Central Area Guideway Geotechnical Data Report Phase Two 65% Engineering Design Investigation

(P0503-D300-RPT-GEO-004, Rev.1)

P0503-D300-RPT-GEO-004 Rev. 1

B0801-C025

Central Area Guideway

Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

> December 16, 2008 Issued for Use

P0503-D300-RPT-GEO-004 Rev. 1

B0801-C025

Central Area Guideway

Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

> December 16, 2008 Issued for Use

This page is intentionally left blank.

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

GEOTECHNICAL DATA REPORT – PHASE TWO 65% ENGINEERING DESIGN INVESTIGATION

FOR

65% ENGINEERING DESIGN PHASE

Contract No. S03099

Submitted by: HMM/Bechtel SVRT, a Joint Venture

Abhishek Jain, E.I.T. Project Engineer

Reviewed by:

Andrew Liu, P.E., G.E.

Geotechnical Lead

Date

12/30/08

Date

12/20/2008 UNA

Ching Wu, P.E. Engineering Manager

for

Date

Approved by:

John Hawley. P.E. Date Central Area Guideway Design Manager

Prepared by HMM/Bechtel SVRT, a Joint Venture

This page is intentionally left blank.

TABLE OF CONTENTS

1.0	Exe	cutive S	Summary	1
2.0	Intr	oductio	on	1
	2.1	Scope o	f Work	1
	2.2	Report	Organization	2
	2.3	Limitati	ons	2
3.0	Fiel	d Inves	tigations	3
	3.1	Introduc	ction	3
		3.1.1	Team Organization	3
		3.1.2	Project Restrictions	3
	3.2	Boring	Program	4
		3.2.1	Overview	4
		3.2.2	Drill Rig and Hammer Types	5
		3.2.3	Sampling Methods and Equipment	5
			3.2.3.1 Sampler Types	5
			3.2.3.2 Sampling Interval	
		3.2.4	Handheld Field Tests	7
		3.2.5	Groundwater Level Measurements	7
		3.2.6	Sample Handling	8
		3.2.7	Borehole Completion and Abandonment	8
		3.2.8	Boring Log Organization and Presentation	8
		3.2.9	Standard Penetration Test (SPT)	9
		3.2.10	SPT Energy Calibration1	0
		3.2.11	Air and Vapor Monitoring1	1
	3.3	Cone Pe	enetration Testing Program1	1
		3.3.1	Overview1	1
		3.3.2	Conventional CPTs1	1
			3.3.2.1 Equipment1	2
			3.3.2.2 Procedures1	2
			3.3.2.3 Locations1	3

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

			3.3.2.4 Results	13
		3.3.3	Seismic CPTs	14
			3.3.3.1 Equipment	14
			3.3.3.2 Procedures	14
			3.3.3.3 Locations	
			3.3.3.4 Results	
		3.3.4	CPT Completion and Abandonment	
	3.4	Ground	water Dissolved Gas Sampling	21
4.0	Lab	oratory	7 Testing	. 25
	4.1	Introduc	ction	25
		4.1.1	Laboratory Visual Classification	29
		4.1.2	Moisture Content	29
		4.1.3	Unit Weight	29
		4.1.4	Sieve Analysis	30
		4.1.5	Sieve and Hydrometer Analysis	30
		4.1.6	Atterberg Limits	30
		4.1.7	Materials Finer than No. 200 Sieve	30
	4.2	Specialt	y Geotechnical Testing	31
		4.2.1	Direct Shear (Conventional)	31
		4.2.2	Large Scale Direct Shear	31
		4.2.3	Sticky Limit	32
		4.2.4	Maximum and Minimum Index Density	32
		4.2.5	Shipping and X-ray of Relatively Undisturbed Samples	33
		4.2.6	Cyclic Triaxial Shear	33
		4.2.7	Cyclic Simple Shear	34
		4.2.8	Soil Abrasion	34
		4.2.9	Mineralogy	35
5.0	Sun	nmary a	and Future Data Reports	. 36
REI	FERE	NCES		

