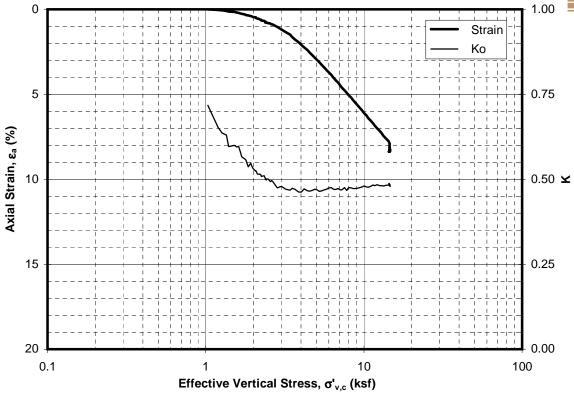


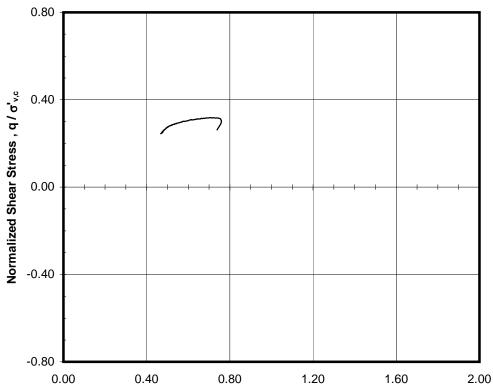

-0.25

-0.50

0.00

0.25



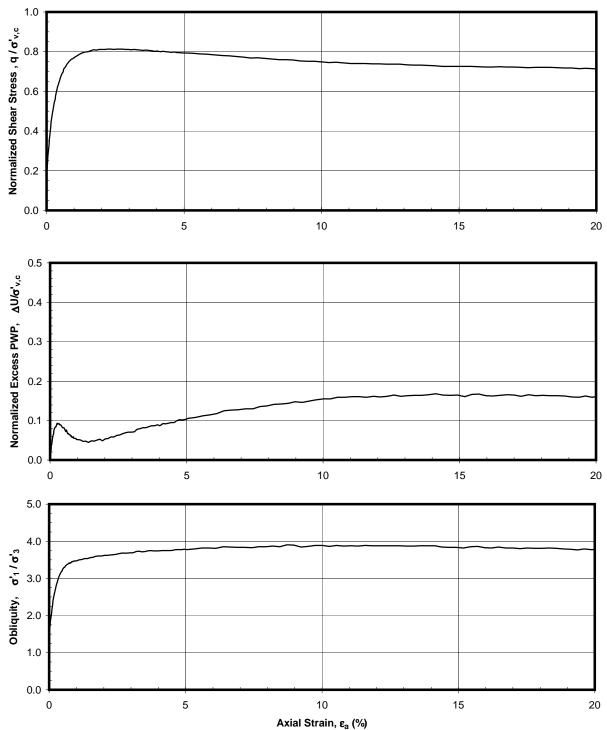

Sample: 7b - Depth: 24.45 ft Boring B-24 Tunnel Segment of SVRT Project San Jose, California







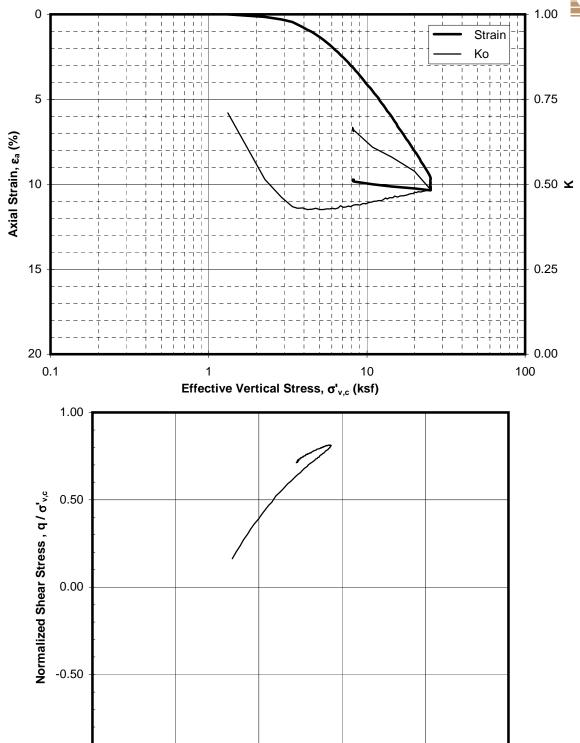



Normalized Effective Average Stress, p' / σ'_{v,c}

### Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 7b - Depth: 24.45 ft
Boring B-24
Tunnel Segment of SVRT Project
San Jose, California








Sample: 4b - Depth: 32.05 ft Boring B-25 Tunnel Segment of SVRT Project San Jose, California







Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

1.50

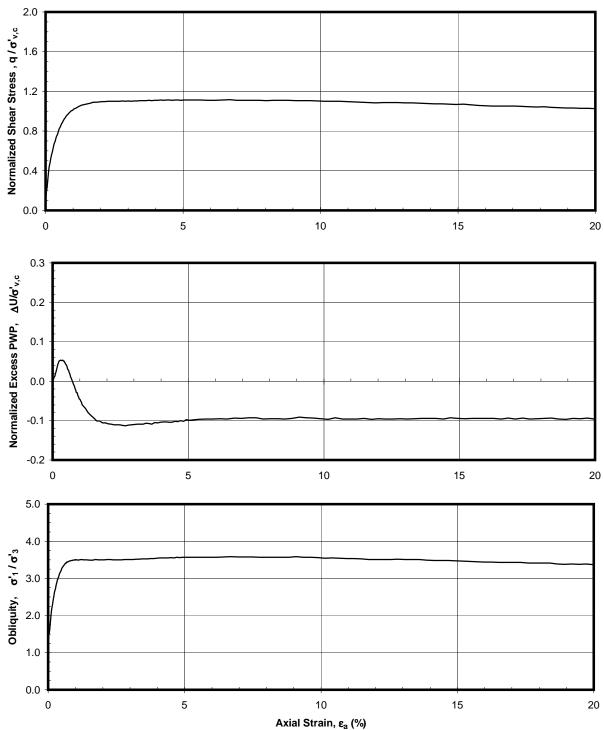
2.00

1.00

Sample: 4b - Depth: 32.05 ft
Boring B-25
Tunnel Segment of SVRT Project
San Jose, California



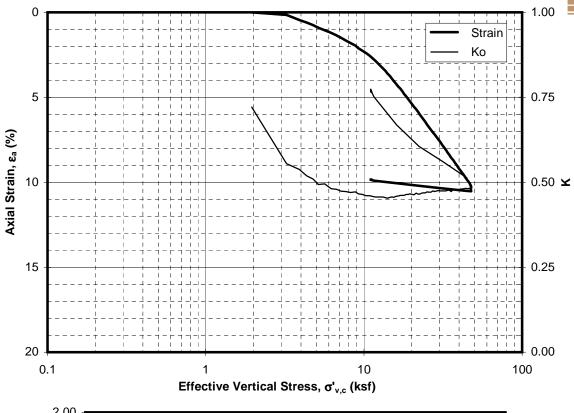
2.50

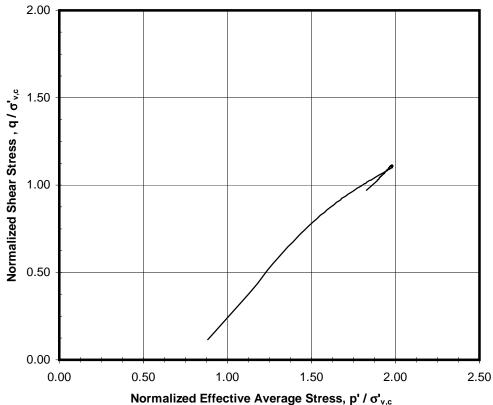



-1.00

0.00

0.50



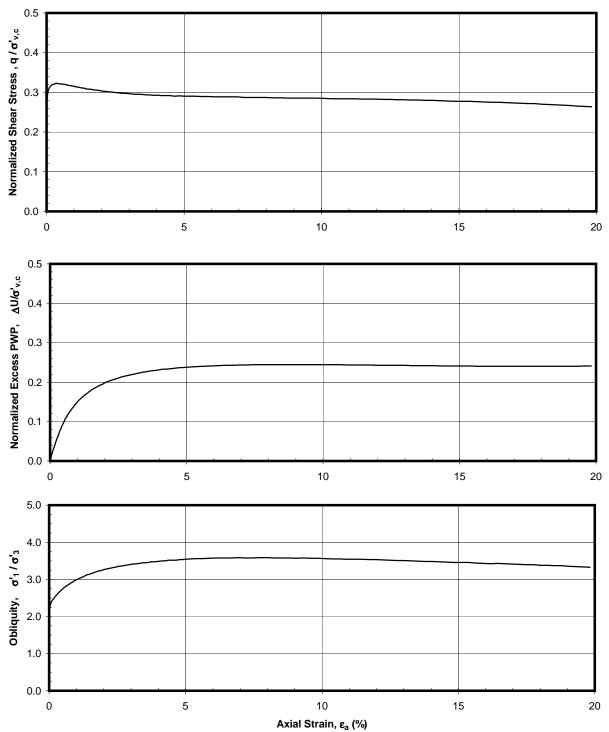

Sample: 6b - Depth: 54.00 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California







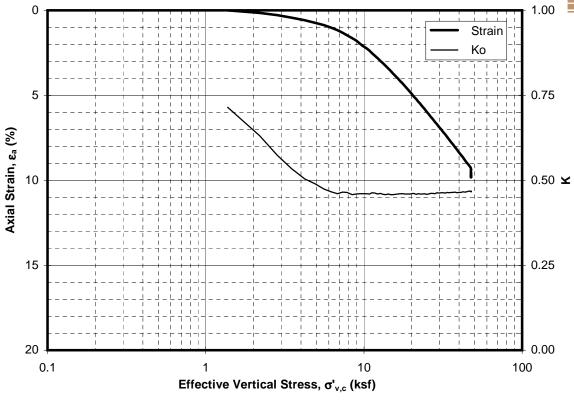


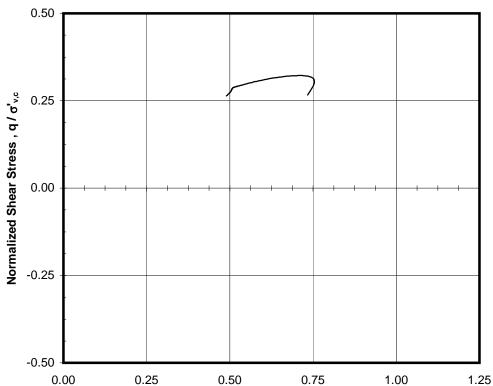

Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS

Test Induced OCR = 4.29

Sample: 6b - Depth: 54.00 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California






Sample: 5a - Depth: 42.30 ft Boring B-37 Tunnel Segment of SVRT Project San Jose, California

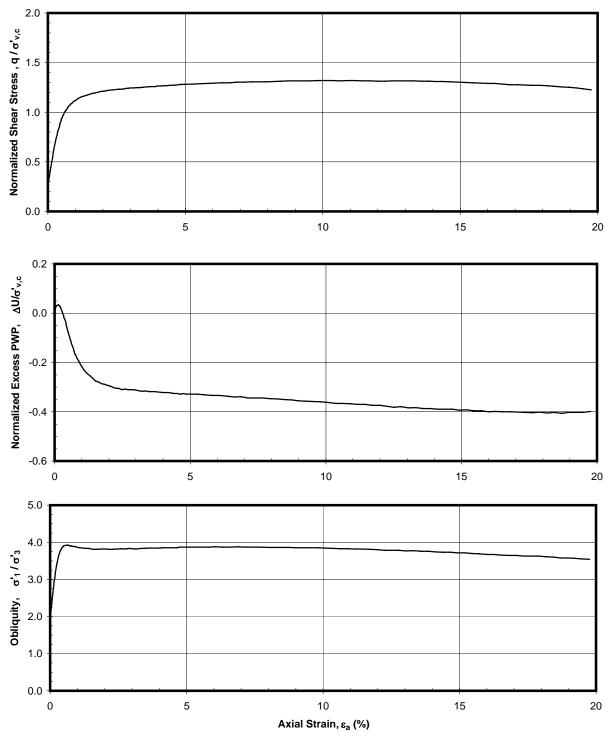








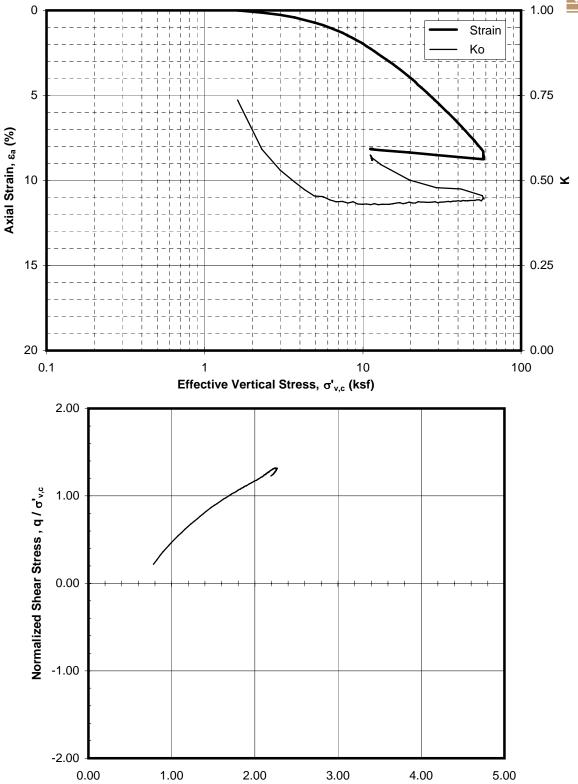
Normalized Effective Average Stress, p' / σ'_{v,c}


### Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 5a - Depth: 42.30 ft
Boring B-37
Tunnel Segment of SVRT Project
San Jose, California







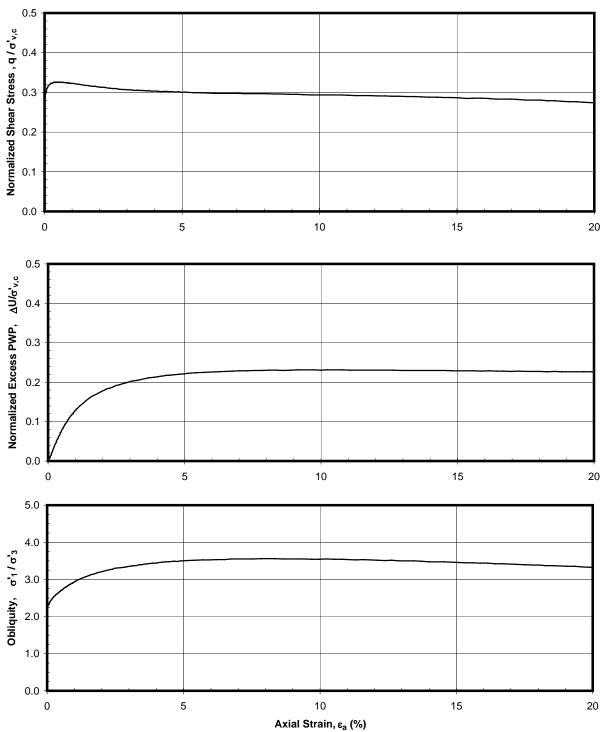



Sample: 7d - Depth: 36.95 ft
Boring B-42
Tunnel Segment of SVRT Project
San Jose, California





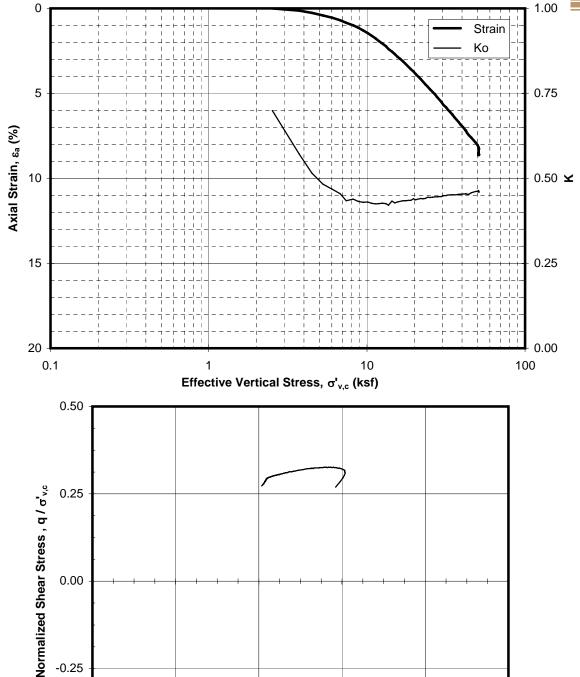



Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

Sample: 7d - Depth: 36.95 ft
Boring B-42
Tunnel Segment of SVRT Project
San Jose, California

FIGURE A16-27b








Sample: 11a - Depth: 74.35 ft Boring B-60 Tunnel Segment of SVRT Project San Jose, California







Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

0.75

1.00

0.50

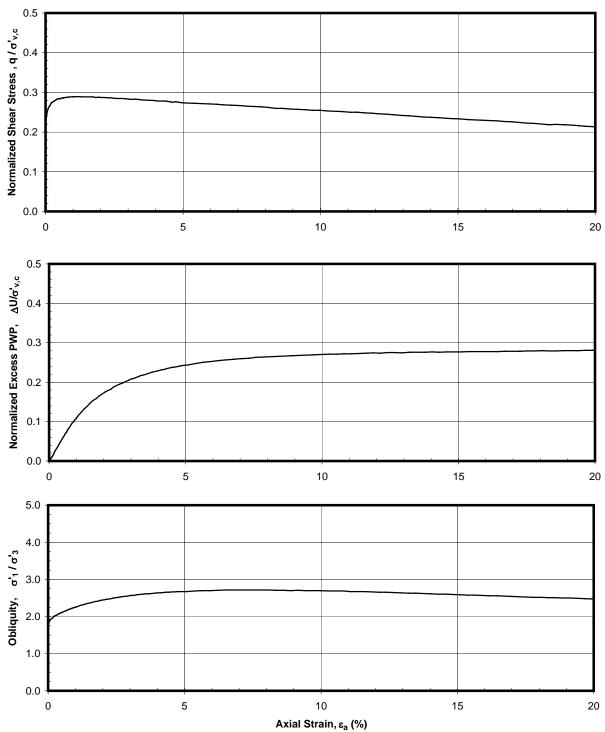
#### **Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS** Test Induced OCR = 1

Sample: 11a - Depth: 74.35 ft Boring B-60 Tunnel Segment of SVRT Project San Jose, California



1.25

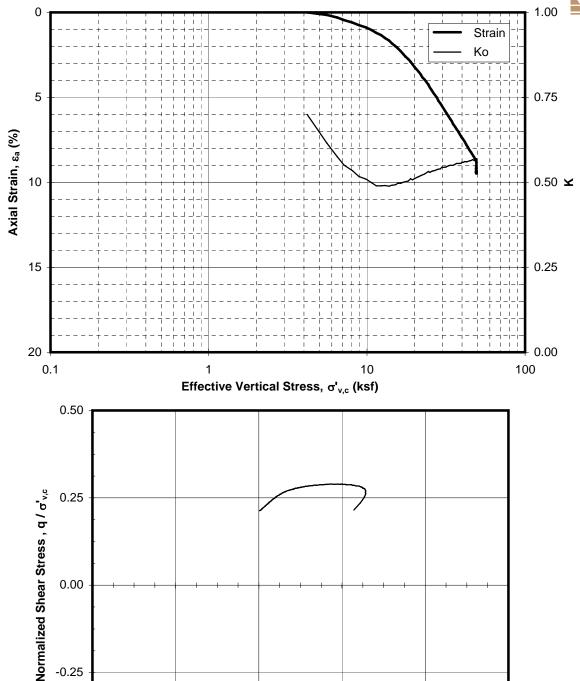



-0.25

-0.50

0.00

0.25






Sample: 18a - Depth: 132.40 ft Boring B-60 Tunnel Segment of SVRT Project San Jose, California







Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

0.75

1.00

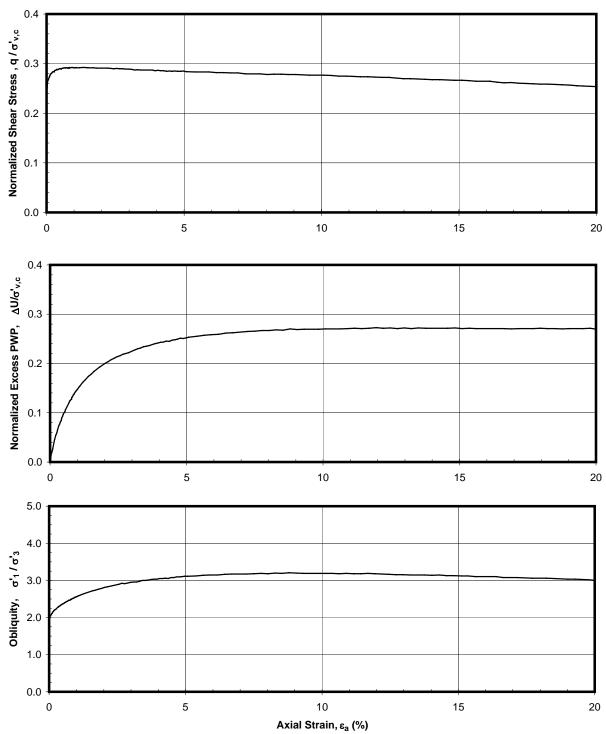
0.50

## Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 18a - Depth: 132.40 ft
Boring B-60
Tunnel Segment of SVRT Project
San Jose, California



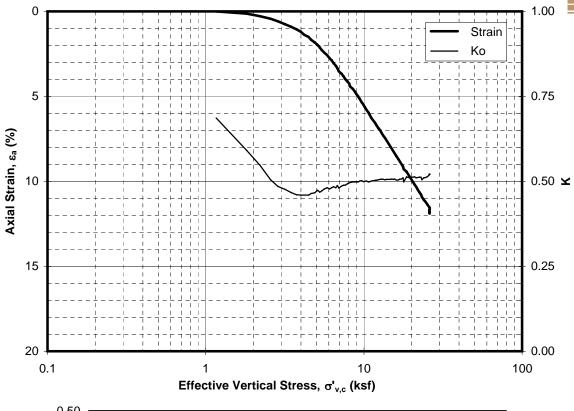
1.25

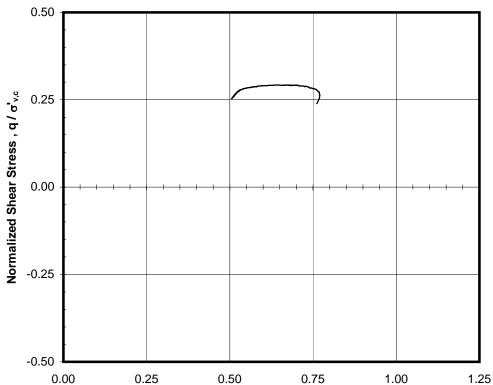



-0.50

0.00

0.25



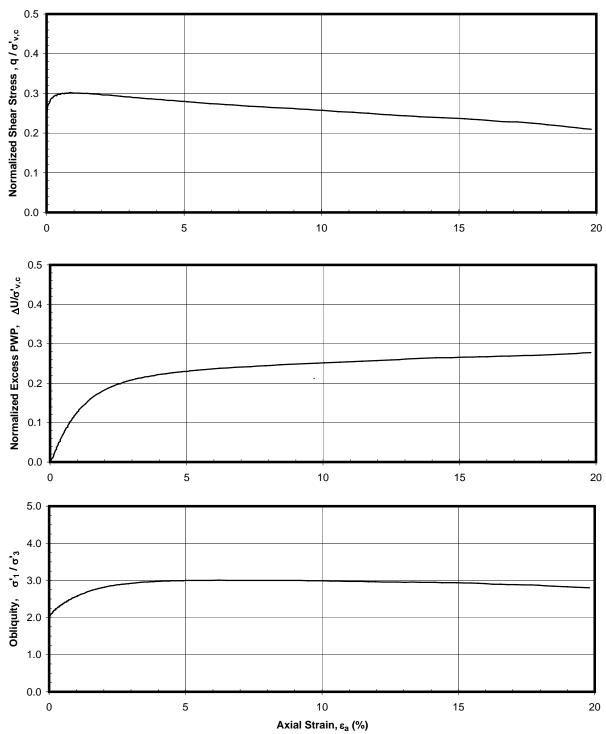

Sample: 5d - Depth: 31.50 ft Boring B-64 Tunnel Segment of SVRT Project San Jose, California







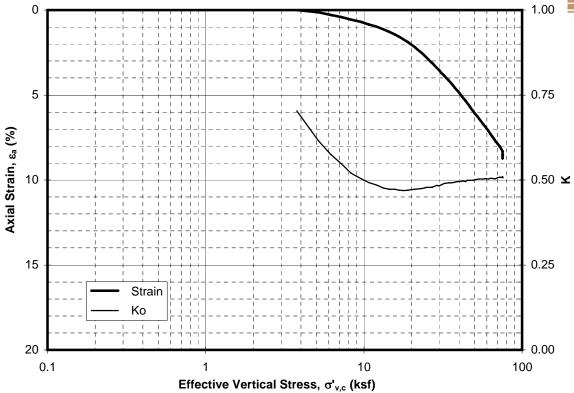


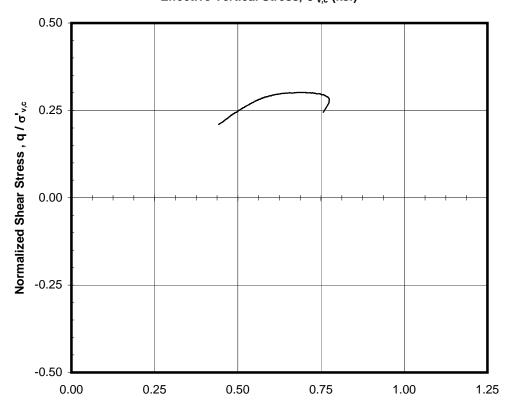

Normalized Effective Average Stress, p' / σ'_{v,c}

### Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 5d - Depth: 31.50 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California






Sample: 19b - Depth: 116.90 ft Boring B-64 Tunnel Segment of SVRT Project San Jose, California

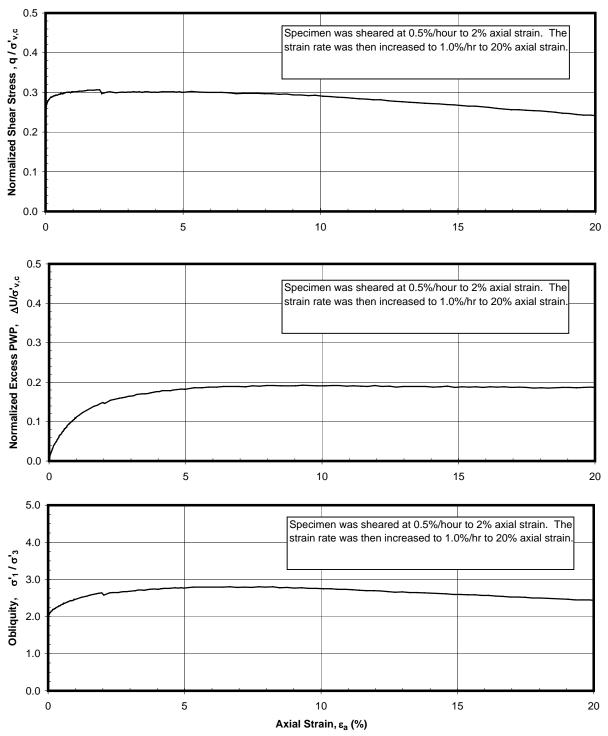








Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

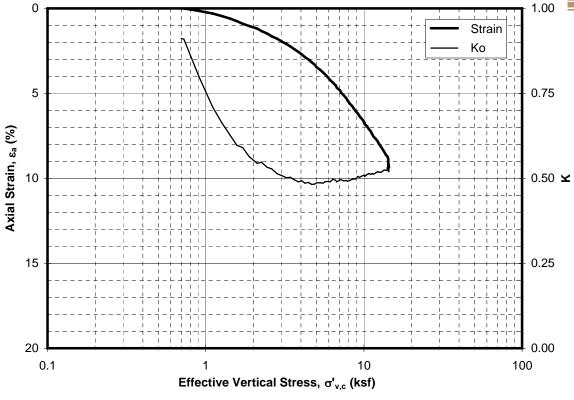

### Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

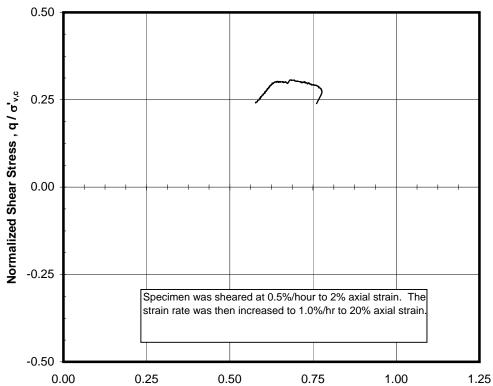
Sample: 19b - Depth: 116.90 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California

FIGURE A16-31b









# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

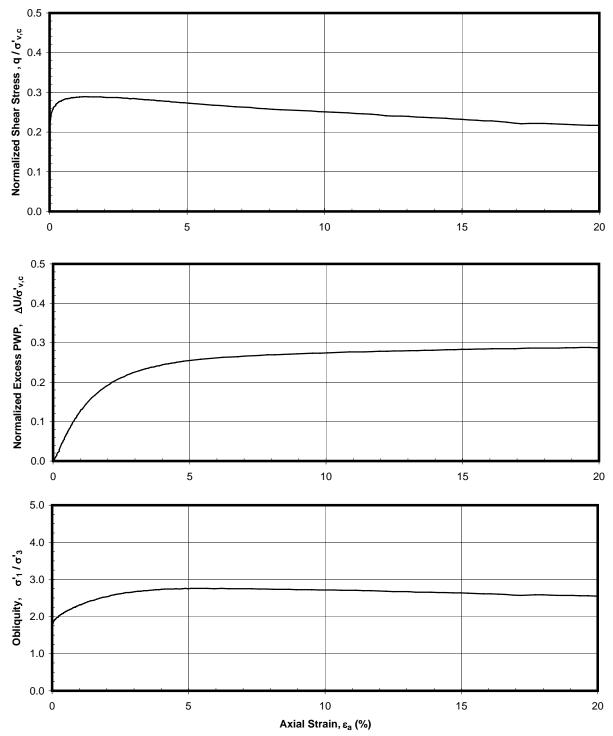
Sample: 3a - Depth: 13.10 ft
Boring B-68
Tunnel Segment of SVRT Project
San Jose, California









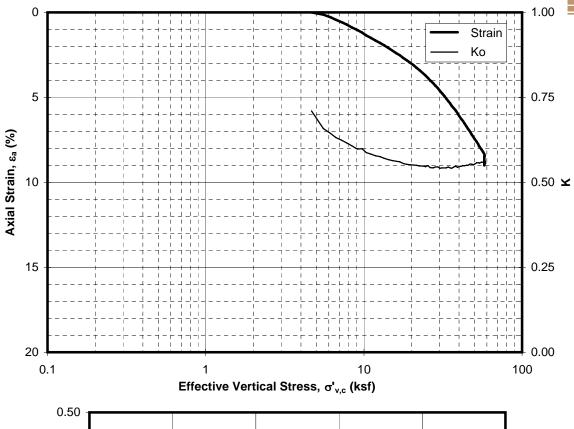

Normalized Effective Average Stress, p' / σ'_{v,c}

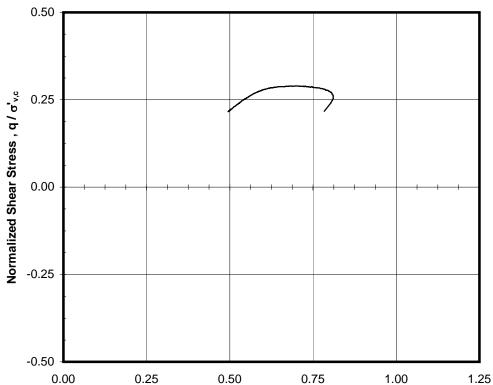
# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 3a - Depth: 13.10 ft
Boring B-68
Tunnel Segment of SVRT Project
San Jose, California









# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 18b - Depth: 149.40 ft Boring B-68 Tunnel Segment of SVRT Project San Jose, California

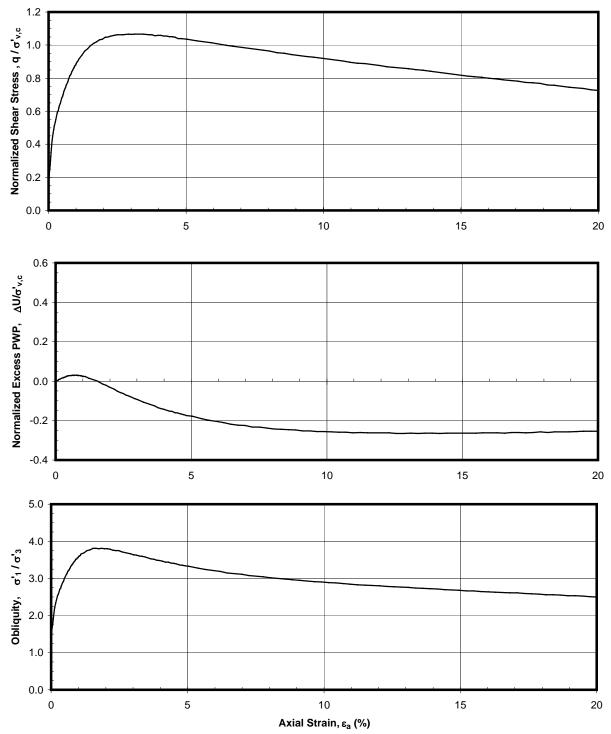








Normalized Effective Average Stress, p' / σ'_{v,c}

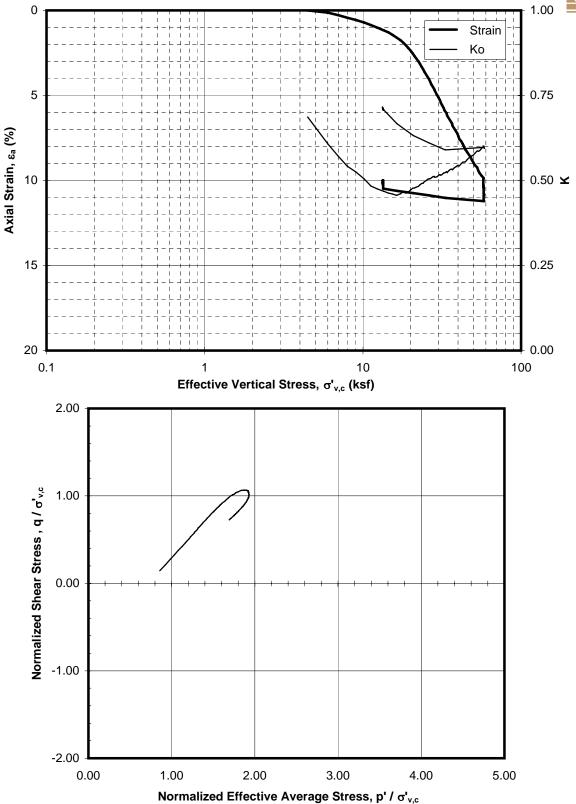

# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 18b - Depth: 149.40 ft
Boring B-68
Tunnel Segment of SVRT Project
San Jose, California