LIST OF APPENDICES

- Appendix 1: Logs of Borings
- Appendix 2: Cone Penetration Test (CPT) Results
- Appendix 3: Seismic Cone Penetration Test (SCPT) Results
- Appendix 4: Laboratory Classification Test Results
- Appendix 5: Cyclic Triaxial Test Results
- Appendix 6: Large-Scale Direct Shear Test Results
- Appendix 7: Sticky Limit Test Results
- Appendix 8: Direct Shear Test Results
- Appendix 9: Consolidation and Cyclic Shear Test Results
- Appendix 10 Dissolved Gas Sampling and Analysis Report
- Appendix 11 Soil Abrasion Test Results
- Appendix 12 Mineralogy Test Results

LIST OF TABLES

Table 3-1 Summary of Exploratory Borehole Program	17
Table 3-2 Summary of Exploratory Cone Penetration Testing Program	
Table 4-1 Laboratory Testing Program – List of Appendices	27

LIST OF FIGURES

Figure 3-1 Field Investigation Location Map	19
Figure 5-1 Geotechnical Plan and Profile Legend	
Figure 5-2 Geotechnical Plan and Profile with Classification Test Results: STA 561+00 to STA 570+00	39
Figure 5-3 Geotechnical Plan and Profile with Classification Test Results: STA 570+00 to STA 584+00	
Figure 5-4 Geotechnical Plan and Profile with Classification Test Results: STA 584+00 to STA 597+00	
Figure 5-5 Geotechnical Plan and Profile with Classification Test Results: STA 597+00 to STA 611+00	
Figure 5-6 Geotechnical Plan and Profile with Classification Test Results: STA 611+00 to STA 622+00	
Figure 5-7 Geotechnical Plan and Profile with Classification Test Results: STA 622+00 to STA 636+00	
Figure 5-8 Geotechnical Plan and Profile with Classification Test Results: STA 636+00 to STA 650+00	
Figure 5-9 Geotechnical Plan and Profile with Classification Test Results: STA 650+00 to STA 664+00	
Figure 5-10 Geotechnical Plan and Profile with Classification Test Results: STA 664+00 to STA 678+00	
Figure 5-11 Geotechnical Plan and Profile with Classification Test Results: STA 678+00 to STA 692+00	
Figure 5-12 Geotechnical Plan and Profile with Classification Test Results: STA 692+00 to STA 706+00	
Figure 5-13 Geotechnical Plan and Profile with Classification Test Results: STA 706+00 to STA 720+00	
Figure 5-14 Geotechnical Plan and Profile with Classification Test Results: STA 720+00 to STA 732+00	
Figure 5-15 Geotechnical Plan and Profile with Classification Test Results: STA 732+00	65
Figure 5-16 Geotechnical Plan and Profile with Classification Test Results: STA 746+00 to STA 759+00	
Figure 5-17 Geotechnical Plan and Profile with Classification Test Results: STA 759+00 to STA 773+00.	
$0.51 \Lambda / / J \mp 00$	