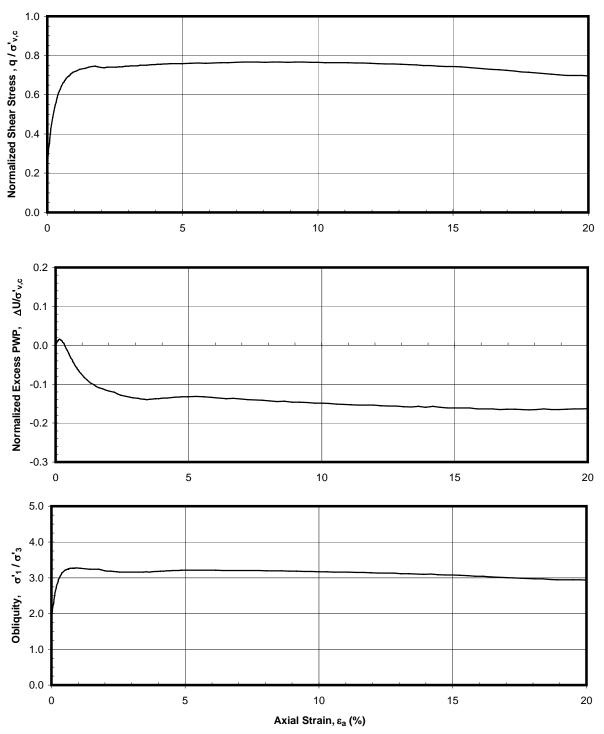

# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 4.25

Sample: 35b - Depth: 136.80 ft Boring B-70 Tunnel Segment of SVRT Project San Jose, California







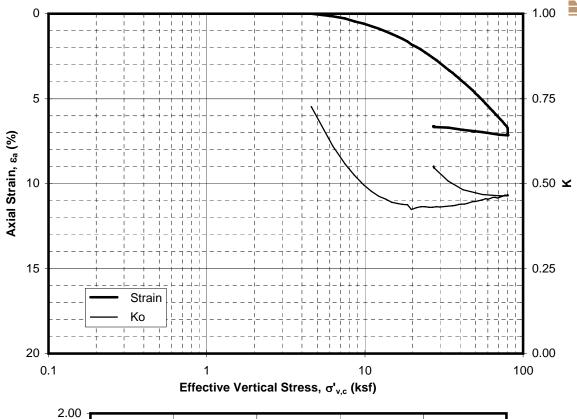

# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 4.25

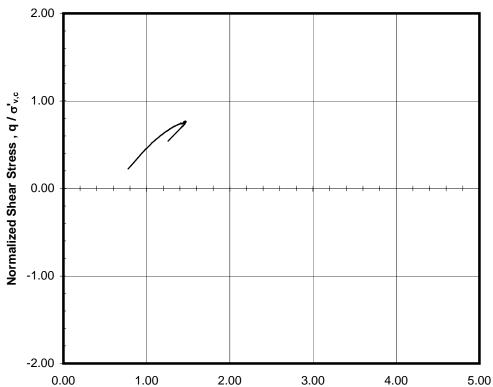
Sample: 35b - Depth: 136.80 ft
Boring B-70
Tunnel Segment of SVRT Project
San Jose, California











# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 2.96

Sample: 15b - Depth: 150.85 ft Boring B-75 Tunnel Segmen of SVRT Project San Jose, California

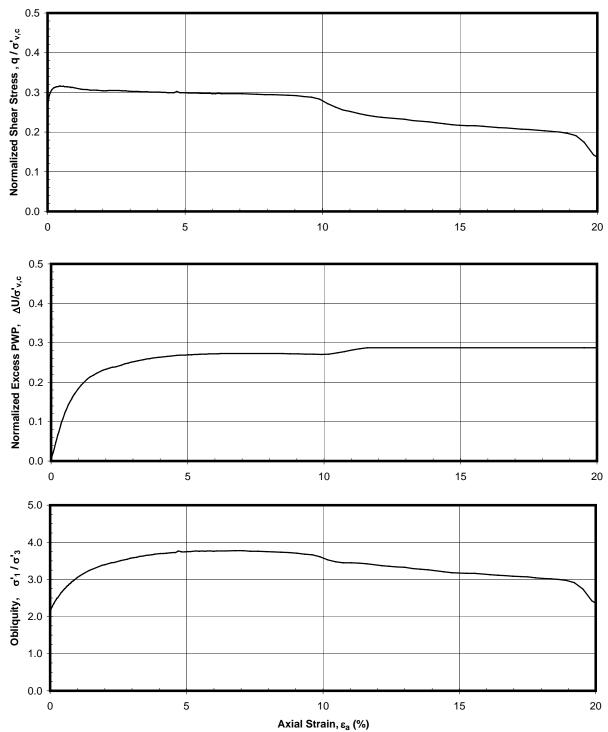








Normalized Effective Average Stress, p' / σ'_{v,c}

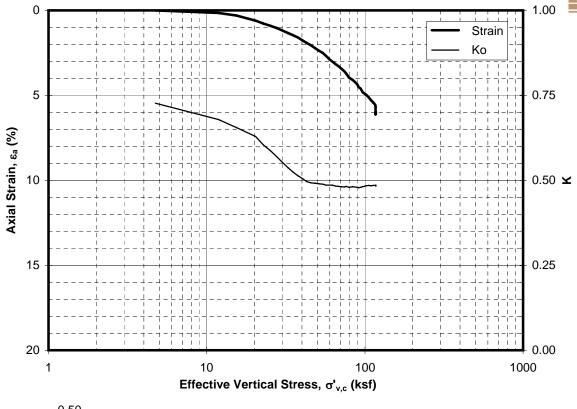

# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 2.96

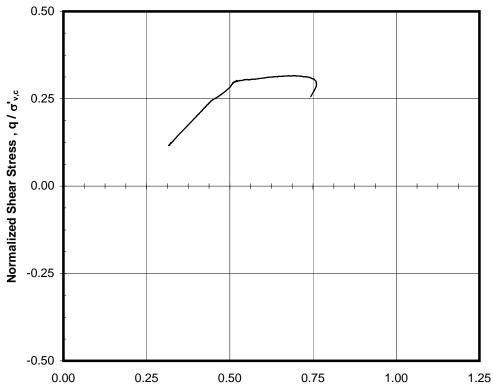
Sample: 15b - Depth: 150.85 ft Boring B-75 Tunnel Segmen of SVRT Project San Jose, California

FIGURE A16-35b









# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 16a - Depth: 160.00 ft Boring B-75 Tunnel Segment of SVRT Project San Jose, California









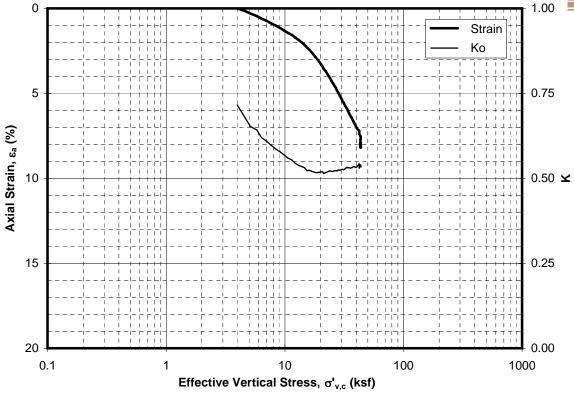

Normalized Effective Average Stress, p' / σ'_{v,c}

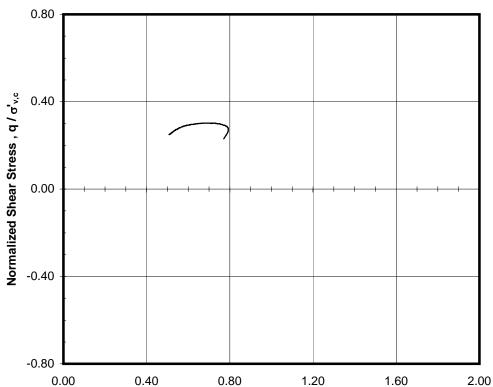
# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 16a - Depth: 160.00 ft
Boring B-75
Tunnel Segment of SVRT Project
San Jose, California









# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 16b - Depth: 101.45 ft Boring B-77 Tunnel Segment of SVRT Project San Jose, California









Normalized Effective Average Stress, p' /  $\sigma'_{\nu,c}$ 

# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Test Induced OCR = 1

Sample: 16b - Depth: 101.45 ft
Boring B-77
Tunnel Segment of SVRT Project
San Jose, California



**Geotechnical Data Report** 

### **APPENDIX 17**

**K₀-CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST RESULTS (BISHOP METHOD)** 

Rev. 0 9/23/2005

**Geotechnical Data Report** 

Appendix 17 presents the laboratory results of the  $K_0$ -Consolidated Undrained Triaxial tests (Bishop method) performed by Fugro.

9/23/2005 Rev. 0



# APPENDIX 17 K₀-CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST RESULTS (BISHOP METHOD)

## GEOTECHNICAL EXPLORATION PROGRAM TUNNEL SEGMENT OF SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA

Prepared for: HMM/BECHTEL

**JULY 2005** 

Project No. 1637.001





### REPORT DOCKET

### **APPROVAL**

This document is approved by the following:

Name	Title	Signature	Issue Date
Jon W. Mitchell	Project Manager	In w mohmmel	July 20, 2005

### **REVISION HISTORY**

Revision	Date	Change	Approval
0	June 3, 2005	Draft Report: Appendix 17 K ₀ -Consolidated Undrained Triaxial Compression Test Results (Bishop Method)	Jun
1	July 20, 2005	Final Report: Appendix 17 K ₀ -Consolidated Undrained Triaxial Compression Test Results (Bishop Method) with Bechtel comments from 6/10/05 & 7/13/05	Ju
		·	



### **FUGRO WEST, INC.**



1000 Broadway, Suite 200 Oakland, California 94607 Tel: (510) 268-0461

Fax: (510) 268-0137

July 20, 2005 Project No. 1637.001

HMM/Bechtel 3103 North First Street San Jose, California 95134

Attention: Mr. Ignacio Arango

Subject: Appendix 17 – K₀-Consolidated Undrained Triaxial Test Results (Bishop Method)

Tunnel Segment of SVRT Project

San Jose, California

Dear Mr. Arango:

Fugro West, Inc., is pleased to submit this draft copy of Appendix 17, presenting the results of the K₀-Consolidated Undrained Triaxial Compression Tests (Bishop Method) conducted by the geotechnical laboratory of Fugro Consultants LP in Houston, Texas, for the Tunnel Segment of SVRT Project in San Jose, California.

We appreciate this opportunity to be of continued service to HMM/Bechtel. Contact Jon Mitchell at (510) 267-4430 if you have any questions regarding the information presented in this appendix.

Sincerely,

FUGRO WEST, INC.

Linda Al Atik Staff Engineer

Jon Mitchell

Staff Engineer

G.E. Ronald L. Bajuniemi, P.E. Principal Consultant

LAA/JWM/RLB:rp

Copies Submitted: (pdf) Addressee





### **CONTENTS**

			Page
1.0	INTE	RODUCTION	1
	1.1	Project Description	
	1.2	Geotechnical Exploration Program Overview	
	1.3	Laboratory Testing Program overview	
		1.3.1 Testing Overview	
		1.3.3 Sample Recovery and Handling	
		1.3.4 Overview of K ₀ -Bishop Consolidated Undrained Triaxial Test Program	
2.0	-	ONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST (BISHOP HOD) PROCEDURES	4
	2.1	Introduction	
	2.2	K ₀ -Consolidated Undrained Triaxial Compression Test (Bishop Method) Standard	
		and Procedures	5
3.0	K ₀ -C	ONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS	6
4.0	LIMI	TATIONS	6
5.0	REF	ERENCES	7
		TABLES	
		7	Table
Sum	marv	of Lab Tests Performed	17-1
		of K ₀ -Consolidated Undrained Triaxial Test Results	
		FIGURES	
		F	igure
Test	Sam	ole Location Map A	17-1
KC	'oneol	idated Undrained Triavial Test Results A17-2 to A1	7-13



### 1.0 INTRODUCTION

This appendix presents the results of the  $K_0$ -Consolidated Undrained Triaxial Compression ( $K_0$ -Bishop) tests conducted using Bishop's procedure, by the Houston geotechnical laboratory of Fugro Consultants LP (Fugro Consultants) as a part of the advanced laboratory testing program for the Tunnel Segment of the Silicon Valley Rapid Transit (SVRT) Project. The  $K_0$ -Bishop's tests were conducted on soil samples from boring locations situated along the tunnel segment alignment of SVRT Project, as shown on the Test Sample Location Map, Figure A17-1.

### 1.1 PROJECT DESCRIPTION

The Santa Clara Valley Transportation Authority (VTA) intends to construct the SVRT Project in San Jose, California. This will be a 26.2-km (16.3-mile) extension of the Bay Area Rapid Transit (BART) heavy rail rapid transit system from its planned terminus at the end of the Warms Springs Extension in Fremont, to San Jose. The proposed alignment currently includes six stations (three above-grade and three below-grade), a proposed future station, and vehicle storage and maintenance facilities. The alignment is composed of two major segments;

- 1. A line segment, which will be approximately 11.5 miles of at-grade, elevated and cutand-cover track from Warm Springs to San Jose; and
- 2. A 5.1-mile-long tunnel segment, consisting of twin bored tunnels and cut-and-cover structures through downtown San Jose (see Figure A17-1).

As currently planned, the tunnel segment includes at-grade and open cut track, three cut-and-cover stations, and a cut-and-cover track crossover structure. The cut-and-cover stations and the crossover structures have a cumulative length of approximately 4,970 feet. The remaining 4.14 miles of the alignment will be twin 19.5-foot-diameter tunnels.

This investigation and report cover the 5.1-mile-long tunnel segment section only.

### 1.2 GEOTECHNICAL EXPLORATION PROGRAM OVERVIEW

The joint venture of Hatch Mott MacDonald T & T, Inc., and Bechtel Infrastructure Corporation (HMM/Bechtel) is providing engineering design services for the tunnel segments (Segments 3 and 4) of the SVRT Project to the VTA. HMM/Bechtel has subcontracted with a number of companies to conduct the geotechnical field exploration program for the project. HMM/Bechtel's primary subcontractors for the geotechnical exploration program included Fugro West, Inc., (Fugro), Parikh Consultants (Parikh) and Pitcher Drilling Company (Pitcher).

The three companies, Fugro, Parikh, and Pitcher, conducted the majority of the geotechnical field exploration program for the tunnel segments of the SVRT Project from October 15, 2004, to March 5, 2005. The intent of the geotechnical field investigation program was to obtain geotechnical data that would aid in the design and construction of the proposed tunnel and cut-and-cover structures.



In general, the geotechnical field investigations explored subsurface conditions along the proposed tunnel alignment, within the vicinity of the proposed Eastern and Western Portals, at the two proposed ventilation structures, and at the proposed stations including: Alum Rock Station, Downtown San Jose Station, and Diridon/Arena Station. The geotechnical exploration program included:

- 76 rotary wash borings, and
- 146 cone penetration tests (CPTs).

Figure A17-1 provides a map of the exploration locations. These locations were selected by HMM/Bechtel based on the following considerations: 1) the data requirements of the tunnel designer; 2) the location of existing geotechnical data; 3) the avoidance of private property; and 4) the avoidance of existing underground and overhead utilities. For CPT correlation purposes approximately 16 sets of borings and CPTs were conducted within 15 feet of each other.

The boring investigation program was conducted by the two companies, Parikh and Pitcher. The investigation included soil sampling and in situ testing. Soil sampling consisted of Pitcher Barrel sampling, Shelby tube sampling, SPT sampling and California sampling. The in situ testing conducted in the borings consisted of field vane shear testing, pressuremeter testing, downhole geophysical logging, and piezometer installation. For further details regarding the boring investigation program and results refer to the main report.

### 1.3 LABORATORY TESTING PROGRAM OVERVIEW

### 1.3.1 Testing Overview

Fugro Consultants' geotechnical laboratory conducted the advanced laboratory testing program for the Tunnel Segment of SVRT Project. This program was conducted on samples provided by Parikh from soil borings located along the tunnel segment. Table A17-1, below, summarizes the numbers and types of different tests conducted. The purpose of this advanced laboratory testing program was to determine selected index and engineering properties of the sampled soils. This appendix provides a detailed description for K₀-Bishop Consolidated Undrained Triaxial Compression tests along with a summary of the interpreted parameters.

Table A17-1. Summary of Advanced Laboratory Testing Program

Test Description	Number of Tests
Constant Rate of Strain (CRS) Consolidation	37
Static Direct Simple Shear	15
K₀-Consolidated Undrained Triaxial Compression	20
K₀-Consolidated Undrained Triaxial Extension	16
K₀-Consolidated Bishop's Procedure	12
Isotropically-Consolidated Drained Triaxial Compression	30



### 1.3.2 Program Description

The physical properties of the soils tested during the advanced laboratory testing program are separated into two categories, index and engineering. The index properties include items such as water content, specific gravity, unit weight, void ratio, and degree of saturation. The engineering properties include items such as compressibility (consolidation), strength, and hydraulic conductivity (permeability). The advanced tests conducted as part of this laboratory testing program are discussed in more detail below.

- Constant Rate of Strain (CRS) Consolidation tests were conducted to determine
  the rate and magnitude of soil consolidation as well as stress history for a soil
  sample that is restrained laterally and drained axially. The one-dimensional
  consolidation tests typically involved constant rate-of-loading, one unload-reload
  cycle, and one rebound stage from the maximum applied stress. Detailed discussion
  of the CRS consolidation tests is provided in Appendix 13.
- Static Direct Simple Shear (DSS) tests were conducted to measure constant volume (undrained) shear strength and stress-strain characteristics of cohesive soils after one-dimensional consolidation using a constant rate of simple shear deformation. Detailed discussion of the DSS tests is provided in Appendix 14.
- Isotropically Consolidated Drained Triaxial (CDTX) tests were conducted to
  evaluate the drained strength characteristics, such as friction angle and stress-strain
  relationship of the soils encountered in the borings. For a detailed discussion of the
  CDTX tests, refer to Appendix 15.
- K₀-Consolidated Undrained Triaxial Compression and Extension (CK₀UC & CK₀UE) tests were conducted to estimate the static strength parameters and stress-strain characteristics of fine-grained soils under a range of confining stresses and overconsolidation ratios (OCRs). In a K₀-consolidated test, the sample is consolidated under drained conditions to the assigned vertical stress while maintaining a constant diameter of the cylindrical specimen (the horizontal confining stress was automatically adjusted to maintain the constant diameter). For detailed discussion of the K₀ triaxial compression and extension tests, refer to Appendix 16.
- **K₀-Bishop's Procedure Triaxial** tests were conducted to determine the at-rest lateral earth pressure coefficient (K₀) as a function of the overconsolidation ratio (OCR). A detailed discussion of the K₀-Bishop tests is provided in this appendix.

The scope of the advanced laboratory testing program also included x-raying of assigned soil samples. Discussion of the x-ray testing procedures and a summary of results are provided in Section 2.0 of Appendix 13, with x-ray images shown in Appendix 20.

### 1.3.3 Sample Recovery and Handling

Soil sampling was conducted by Parikh at intervals typically ranging from 5 to 10 feet in accordance with the project specifications. Upon sample recovery, undisturbed portions of the soil sample tubes were sealed and transported to Parikh's lab. For further details regarding sample recovery and handling, refer to the main report.



Soil samples assigned for advanced laboratory testing were transported in wooden Shelby tube holders, designed to maintain the tubes' vertical orientation during transit, to Fugro's laboratory in Oakland. The samples were then packed in specially fabricated, padded containers designed to minimize disturbance, and maintain an upright (vertical) orientation of the samples during shipping. The samples were finally shipped to Fugro Consultants' geotechnical laboratory for testing.

### 1.3.4 Overview of K₀-Bishop Consolidated Undrained Triaxial Test Program

Fugro Consultants' geotechnical laboratory conducted  $K_0$  consolidated triaxial tests using Bishop's procedure on 12 soil samples, as assigned by HMM/Bechtel. These tests were conducted to estimate the static strength parameters, stress-strain characteristics and  $K_0$  as a function of overconsolidation ratio (OCR) for fine-grained soils. The  $K_0$  method of consolidation is used to better model the in situ stress condition of the soil. This test is applicable to field conditions where soils that have been fully consolidated under a set of stresses, are subjected to a change in stress without time for further consolidation to take place (undrained conditions).

The shear strength determined from the K_o Bishop's tests, expressed in terms of total stresses (undrained conditions) or effective stresses (drained conditions) are commonly used in stability analyses, earth pressure calculations and foundation design.

The normalized undrained shear strength  $(S_u/\sigma'_{vc})$  can be estimated as the ratio of the maximum observed shear stress (q) to the effective vertical consolidation stress  $(\sigma'_{vc})$  prior to undrained loading. The in situ undrained shear strength may then be estimated by multiplying the normalized undrained shear strength with the estimated in situ effective overburden pressure (for normally consolidated samples).

## 2.0 K₀- CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST (BISHOP METHOD) PROCEDURES

### 2.1 INTRODUCTION

The  $K_0$ -Consolidated Undrained Triaxial Compression (Bishop Method) tests were conducted in general accordance with ASTM Test Method D 4767. The  $K_0$ -Bishop's procedure is generally the same as the one used for the standard  $K_0$ -Consolidated Undrained Triaxial Compression tests, discussed in Appendix 16, with one significant variation. In the  $K_0$ -Bishop procedure, the sample is  $K_0$ -consolidated under drained conditions until the sample is well into the normally consolidated range. An unload-reload cycle is then performed in order to obtain  $K_0$  for various values of OCR. The  $K_0$ -Bishop tests are conducted to estimate the static strength parameters and stress-strain characteristics of fine-grained soils under a range of confining stresses and overconsolidation ratios (OCR). The sample is then sheared to failure under undrained conditions with pore-water pressure measurements. By measuring the pore-water pressures generated during the test, the shear strength determined from the test can be expressed in terms of effective stress. This test method provides for the calculation of total and effective stresses, and axial compression by measurement of axial load, axial deformation, and pore water pressure.



## 2.2 K₀-CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST (BISHOP METHOD) STANDARDS AND PROCEDURES

 $K_0$ -Consolidated Undrained Triaxial Compression (Bishop Method) tests were conducted using an automated system (TruePath) developed by Fugro Consultants, and Trautwein and Germaine (of the Massachusetts Institute of Technology). The test procedure followed the technical requirements of ASTM Test Method D4767-95 using Bishop's procedure in a triaxial cell. The procedure for  $K_0$ -Bishop's tests typically consists of the following steps:

- *Cell Preparation*: Using the assigned confining pressure, strength estimates and specimen area, the proper load cell and pressure transducers are selected.
- Specimen Preparation: The selected portions of the tubes were cut into segments
  with a mechanical hacksaw (18 teeth per inch). A wire saw was used to separate the
  soil from the surrounding tube in an effort to reduce potential disturbance upon
  extrusion. In addition, each tube is marked such that all test specimens, will have
  the same orientation when sheared. The sample is then extruded from the cut
  portion of the tube using a hydraulically actuated ram.

Test specimens are typically trimmed to a 2.0-inch diameter by 4-inch height. After specimens are trimmed, they are mounted in the triaxial testing apparatus and aligned with the cell base with porous stones at each end. Each specimen had top, bottom and radial drainage boundaries during consolidation. The radial drainage was provided by spirally oriented ¼ -inch-wide Whatman No. 1 filter strips placed at about ¼-inch spacing.

- Back Pressure Saturation: Specimen saturation is usually achieved through back pressuring at either, an effective isotropic-confining stress of 3 to 7 psi (21 to 48 Kpa), a stress which prevents swelling or the assigned stress, whichever was smaller.
- Consolidation: Using the SHANSEP methodology, the soil specimen is K₀-consolidated, in which the sample is consolidated, under drained conditions, to the assigned vertical stress while maintaining a constant diameter of the cylindrical specimen (the horizontal confining stress is automatically adjusted to maintain the constant diameter). The samples are typically consolidated at a controlled rate of strain of about 0.1 to 0.5 percent/hr, depending upon its liquid limit. The duration of all consolidation increments was such that at least 95 percent consolidation is achieved. For the K₀-Bishop tests, an unload-reload cycle is then performed in order to obtain K₀ for various values of OCR. Following the unload/reload cycle the sample is consolidated back to the normally consolidated range and then sheared to failure.
- Undrained Axial Shearing: During shearing, the chamber pressure is kept constant
  and specimen drainage is not permitted. An axial loading piston is advanced into
  (shearing compression), or retracted from (shearing in extension) the cell at a
  specific rate of strain. The applied rate-of-strain was slow enough (about 0.1 to 0.5
  percent/hr), depending upon the specimen's liquid limit) to produce approximate



equalization of excess pore-water pressures (PWP) throughout the specimen at failure. The static stresses and excess PWPs ( $\Delta U$ ) were used to express the measured stress parameters in terms of effective stresses.

### 3.0 K₀-CONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS

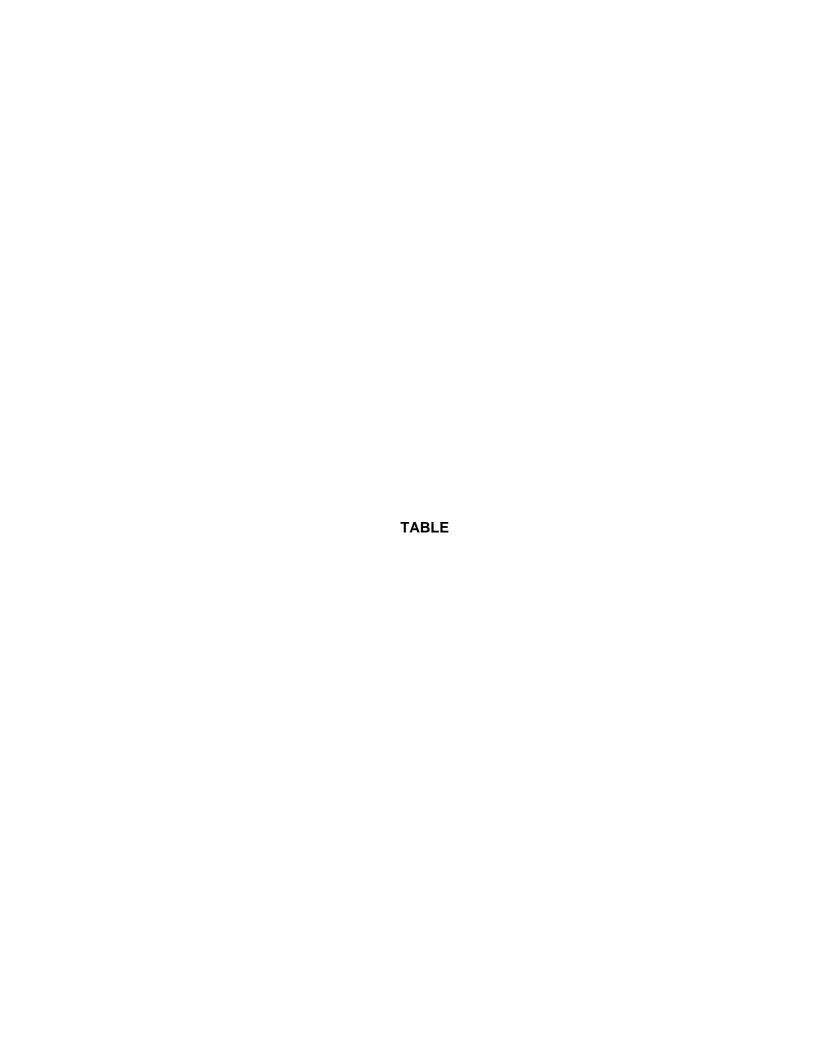
Raw data recorded during the  $K_0$ -Bishop tests were interpreted to determine the strength parameters and the stress-strain characteristics of the tested soil. Figures 2a through 13c present the  $K_0$ -Bishop's test results. For each test performed, normalized shear stress  $(\tau_h/\sigma'_{v,c})$ , the normalized excess pore-water pressure and obliquity versus shear strain  $(\gamma \%)$  are plotted on three separate plots on one page while the  $K_0$  and axial strain are plotted versus effective vertical stress, and normalized shear stress  $(\tau_h/\sigma'_{v,c})$  versus normalized average effective vertical stress  $(p/\sigma'_{v,c})$  are shown on a second page of plots. The  $K_0$  versus overconsolidation ratio (OCR) graph is shown on a third page of plots.

Results such as moisture content, Atterberg limits, initial unit weight, soil type, interpreted preconsolidation pressure, estimated in situ vertical stress, overconsolidation ratio, undrained shear strength, maximum shear strain and  $K_0$ -overconsoldiation ratio relationships are summarized in "Tables A17-2a through A17-2c – Summary of C  $K_0$ U Test Results." The estimated in situ vertical effective stress was estimated by developing a unit weight profile from the boring data with either measured or estimated ground water levels.

### 4.0 LIMITATIONS

Our services consist of laboratory testing, and data evaluations that are made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.

The test data provided in this appendix is from the laboratory testing of samples obtained from subsurface explorations conducted by others. These explorations indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. Variations may exist and conditions not observed or described in this report could be encountered during construction. Our laboratory tests results presented in this appendix are based on the standards and procedures indicated herein. The laboratory assignments were provided by HMM/Bechtel.


This appendix has been prepared for the exclusive use of HMM/Bechtel and their consultants for specific application to the SVRT project as described herein. In the event that there are any changes in the ownership, nature, design, or location of the proposed project, or if any future additions are planned, the results contained in this appendix should not be considered valid unless 1) the project changes are reviewed by Fugro, and 2) results presented in this appendix are modified or verified in writing. Reliance on this report by others must be at their risk unless we are consulted on the use or limitations. We cannot be responsible for the impacts of any changes in geotechnical standards, practices, or regulations subsequent to performance of services without our further consultation. We can neither vouch for the accuracy



of information supplied by others, nor accept consequences for unconsulted use of segregated portions of this report.

### 5.0 REFERENCES

ASTM D 4767, "Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils", ASTM International.





Boring Number	B-9	B-18	B-25	B-25	B-33
Sample Number	3b	q6	3a	166	- 15 
Penetration Depth (ft)	52.20	80.55	18.00	111.20	9.60
Soil Type	СН	CF	ರ	긶	CL
Atterberg Limits (%) Liquid Limit, LL Plastic Limit, PL	53 22	32	52 25	43 16	35
Water Content (%) In Situ Water Content, W _o	29.5	21.6	35.7	5 TC	6 86
Initial Water Content Before Consolidation, W _i	29.7	22.2	35.7	26.3	23.5
Final Water Content, Wr	21.0	16.0	25.8	19.9	18.7
Initial Total Unit Weight, nt,0 (pcf)	121	127	116	123	117
In Situ Vertical Effective Stress, o'vo (ksf)	2.95	5.37	1.82	7.90	0.84
Shear), o' _{ve} (ksf)	52.33	68.87	40.37	45.91	35.96
Horizontal Effective Consolidation Stress (Pre- Shear), o' _{he} (ksf)	30.98	35.22	21.38	25.24	19.64
Preconsolidation Pressure (Casagrande), o' _p (ksf)	12.3	18.2	8.6	18.2	4.1
Overconsolidation, OCR					
in Situ Test Induced	5.4	3.4	7.4	2.3	8.4
Compression Index, Ce.c	0.15	0.12	0.16	0.18	0.1
Recompression Index, Cer	0.032	0.022	0.026	0000	0.14
Swelling Index, C _{e.s}	0.026	0.013	0.019	0.016	0.014
Axial Strain at Max Shear Stress, eg (%):	3.5	0.9	2.5	0.5	1.0
Axial Strain at Max Obliquity, e _a (%):	7.7	8.6	4.9	20.1	7.4
Undrained Shear Strength, S _u (ksf)	14.82	21.27	11.38	13.31	10.64
Undrained Shear Strength Ratio, Sylo've	0.28	0.31	0.28	0.29	0.30
Estimated Friction Angle at Maximum Obliquity, ¢' (degrees)	26	31	29	29	29
K ₀ - OCR Relationship	$K_0 = 0.5690CR^{0.283}$	$K_0 = 0.492OCR^{0.290}$	K ₀ = 0.505OCR ^{0.329}	$K_0 = 0.5300 \text{CR}^{0.127}$	$K_0 = 0.5400 \text{CR}^{0.493}$