Figure 5-18 Geotechnical Plan and Profile with Classification Test Results: STA 773+00 to STA 787+00	71
Figure 5-19 Geotechnical Plan and Profile with Classification Test Results: STA 787+00 to STA 801+00	73
Figure 5-20 Geotechnical Plan and Profile with Classification Test Results: STA 801+00 to STA 815+00	75
Figure 5-21 Geotechnical Plan and Profile with Classification Test Results: STA 815+00 to STA 829+00	73
Figure 5-22 Geotechnical Plan and Profile with Classification Test Results: STA 829+00	
to STA 843+99 Figure 5-23 Geotechnical Plan and Profile with Strength Parameters: STA 561+00 to	
STA 570+00 Figure 5-24 Geotechnical Plan and Profile with Strength Parameters: STA 570+00 to	
STA 584+00 Figure 5-25 Geotechnical Plan and Profile with Strength Parameters: STA 584+00 to	83
STA 597+00 Figure 5-26 Geotechnical Plan and Profile with Strength Parameters: STA 597+00 to	85
STA 611+00 Figure 5-27 Geotechnical Plan and Profile with Strength Parameters: STA 611+00 to	87
STA 622+00 Figure 5-28 Geotechnical Plan and Profile with Strength Parameters: STA 622+00 to	89
STA 636+00 Figure 5-29 Geotechnical Plan and Profile with Strength Parameters: STA 636+00 to	91
STA 650+00	93
Figure 5-30 Geotechnical Plan and Profile with Strength Parameters: STA 650+00 to STA 664+00	95
Figure 5-31 Geotechnical Plan and Profile with Strength Parameters: STA 664+00 to STA 678+00	97
Figure 5-32 Geotechnical Plan and Profile with Strength Parameters: STA 678+00 to STA 692+00.	99
Figure 5-33 Geotechnical Plan and Profile with Strength Parameters: STA 692+00 to STA 706+00	101
Figure 5-34 Geotechnical Plan and Profile with Strength Parameters: STA 706+00 to STA 720+00	103
Figure 5-35 Geotechnical Plan and Profile with Strength Parameters: STA 720+00 to STA 732+00	
Figure 5-36 Geotechnical Plan and Profile with Strength Parameters: STA 732+00 to	
STA 746+00 Figure 5-37 Geotechnical Plan and Profile with Strength Parameters: STA 746+00 to	
STA 759+00 Figure 5-38 Geotechnical Plan and Profile with Strength Parameters: STA 759+00 to	
STA 773+00 Figure 5-39 Geotechnical Plan and Profile with Strength Parameters: STA 773+00 to	111
STA 787+00	113

Figure 5-40 Geotechnical Plan and Profile with Strength Parameters: STA 787+00 to	
STA 801+00	115
Figure 5-41 Geotechnical Plan and Profile with Strength Parameters: STA 801+00 to	
STA 815+00	117
Figure 5-42 Geotechnical Plan and Profile with Strength Parameters: STA 815+00 to	
STA 829+00	119
Figure 5-43 Geotechnical Plan and Profile with Strength Parameters: STA 829+00 to	
STA 843+99	121

1.0 Executive Summary

To supplement the 10% Conceptual Engineering geotechnical program (URS, 2003) and the 35% Preliminary Engineering Central Area Guideway (previously Tunnel Segment) geotechnical investigation program (HMM/Bechtel, 2005a), a Phase 2 (P2) 65% Engineering Design geotechnical investigation was carried out from March of 2007 to January of 2008. The P2 field investigation consisted of 19 boreholes and 25 Cone Penetration Tests intended to cover changes in the alignment, explore deeper strata at the locations of station excavations, and determine additional soil parameters for engineering design. In addition, soil samples were sent to several laboratories for general classification tests as well as for specialty testing needed to collect data required for seismic design, for obtaining additional soil strength data, and for estimating construction behavior of soils.

The results of the pumping test program, together with the associated boring and well information, are documented in a separate Pumping Test Data Report (HMM/Bechtel, 2008).

2.0 Introduction

2.1 Scope of Work

The information contained in this report only covers the results from the 19 boreholes, the 25 CPTs and the associated laboratory test results obtained during the P2 phase of the Project. Additional geotechnical data from the investigations listed below, with the exception of 35% PE Investigation Plan and Profile Drawings, are not included. The scope of this report is limited to presenting factual data without engineering interpretation by the Project. The results from the field and laboratory investigation involved interpretation from HMM/Bechtel subcontractors working under the regulations of the Tunnel Segment Design Quality Plan (HMM/Bechtel, 2007). HMM/Bechtel reviewed the subcontractor's work, but it was the responsibility of the engineer(s) in charge at the respective subcontractor firms to ensure that their work was performed under the normal standard of care in their locale of practice.

Additional SVRT sources of geotechnical data pertinent to the Central Area Guideway can be found in the following reports:

- 10% Conceptual Engineering Geotechnical Exploration Finds and Recommendations report (URS, 2003)
- 35% Preliminary Engineering Review of Available Geotechnical Data report (HMM/Bechtel, 2004)
- 35% Preliminary Engineering Geotechnical Data Report (HMM/Bechtel, 2005a)
- 35% Preliminary Engineering Hydrogeology Report (HMM/Bechtel, 2005b)

These reports also reference additional non-SVRT sources, including reports from public agencies, reports from private projects, and files from local geotechnical consulting companies that contain additional data relevant to the Project.

2.2 Report Organization

Chapter 3 of this report describes details of the field investigation and Chapter 4 describes details of the laboratory testing. Chapter 5 summarizes the results and outlines a tentative future geotechnical investigation program to be carried out prior to construction. The chapter also includes an updated version of the plan and profile drawings that were previously presented in Chapter 8 of the 35% PE Tunnel Segment Geotechnical Data Report (HMM/Bechtel, 2005a), incorporating the new borings and CPTs.

Results of the field investigations are presented in three appendices as follows:

Appendix 1: Logs of Borings

Appendix 2: Cone Penetration Test (CPT) Results

Appendix 3: Seismic Cone Penetration Test (SCPT) Results

Appendix 10: Dissolved Gas Sampling and Analysis Report

Laboratory test results are presented in six appendices as follows:

Appendix 4: Laboratory Classification Test Results

Appendix 5: Cyclic Triaxial Test Results

Appendix 6: Large-Scale Direct Shear Test Results

Appendix 7: Sticky Limit Test Results

Appendix 8: Direct Shear Test Results

Appendix 9: Consolidation and Cyclic Shear Test Results

Appendix 11: Soil Abrasion Test Results

Appendix 12: Mineralogy Test Results

2.3 Limitations

The geotechnical data presented in this report are results of the site investigation managed by HMM/Bechtel for the SVRT Project Central Area Guideway Section Phase 2, 65% Engineering Design Investigation. Data obtained by others for the 10% Conceptual Design are not included and results from the 35% PE investigation are only shown in the Plan and Profile Drawings. The number of boreholes and CPTs was based on the level of design at the time of planning this phase of investigation. A future Phase 3 (P3) Investigation will include additional exploration to cover specific locations of the Central Area Guideway alignment that were not finalized at the time of this investigation.

3.0 Field Investigations

3.1 Introduction

The P2 65% Engineering Design Investigation provides additional geotechnical data about the stratigraphy, groundwater, and physical and engineering characteristics of the soil at specific locations along the alignment. Details of the field investigation are described in the following sections.

3.1.1 Team Organization

Several geotechnical engineering, drilling and specialty testing firms contributed to the investigation program. Subcontractors included Fugro West, Parikh Consultants, Pitcher Drilling, URS Corporation, ABE Engineering, and Towill.

Fugro's field investigation scope focused on the CPT explorations, which included seismic cone testing. Pitcher Drilling provided the drill rigs and drill crews necessary to complete all geotechnical borings and soil sampling. PCI provided coordination support and technical oversight for Pitcher Drilling. Field engineers from PCI performed all field logging of borings. URS Corporation provided part-time Quality Assurance support for subcontractor field activities. ABE Engineering calibrated Pitcher Drilling's automatic hammer on the Failing 1500 drill rig. Towill surveyed all borehole and CPT locations.

Kleinfelder, under subcontract to EarthTech for the Central Area Guideway Stations group for preliminary design work, reviewed the scope of the field investigation and observed a partial portion of the field exploration activities at underground Station locations. Kleinfelder also requested exploration at one location to investigate the potential for seismic liquefaction (see Section 3.2.1).