# Ko-BISHOP CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS

Tunnel Segment of SVRT Project San Jose, California

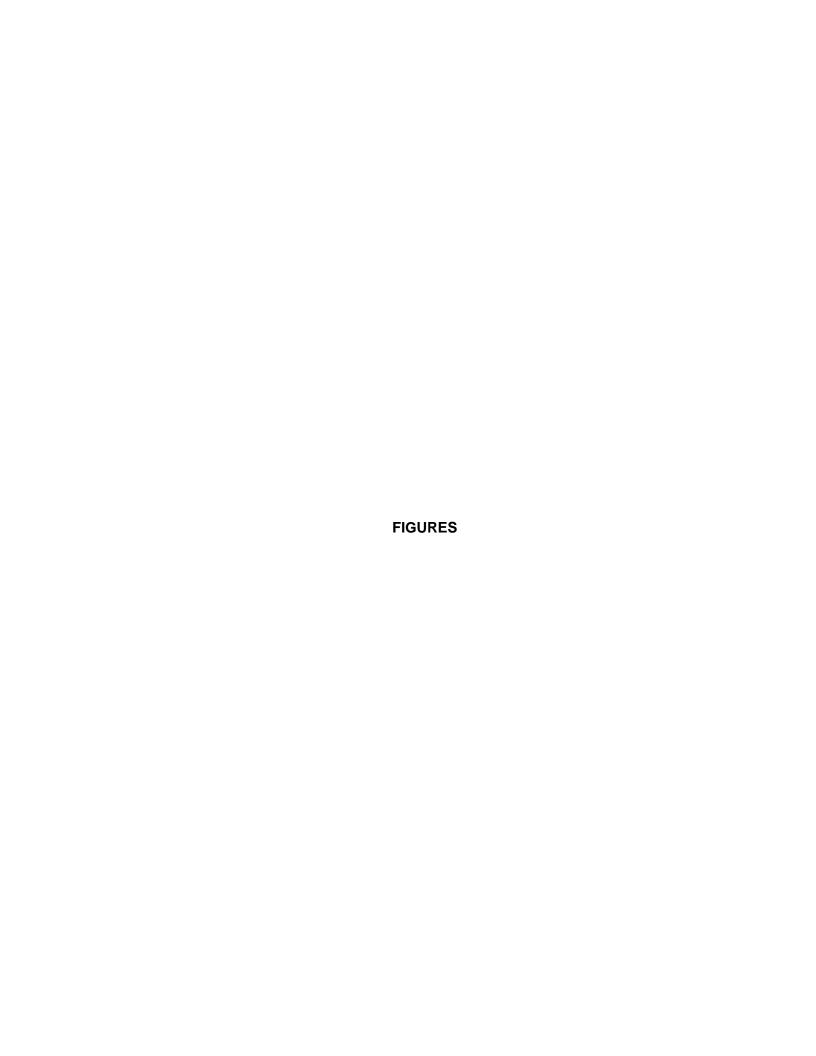


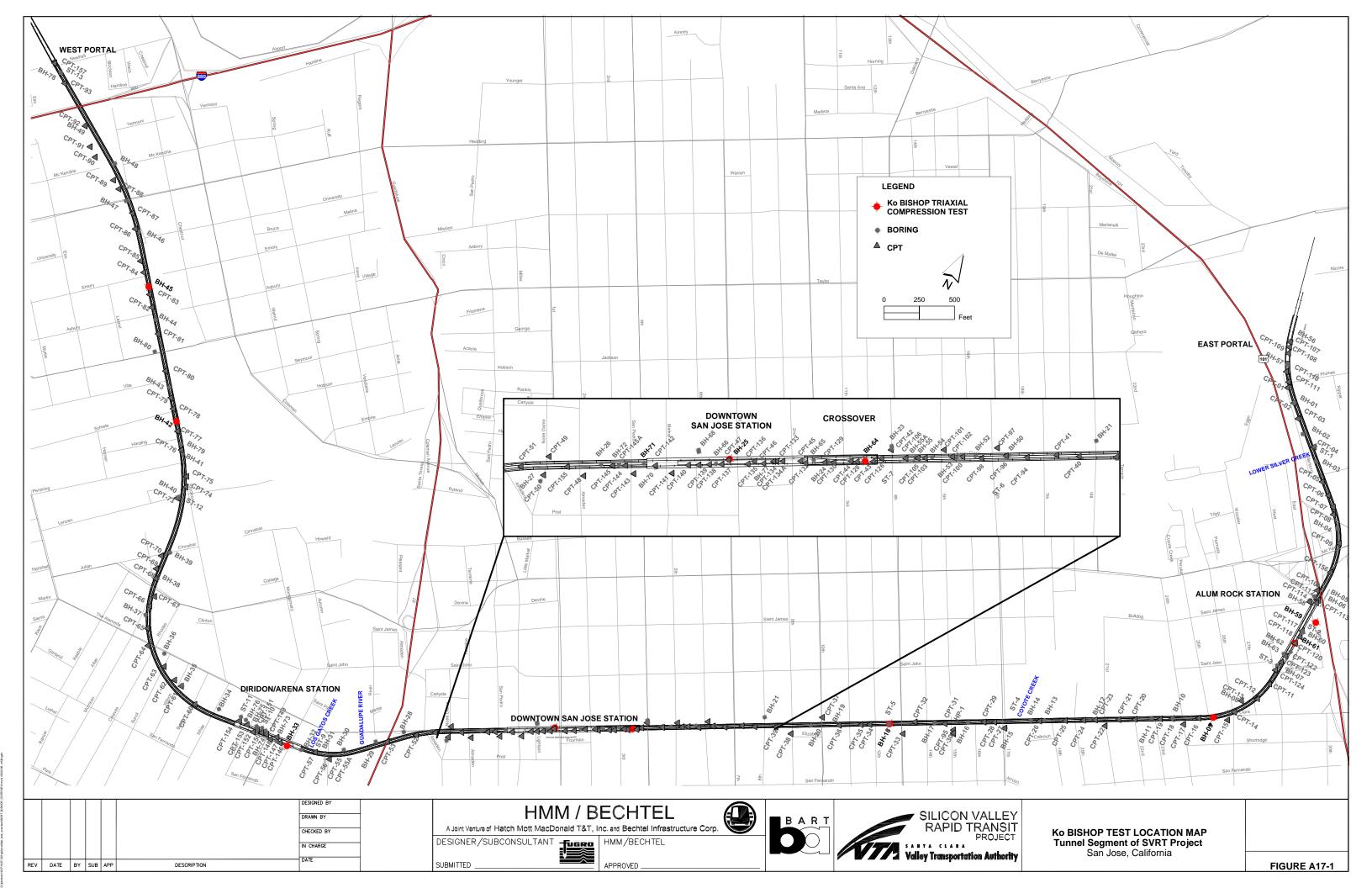


Boring Number	B-33	B-42	B-45	B-59	B-61
Sample Number	9b	7b	4b	5b	17b
Penetration Depth (ft)	82.10	36.55	41.25	50.55	135.85
Soil Type	CL	CF	ರ	C	동
Atterberg Limits (%) Liquid Limit, LL Plastic Limit, PL	40 16	31	27	42	47
Water Content (%) In Situ Water Content W	0.70	2		2	ON.
Initial Water Content Before Consolidation, W.	25.0	21.3	21.3	21.0	23.0
Final Water Content, W _t	19.1	15.4	16.2	20.8 16.5	23.0 16.6
Initial Total Unit Weight, 14,0 (pcf)	123	129	127	127	125
In Situ Vertical Effective Stress, o'vo (kst)	5.75	2.76	2.94	3.62	9.30
Vertical Effective Consolidation Stress (Pre- Shear), o' _{ve} (ksf)	63.03	74.87	86.63	54.46	71.93
Horizontal Effective Consolidation Stress (Pre- Shear), one (ksf)	30.90	33.08	42.76	29.66	39.79
Preconsolidation Pressure (Casagrande), o'p (ksf)	18.2	13.6	19.0	11.5	23.1
Overconsolidation, OCR	1				
m situ Test Induced	3.2 1.0	4.9 1.0	6.4 1.0	3.2	2.5
Compression Index, C _{e,c}	0.16	0.10	0.12	0.13	0.15
Recompression Index, Ce.r	0.022	0.012	0.018	0.027	0.024
Swelling Index, C _{e,s}	0.013	0.01	0.014	0.018	0.016
Axial Strain at Max Shear Stress, ea (%):	0.7	0.5	0.7	1.7	1.2
Axial Strain at Max Obliquity, e _a (%):	5.9	8.0	7.9	8.2	11.8
Undrained Shear Strength, S _u (ksf)	20.61	24.87	27.37	15.71	22.28
Undrained Shear Strength Ratio, S√σ'νο	0.33	0.33	0.32	0.29	0.31
Estimated Friction Angle at Maximum Obliquity, ¢' (degrees)	30	36	33	56	27
K ₀ - OCR Relationship	K ₀ = 0.4730CR ^{0.259}	$K_0 = 0.426OCR^{0.206}$	$K_0 = 0.4610CR^{0.175}$	$K_0 = 0.5180 \text{CR}^{0.309}$	$K_0 = 0.5470$ CR $^{0.179}$

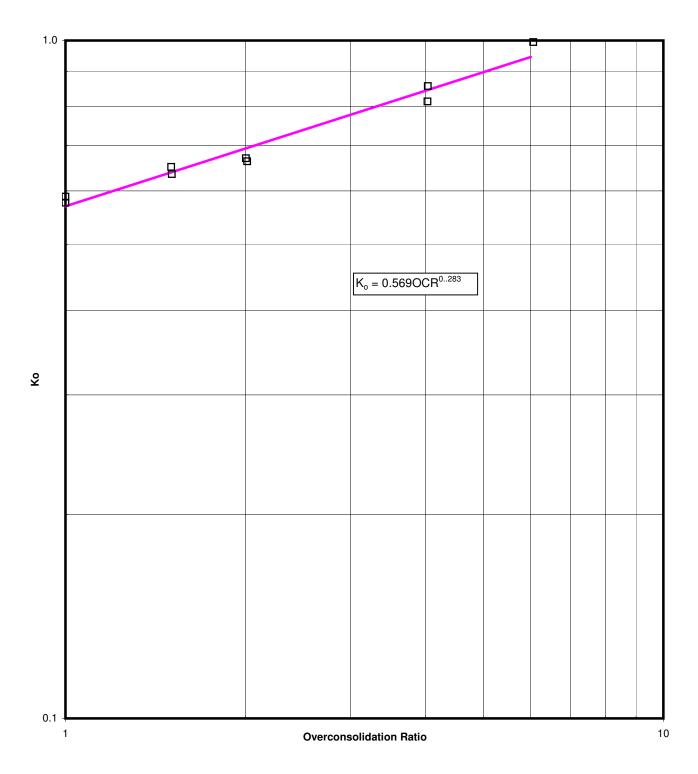
# Ko-BISHOP CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS

Tunnel Segment of SVRT Project San Jose, California




Boring Number	B-64	B-64
Sample Number	5b	19a
Penetration Depth (ft)	32.35	117.40
Soil Type	ರ	ر ا
Atterberg Limits (%)		
Liquid Limit, LL	32	36
Plastic Limit, PL	21	14
Water Content (%)		
In Situ Water Content, W _o	30.5	23.6
Initial Water Content Before Consolidation, W ₁	32.1	24.9
Final Water Content, W _r	21.2	17.4
Initial Total Unit Weight, vt.0 (pcf)	119	125
In Situ Vertical Effective Stress, σ' _{vo} (ksf)	2.20	7.75
Vertical Effective Consolidation Stress (Pre- Shear), σ' _{ve} (ksf)	50.47	79.43
Horizontal Effective Consolidation Stress (Pre- Shear), o' (ksf)	24.89	35.56
Preconsolidation Pressure (Casagrande), o', (ksf)	8.6	97.1
Overconsolidation OCP	2	7.7.7
Overconsolidation, OCH The Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of the Situation of	3.9	3.5
l est induced	1.0	1.0
Compression Index, C _{e,c}	0.14	0.14
Recompression Index, Ce,r	0.021	0.017
Swelling Index, C _{e,s}	0.013	0.011
Axial Strain at Max Shear Stress, e _a (%):	1.0	0.4
Axial Strain at Max Obliquity, e _a (%):	6.3	6.3
Undrained Shear Strength, S _u (ksf)	15.92	25.74
Undrained Shear Strength Ratio, Sي∕o'v₀	0.32	0.32
Estimated Friction Angle at Maximum Obliquity, ¢' (degrees)	31	33
K ₀ - OCR Relationship	$K_0 = 0.4700 \text{CR}^{0.302}$	$K_0 = 0.4240CR^{0.340}$

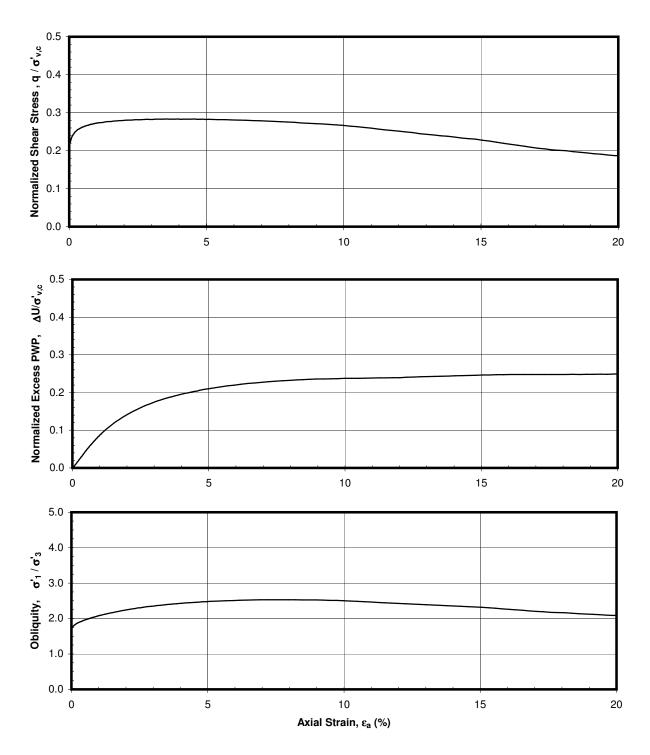

# Ko-BISHOP CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Tunnel Segment of SVRT Project San Jose, California









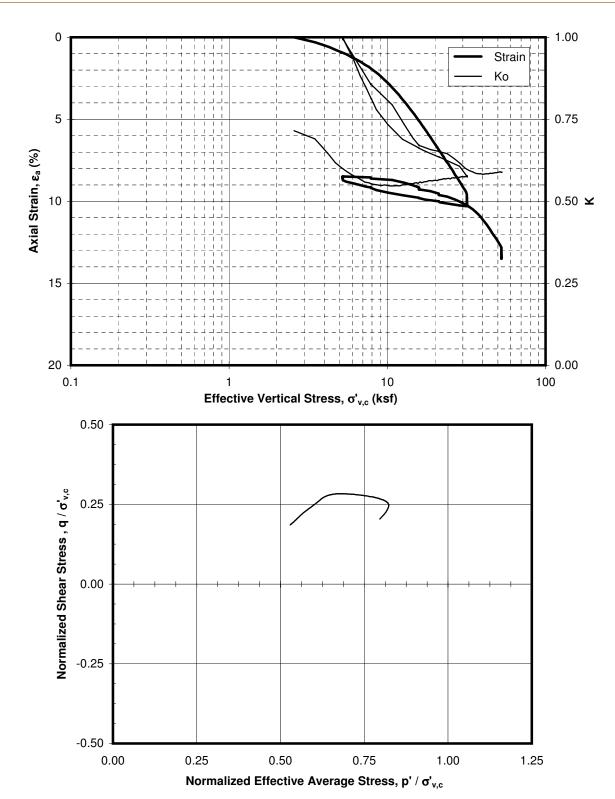



# Ko-CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Consolidation Phase

Sample: 3b - Depth: 52.20 ft Boring B-9 Tunnel Segment of SVRT Project San Jose, California





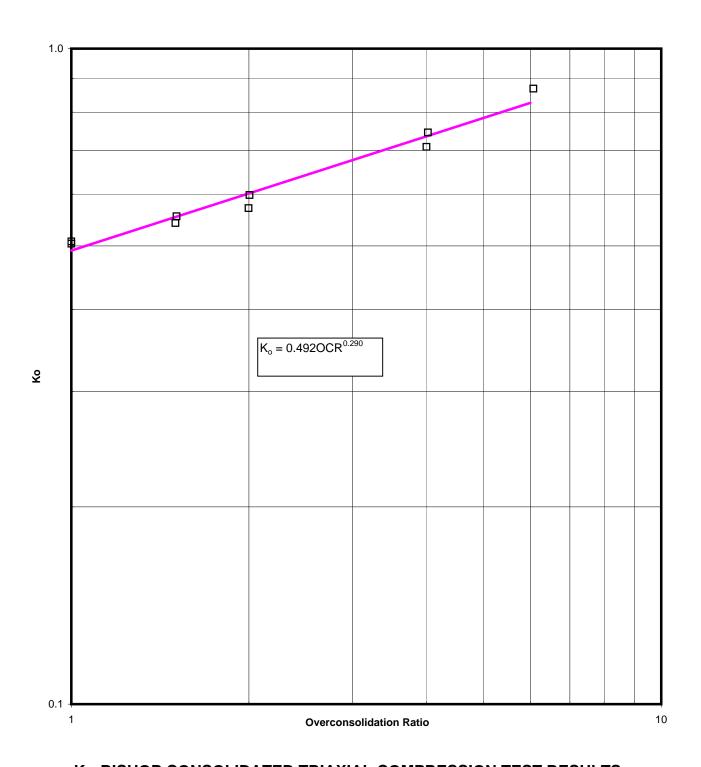



# Ko-BISHOP CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Shearing Phase - Test Induced OCR = 1

Sample: 3b - Depth: 52.20 ft Boring B-9 Tunnel Segment of SVRT Project San Jose, California





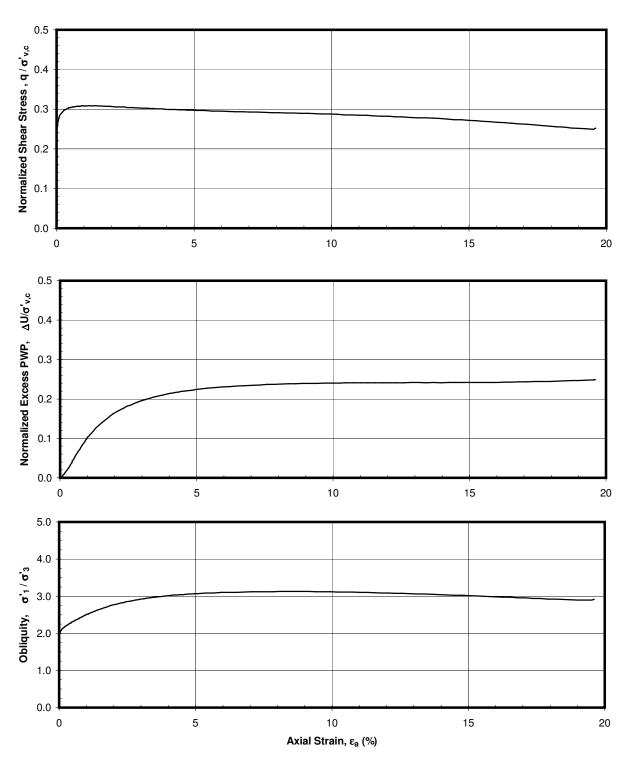



# Ko-BISHOP CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Shearing Phase - Test Induced OCR = 1

Sample: 3b - Depth: 52.20 ft Boring B-9 Tunnel Segment of SVRT Project San Jose, California