3.1.2 Project Restrictions

Restrictions imposed by local agencies, private property owners, neighborhood organizations, and commercial and residential tenants limited the access to some planned locations and impacted the work schedule.

Encroachment permits were required by several public and private agencies to perform borings and CPTs along different portions of the alignment. These agencies included the City of San Jose (CSJ), the Peninsula Corridor Joint Powers Board (PCJPB), San Jose Water Company, Union Pacific Railroad (UPRR) and Santa Clara Valley Water District (SCVWD). The CSJ also required traffic control permits. The SCVWD required exploration permits.

Design revisions made at the time the field program was on-going, were incorporated into the investigation as needed and when possible. Some of the major design revisions included the following:

- Consideration of north and south alternative tunnel alignments at the Coyote Creek crossing to avoid a deeper alignment at the Coyote Creek Bridge (borings and CPTs drilled north and south of the alignment on adjacent properties);
- Consideration of the locations for the proposed ventilation shaft structures

This report reflects the April 25th, 2008 tunnel alignment.

3.2 Boring Program

The boring program commenced on June 4, 2007. A total of 19 rotary-wash borings were completed as part of P2 65% Engineering Design Investigation (Figure 3-1 and Table 3-1).

One borehole (BH-81) was completed late in the P1 35% Preliminary Engineering Investigation. The boring log and information related to the investigation for BH-81 has been included in Appendix 1 and Table 3-1, respectively, of this report.

The six sonic borings completed as part of the pumping test program are included in Table 3-1. The boring logs and a description of sonic drilling and sampling is included in the Draft Pumping Test Data Report (HMM/Bechtel, 2008).

3.2.1 Overview

Of the 19 borings, six (6) were completed at the two portals, seven (7) were drilled at the three proposed underground stations, and six (6) were drilled at other locations along the tunnel alignment. Boring depths, sampling methods and sampling intervals were chosen based on design needs.

Borings at the two portals were drilled to obtain additional soil information at locations where the alignment had shifted and/or the portal had moved north. Borings were generally drilled to a minimum depth of twenty feet below the maximum depth of the proposed excavation cutoff wall. Soil sampling for portal borings was specified at 5-ft intervals or where changes in formation were observed.

Borings completed at the proposed Alum Rock Station, Downtown San Jose Station and Diridon/Arena Station were generally drilled to a depth of 200-ft, with the exception of BH-105. The depth of drilling and sampling was based on the need to better define soil stratigraphy between 150- and 200 ft, which is the maximum estimated depth of the station cut-off walls. At the request of Central Area Guideway Stations group, BH-105 was drilled to a depth of 51.5-ft to investigate the potential for seismic liquefaction.

Soil sampling was specified at 10-ft intervals between 0 and 150 ft depths and at 5-ft intervals or where changes in formation were observed between 150- and 200-ft depths. Wider sampling intervals (10-ft) were selected where previous borings had captured enough geotechnical information down to 150-ft depths.

Borings drilled along the proposed tunnel alignment (tunnel borings) were planned based on potential realignments of the tunnel or where access to the planned boring locations were not permitted during the 35% Design Phase. Borings were generally drilled to depths of at least 20 ft below the tunnel invert, based on the tunnel alignment at the time of drilling. Continuous sampling in the "tunnel zone" (from 20 ft above the proposed tunnel crown to 20 ft below invert) was specified at all six (6) borings along the tunnel alignment. At BH-87, the tunnel boring was extended to 201.5 feet to provide preliminary soil information for the proposed FSS Ventilation Shaft structure located along Santa Clara St.