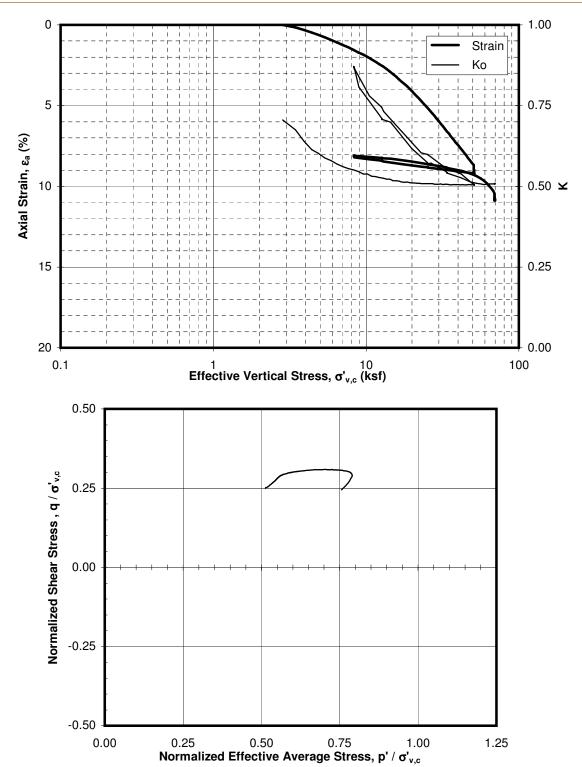



# Ko-BISHOP CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Consolidation Phase

Sample: 9b - Depth: 80.55 ft Boring B-18 Tunnel Segment of SVRT Project San Jose, California



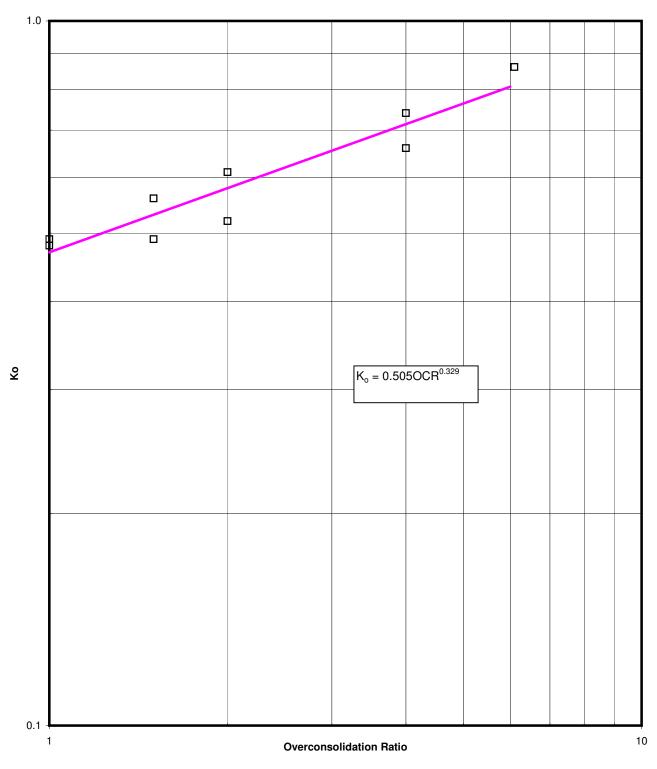





# Ko-BISHOP CONSOLIDATED TRIAXIAL COMPRESSION TEST RESULTS Shearing Phase - Test Induced OCR = 1

Sample: 9b - Depth: 80.55 ft Boring B-18 Tunnel Segment of SVRT Project San Jose, California

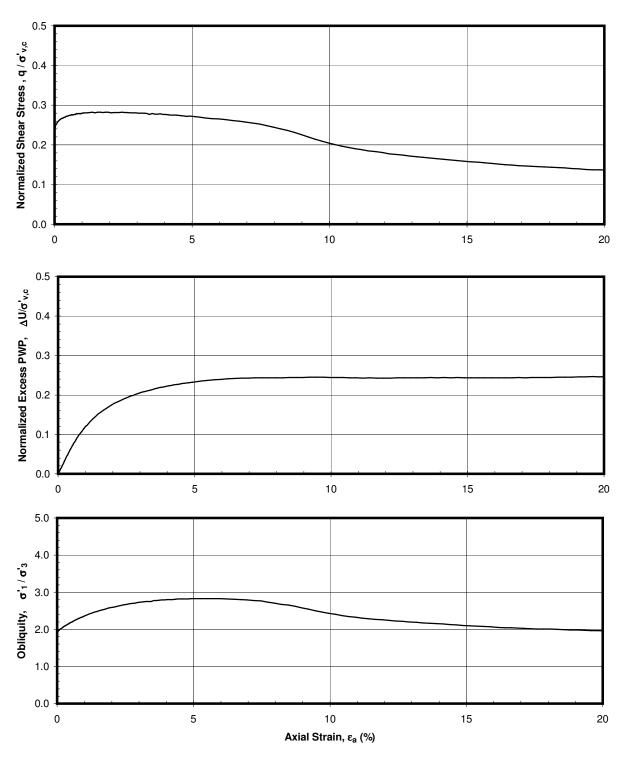







Sample: 9b - Depth: 80.55 ft Boring B-18 Tunnel Segment of SVRT Project San Jose, California

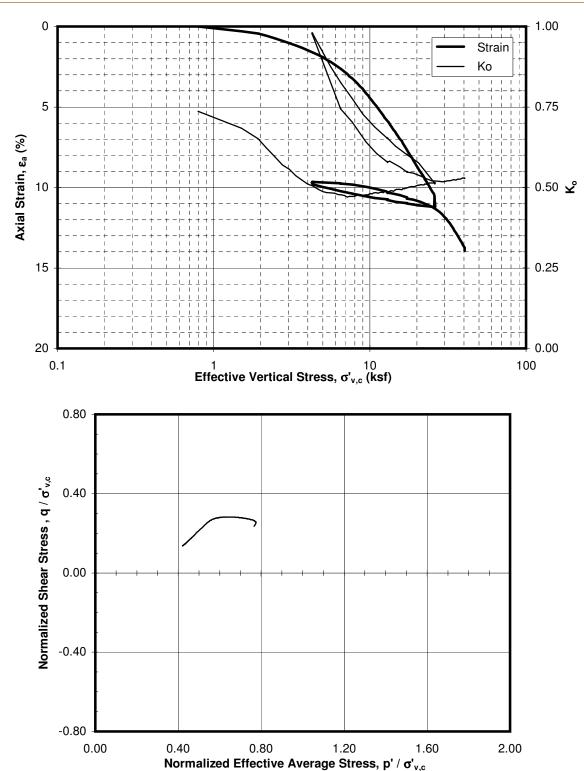







Sample: 3a - Depth: 18.00 ft
Boring B-25
Tunnel Segment of SVRT Project (BART to San Jose)
San Jose, California

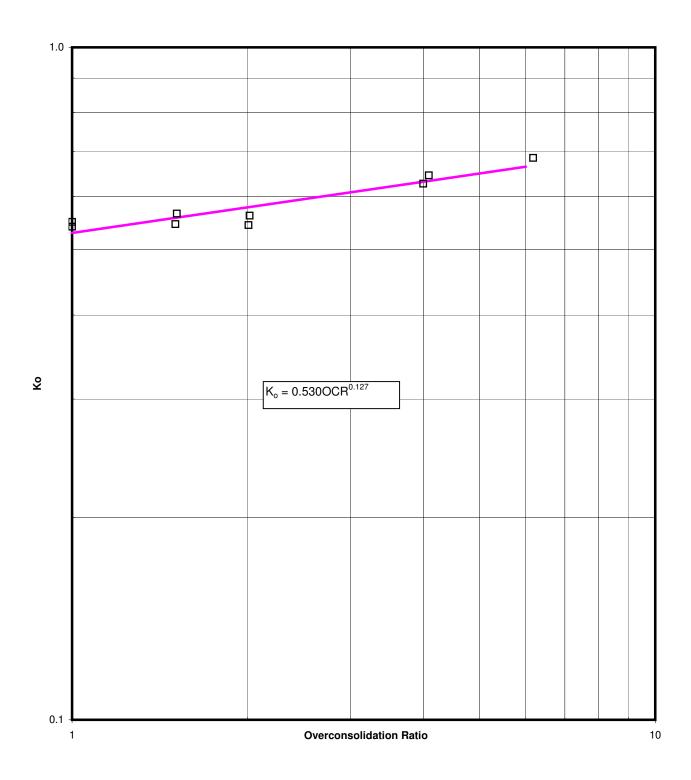







Sample: 3a - Depth: 18.00 ft Boring B-25 Tunnel Segment of SVRT Project San Jose, California

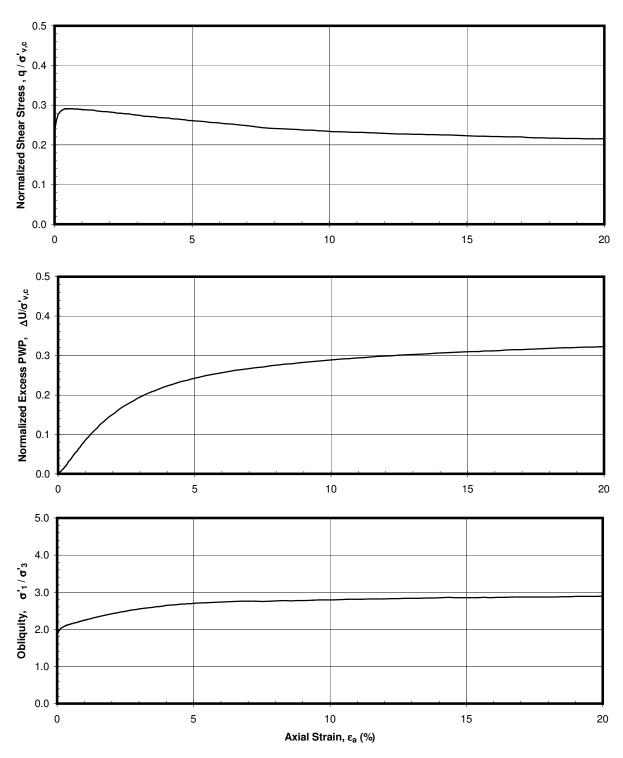







Sample: 3a - Depth: 18.00 ft Boring B-25 Tunnel Segment of SVRT Project San Jose, California

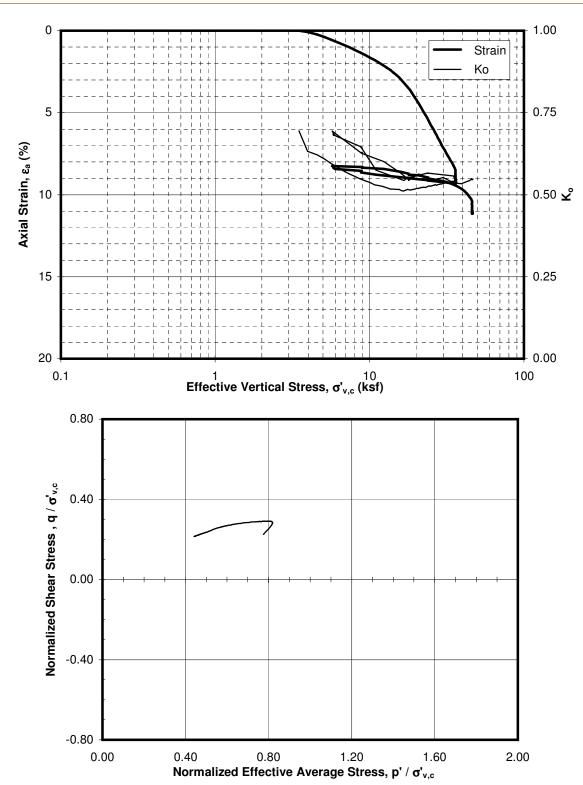







Sample: 16c - Depth: 111.20 ft Boring B-25 Tunnel Segment of SVRT Project San Jose, California

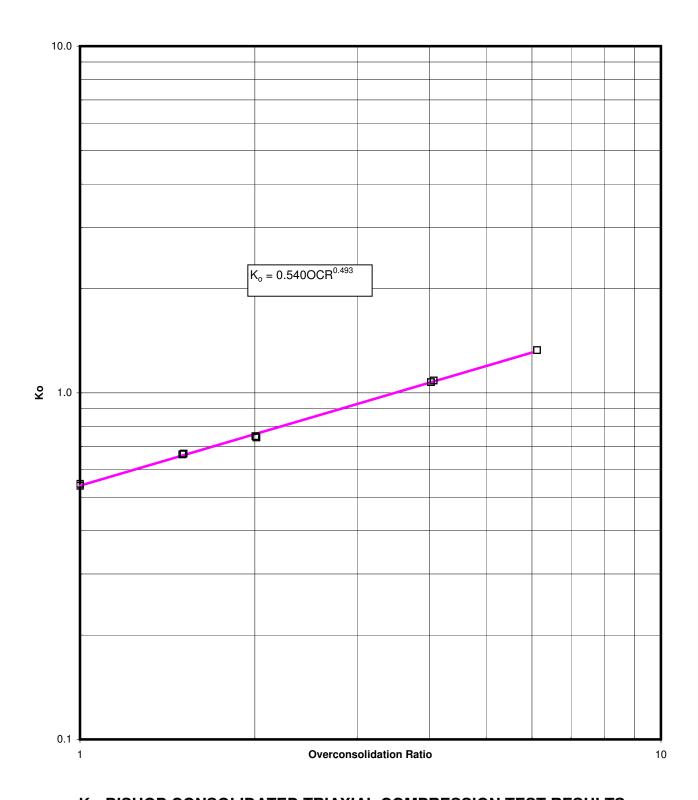







Sample: 16c - Depth: 111.20 ft Boring B-25 Tunnel Segment of SVRT Project San Jose, California

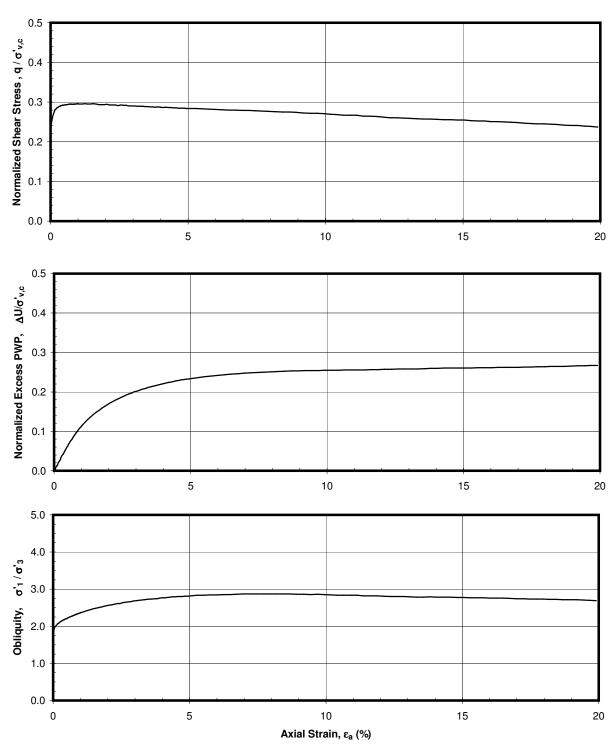







Sample: 16c - Depth: 111.20 ft Boring B-25 Tunnel Segment of SVRT Project San Jose, California

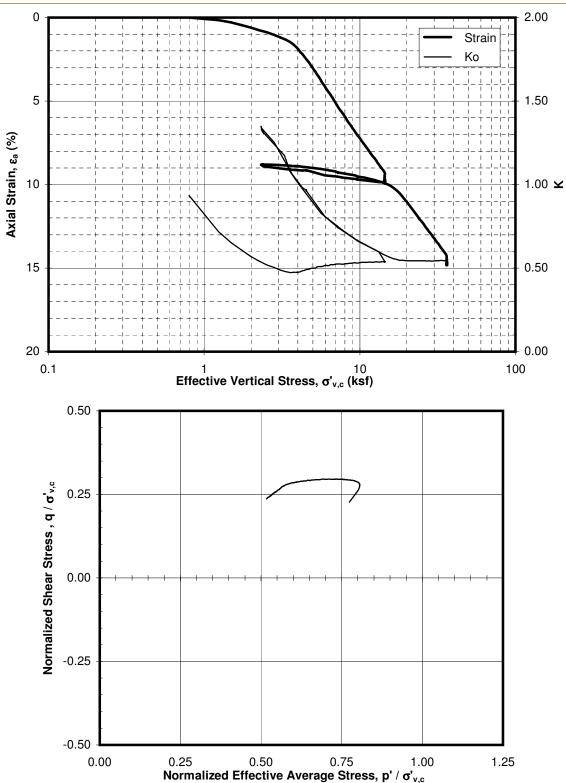







Sample: 1b - Depth: 9.60 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California

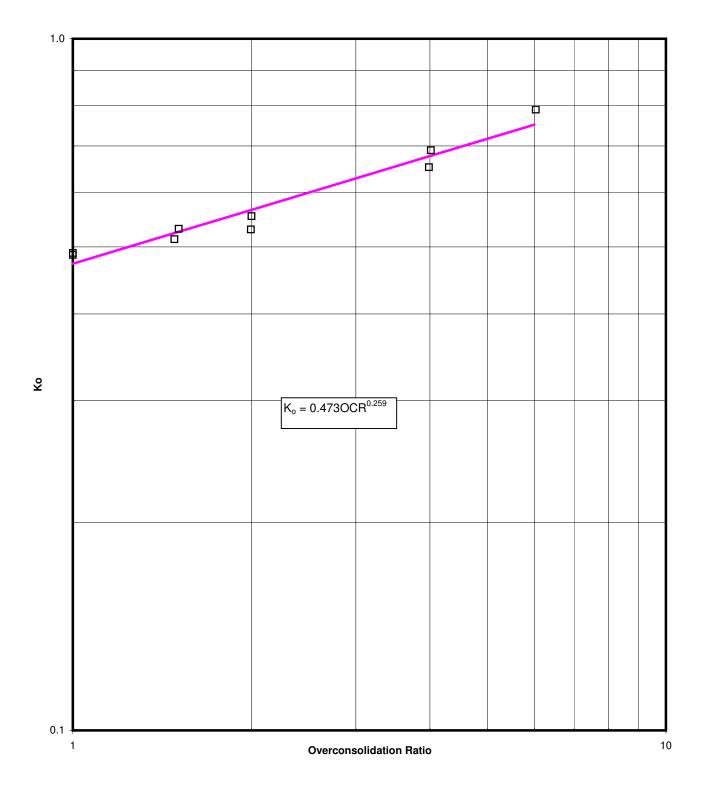







Sample: 1b - Depth: 9.60 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California

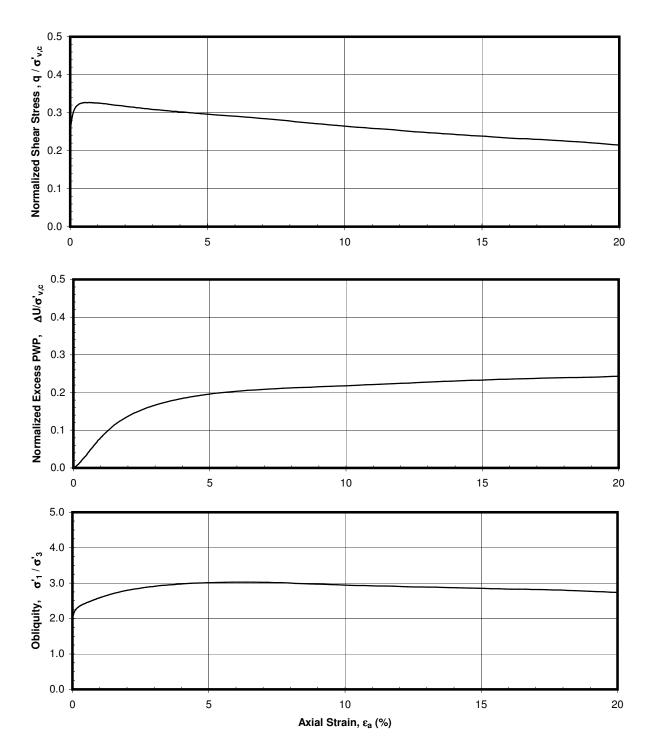







Sample: 1b - Depth: 9.60 ft
Boring B-33
Tunnel Segment of SVRT Project
San Jose, California

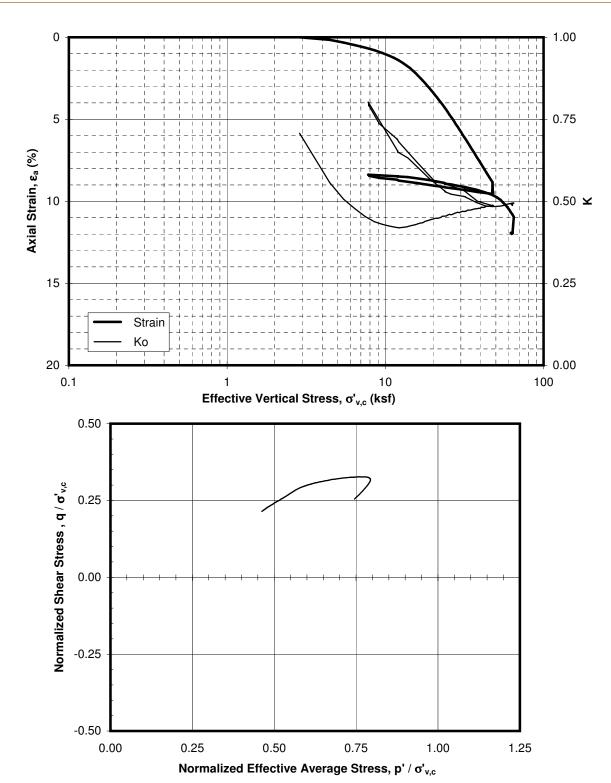







Sample: 9b - Depth: 82.10 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California

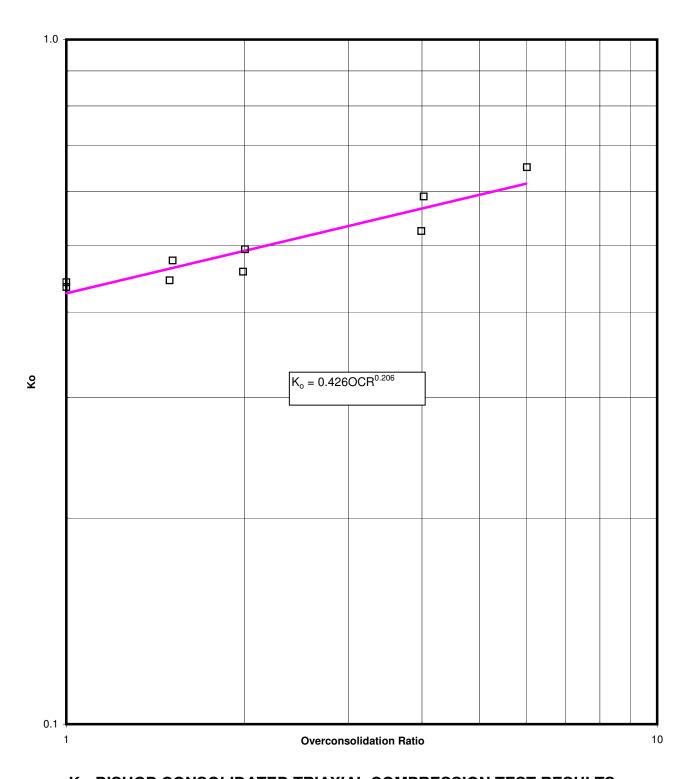







Sample: 9b - Depth: 82.10 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California

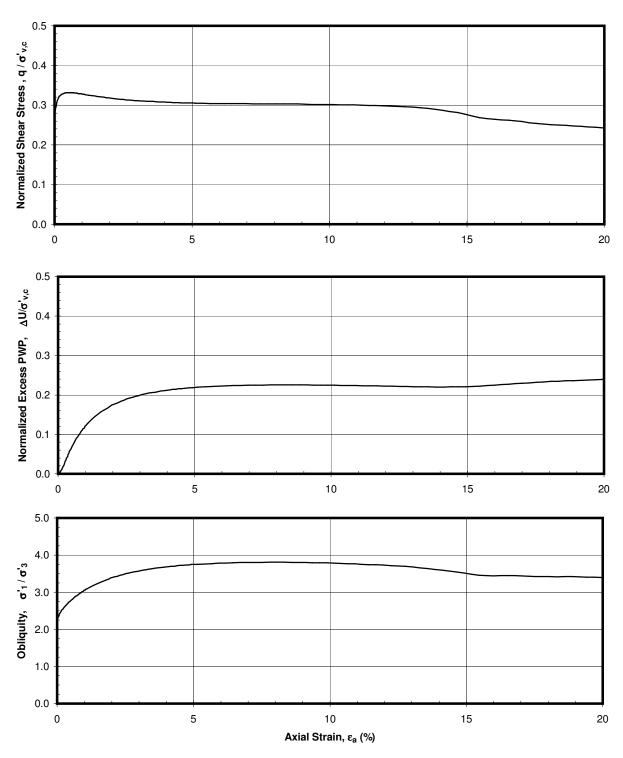







Sample: 9b - Depth: 82.10 ft Boring B-33 Tunnel Segment of SVRT Project San Jose, California

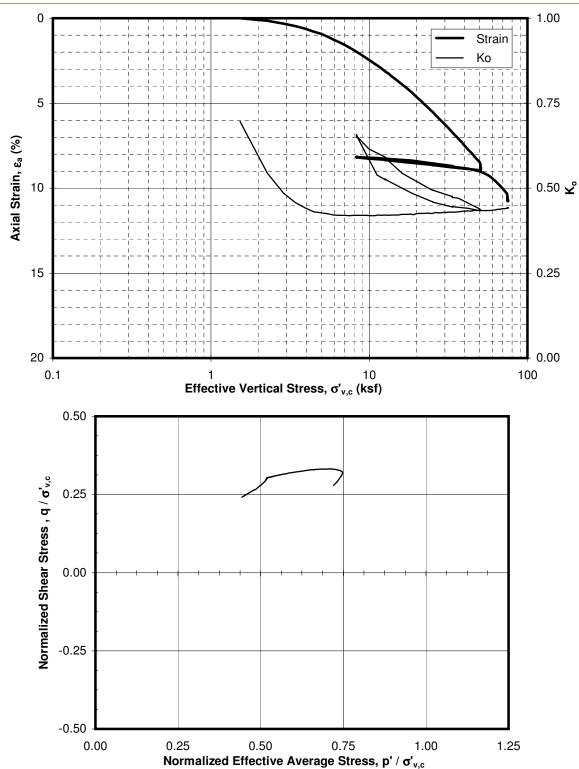







Sample: 7b - Depth: 36.55 ft Boring B-42 Tunnel Segment of SVRT Project San Jose, California

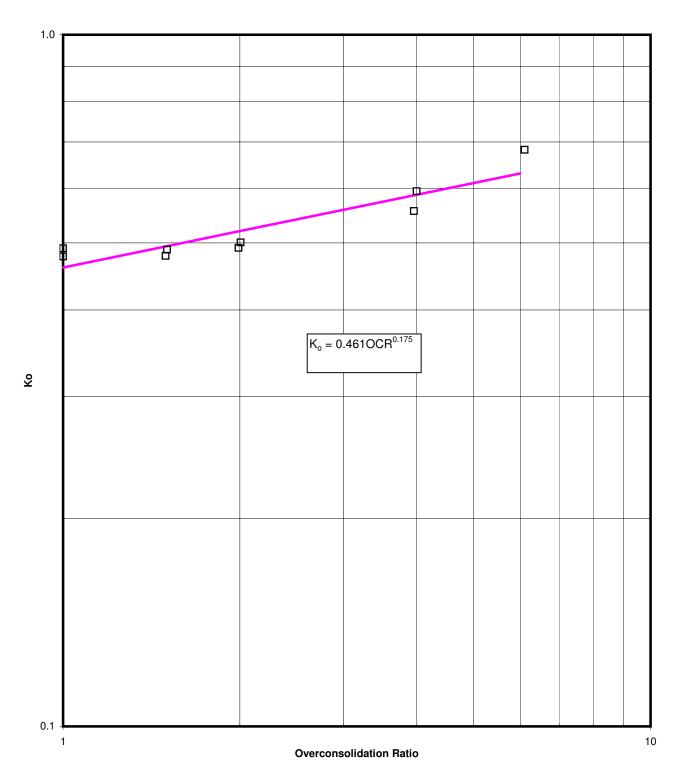







Sample: 7b - Depth: 36.55 ft Boring B-42 Tunnel Segment of SVRT Project San Jose, California

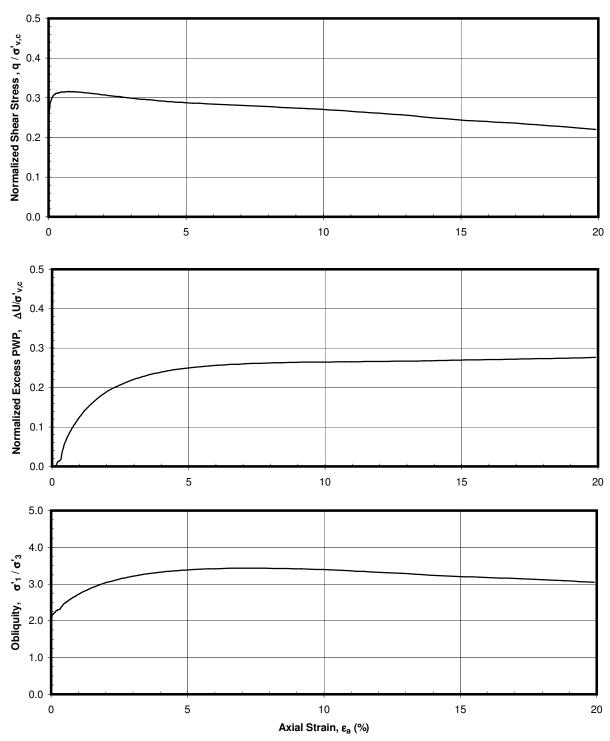







Sample: 7b - Depth: 36.55 ft Boring B-42 Tunnel Segment of SVRT Project San Jose, California

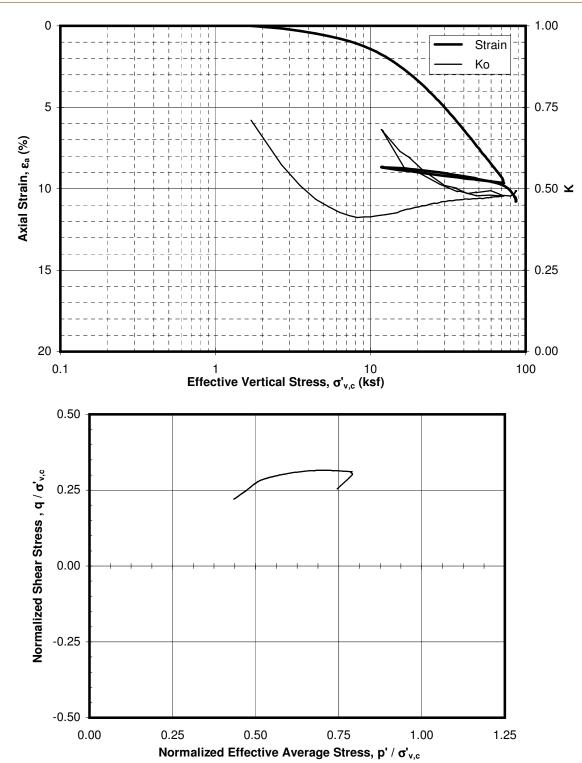







Sample: 4b- Depth: 41.25 ft
Boring B-45
Tunnel Segment of SVRT Project
San Jose, California

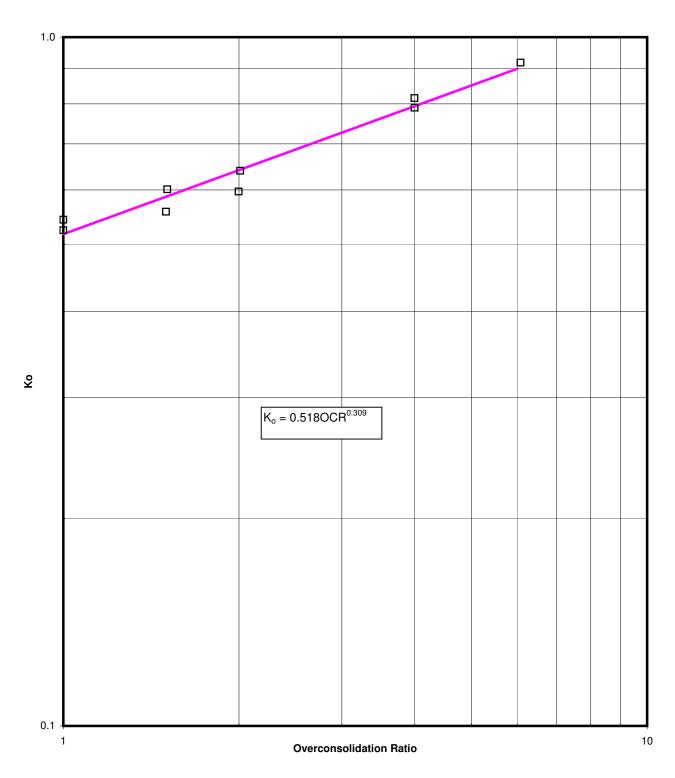







Sample: 4b- Depth: 41.25 ft
Boring B-45
Tunnel Segment of SVRT Project
San Jose, California

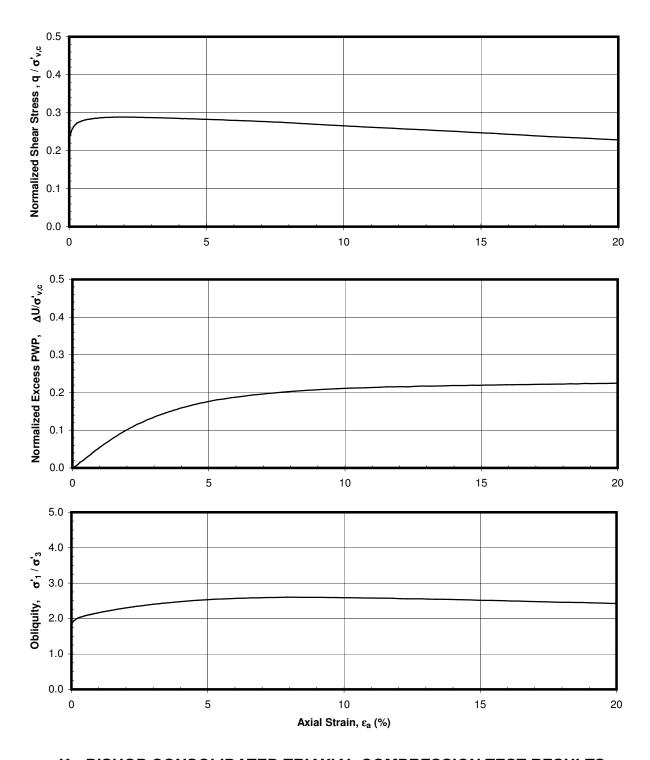







Sample: 4b- Depth: 41.25 ft
Boring B-45
Tunnel Segment of SVRT Project
San Jose, California