3.2.2 Drill Rig and Hammer Types

The drill rigs used for the project consisted of two types of truck-mounted equipment, a Fraste Multidrill XL drill rig and a Failing 1500 drill rig. The Failing 1500 drill rig is one of several typical rig types commonly used for rotary wash drilling. Fraste Multidrill XL drill rigs are top-drive (rotation and circulation are conducted at the top of the drill string), thus allowing a special type of continuous "geo-barrel" sampling (see Section 3.2.3.1 Sampler Types). The Failing 1500 and Fraste Multidrill XL drill rigs utilized an Automatic Trip Hammer system to advance split-spoon and Modified California samplers.

The drill rigs were equipped with a standard 140-lb hammer to drive thick-walled samplers. ABE Engineering calibrated the efficiency of the automatic hammer (Failing 1500 Rig) at the location of BH-85 (Section 3.2.10).

3.2.3 Sampling Methods and Equipment

3.2.3.1 Sampler Types

Four types of soil samplers were used: driven thick-walled samplers (splitspoon and Modified California), pushed thin-walled samplers (Shelby Tube), rotated thin-walled samplers (Pitcher Barrel) and a wireline soil coring sampler (101 Geo-Barrel Sampler). Bag samples were retrieved at a few selected depths and from split-spoon samplers. Modified California (MC) samples were placed in plastic tubes.

Split-spoon and Modified California samplers were used to obtain penetration resistance data of granular materials such as sandy or gravelly soils. The 140-pound drive hammer used for sample collection, casing installation, and removal was in conformance with ASTM D1586, Standard Method for Penetration Test and Split-Barrel Sampling of Soils. The split-spoon sampler used had an outside diameter of 2 inches and an inside diameter of 1-3/8 inches and was in conformance with ASTM D1587, Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes. The Modified California (MC) sampler used was in general conformance with ASTM D3550, Standard Practice for Thick Wall, Ring-Lined, Split Barrel, Drive Sampling of Soils. The MC sampler has an outside diameter of 3 inches and an inside diameter of 2.5 inches. The MC sampler was also used to obtain disturbed samples of sand and gravel soils. The MC sampler was able to retrieve larger gravel particles (up to 2.5 inches) that could not be obtained using the split-spoon sampler.

Soft to stiff clayey soils were generally sampled using a thin-walled Shelby Tube sampler in conformance with ASTM D1587. The Shelby Tube sampler consists of a 3-inch diameter, 36-inch long mild steel thinwalled tube that is hydraulically pushed by the drill rig. The sampler was used to obtain relatively undisturbed samples of clays and silts (finegrained soils). For each push, the standard length of advancement was 30 inches.

Very dense soils and stiff to very stiff clays were generally sampled using a Pitcher Barrel sampler in conformance with ASTM D1587. Pitcher Barrel samplers consist of double-tube core-barrels; the inner barrel, which consists of a Shelby tube, is affixed to a spring-loaded sampler head that extends or retracts, relative to the cutting bit on the outer barrel, with changes in soil stiffness.

The magnitude and change in hydraulic pressure during Shelby Tube and Pitcher Barrel sampler advancement were recorded on the boring logs. A change in hydraulic pressure qualitatively indicates a change of material type or consistency at each depth or location, but may not be comparable between two separate rigs due to differences of hydraulic systems.

Pitcher Barrel sampling could not be performed in some gravelly formations. Thick drilling fluid is needed to lift the gravelly material from the bottom of the boring during the rotary wash process. The thick drilling fluid reduces the circulation within the sampler and around the drill bit. If the drilling fluid becomes too thick and the circulation ports of the sampler plug, the cutting bit heats up, causing the Pitcher Barrel cutting bit to wear out quickly or fracture.

Special sampling using a 101 Geo-Barrel (2.4-inch inside diameter) system (proprietary sampling system designed by Pitcher Drilling) was performed at a few selected boring locations where continuous sampling using a larger sampler was requested by the tunnel design team. At borings near the corner of Asbury St. and Stockton Ave. (BH-102, BH- 103 and BH-106) and near Coyote Creek tunnel alignment crossing (BH-88), the 101 Geo-Barrel sampling method was attempted so that continuous disturbed samples throughout the tunnel zone could be obtained. A MC sampler was used to obtain disturbed samples of sand and gravel soils at locations where difficulties recovering continuous samples using the 101 Geo-Barrel sampler arose.