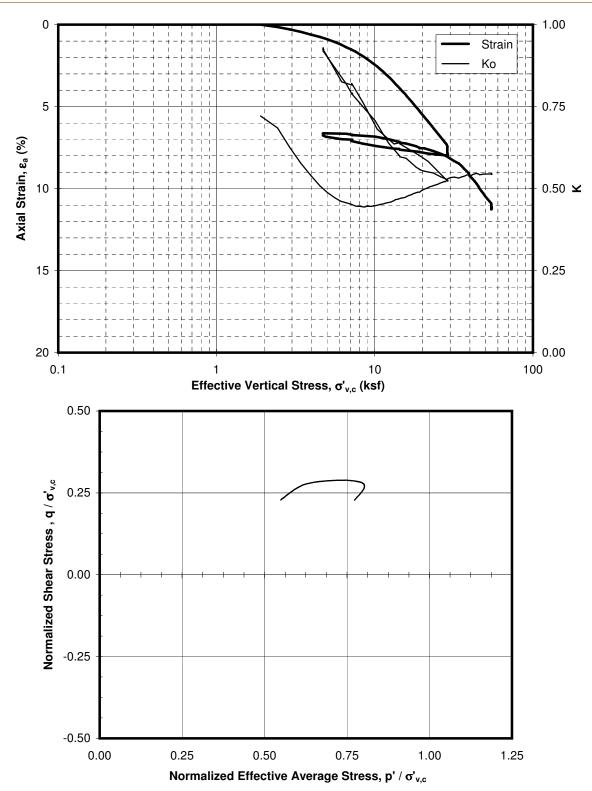







Sample: 5b - Depth: 50.55 ft Boring B-59 Tunnel Segment of SVRT Project San Jose, California



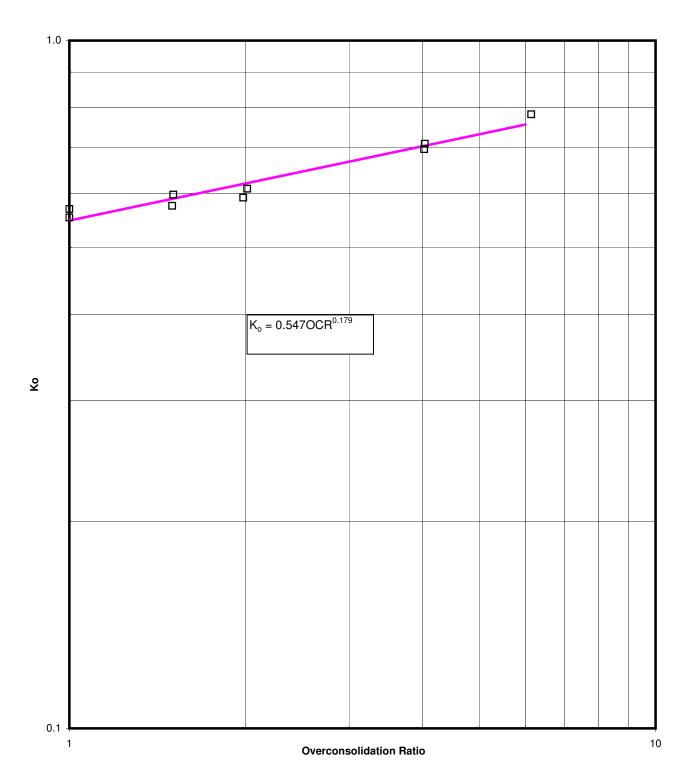





Sample: 5b - Depth: 50.55 ft Boring B-59 Tunnel Segment of SVRT Project San Jose, California



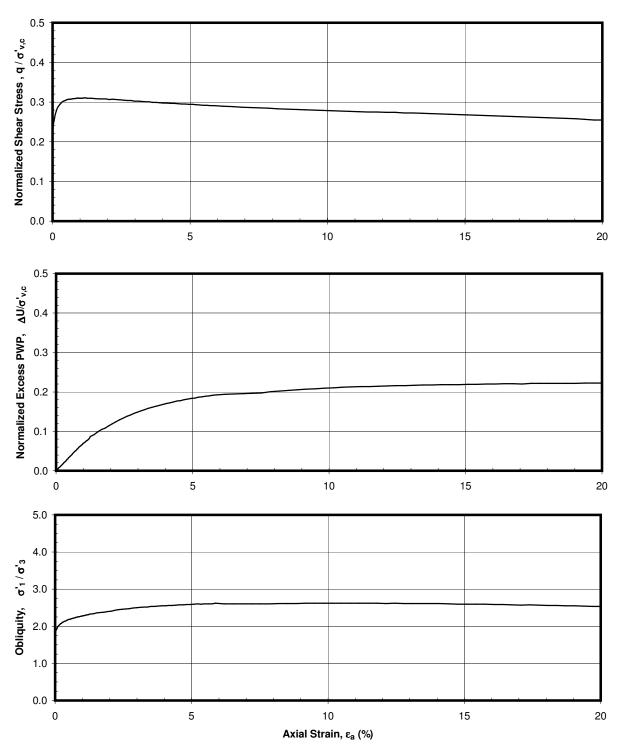





Sample: 5b - Depth: 50.55 ft Boring B-59 Tunnel Segment of SVRT Project San Jose, California



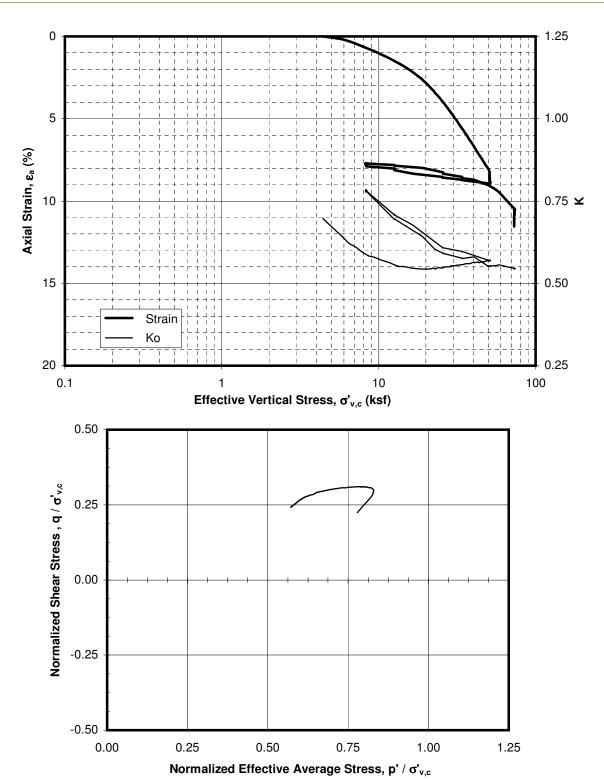







Sample: 17b - Depth: 135.85 ft Boring B-61 Tunnel Segment of SVRT Project San Jose, California

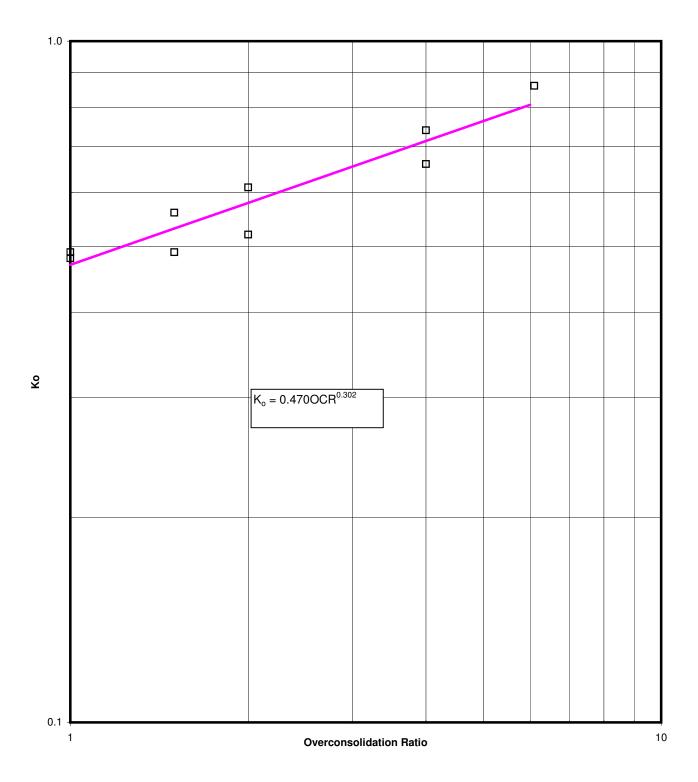







Sample: 17b - Depth: 135.85 ft Boring B-61 Tunnel Segment of SVRT Project San Jose, California

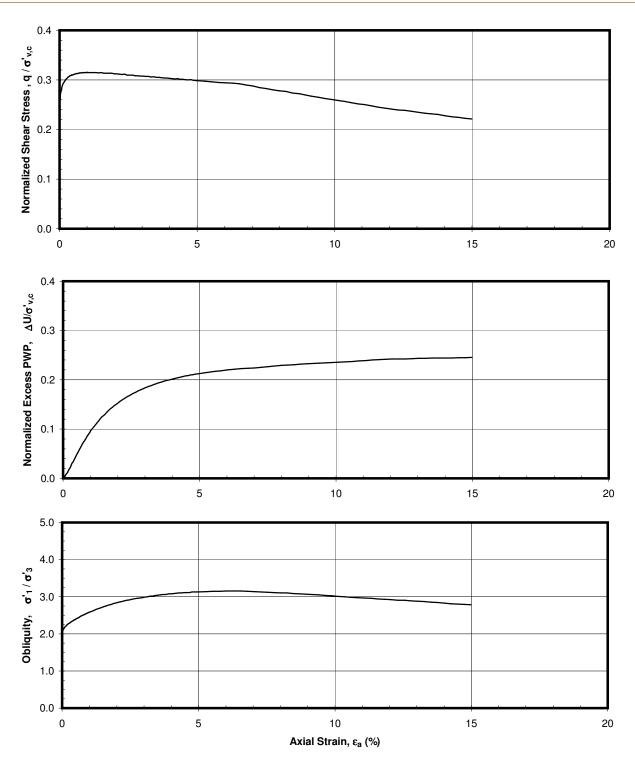







Sample: 17b - Depth: 135.85 ft Boring B-61 Tunnel Segment of SVRT Project San Jose, California

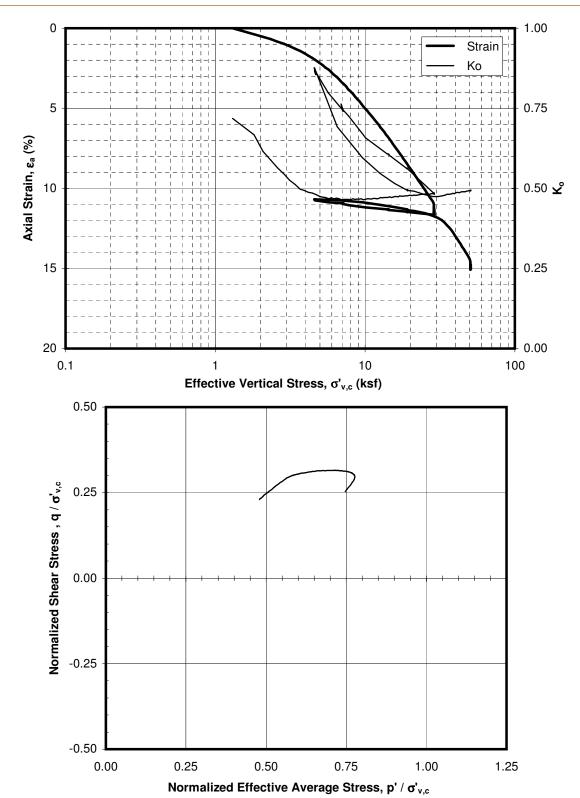







Sample: 5b - Depth: 32.35 ft Boring B-64 Tunnel Segment of SVRT Project San Jose, California

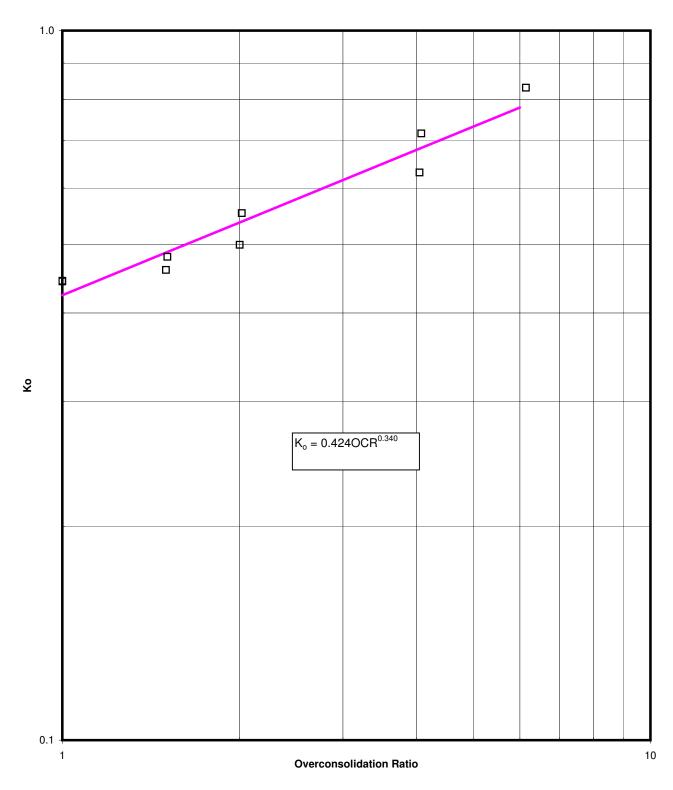







Sample: 5b - Depth: 32.35 ft Boring B-64 Tunnel Segment of SVRT Project San Jose, California

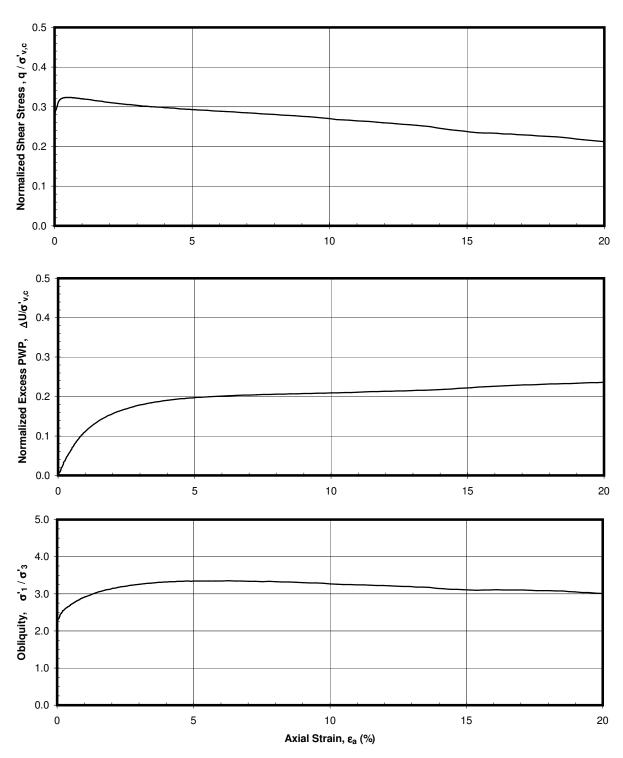







Sample: 5b - Depth: 32.35 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California

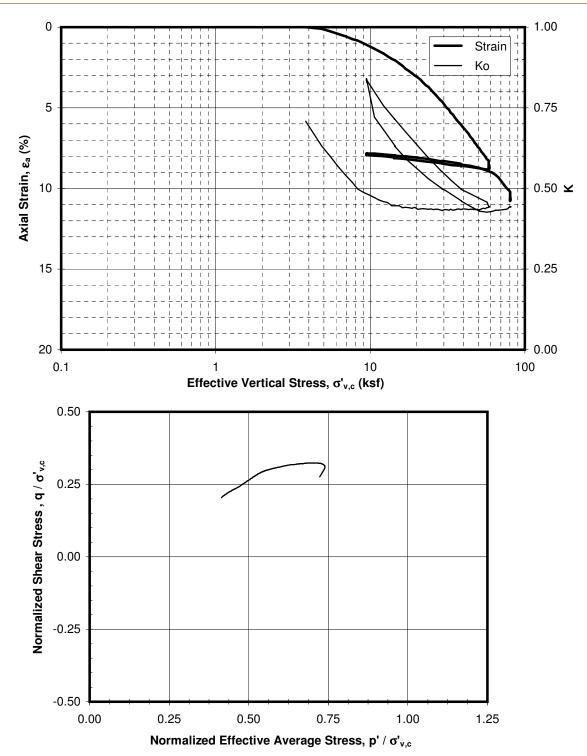







Sample: 19a - Depth: 117.40 ft Boring B-64 Tunnel Segment of SVRT Project San Jose, California








Sample: 19a - Depth: 117.40 ft Boring B-64 Tunnel Segment of SVRT Project San Jose, California







Sample: 19a - Depth: 117.40 ft
Boring B-64
Tunnel Segment of SVRT Project
San Jose, California