3.2.3.2 Sampling Interval

In addition to the sample intervals described in Section 3.2.1, samples were also obtained at depths where material changes were detected for all borings. Cuttings in the drilling fluid were examined to identify changes in the soil conditions between sample locations. Material changes were also identified based on the driller's observations of drill rig response (i.e. chattering of drill rig, loss of fluid, etc.).

Occasionally soil samples could not be recovered due to wet and soft cohesive soils, loose granular soils, or obstructions, such as gravel or slough in the shoe or entrance of the samplers. When this occurred, the field engineer typically directed the driller to drill out the boring interval where sampling had been attempted and to sample below the disturbed zone of material.

3.2.4 Handheld Field Tests

In addition to visual observations of soil consistency, handheld field tests using pocket penetrometer and pocket torvane were performed in the field on the bottom of relatively undisturbed Shelby Tube and Pitcher Barrel samples. The estimated unconfined compressive strengths from pocket penetrometer tests are presented in the material description column on each boring log. Units for unconfined compressive strength are obtained in tons per square foot (tsf). Although the pocket penetrometer was used to estimate the unconfined compressive strength for cohesive soils, readings from the pocket penetrometer were also converted to undrained shear strength in units of kips per square foot, ksf. The pocket torvane was used to directly estimate the undrained shear strength for cohesive soils in ksf units. Both handheld field tests were used as a guide to strength and consistency variations. The undrained shear strength test results from handheld field tests are shown at the corresponding test depths on the boring logs presented in Appendix 1.

3.2.5 Groundwater Level Measurements

Groundwater levels are typically based on the assumption that the drilling fluid/mud reached equilibrium with natural groundwater level overnight and should not be used for design. For design purposes, readings from vibrating wire piezometers and observation wells that were installed to provide groundwater level and pore-water pressure information should be used.

3.2.6 Sample Handling

In order to obtain high-quality undisturbed samples for laboratory testing, every effort was made to minimize disturbance during handling and transportation of Shelby Tube and Pitcher Barrel samplers. Slough was typically removed from the tubes and empty spaces at the top and bottom of the sample tubes were filled with Styrofoam packaging peanuts prior to initial sealing in the field. Shelby Tubes and Pitcher Barrel samples were kept upright in wooden boxes.

Sample preservation and transportation followed ASTM D4220, Standard Practice for Preserving and Transporting Soil Samples. In general, all samples were protected from extreme temperatures and kept out of direct sunlight. Samples were carefully transported from the field to the laboratory and stored in locations where they were not exposed to extreme temperature changes and would not be disturbed.

Waxing of Shelby Tube sample tubes took place at Parikh Consultant's laboratory, generally within three (3) days of drilling. Waxing was performed in accordance with ASTM D4220.

3.2.7 Borehole Completion and Abandonment

Borings were generally terminated at the planned depth. At two locations, BH-102 and BH-103, borings were mistakenly terminated 10 ft shallower than planned. Subsequently, BH-103 was re-drilled down to the previous completed depth of approximately 80 ft and then drilled down to the specified depth of 90.5 ft.

Prior to completion of each boring, the Santa Clara Valley Water District (SCVWD) was contacted for notification of grouting. After the boring was drilled to the planned depth, the borehole was grouted from the bottom up using a tremie pipe per SCVWD requirements. All Investigation Derived Waste (IDW), including loose soil or cuttings from the drilling operation, was placed in 55-gallon drums and removed from the site. All drums containing IDW were characterized, labeled, and disposed of by Parikh Consultants' subcontractor Integrated Waste Management (IWM) in accordance with applicable regulatory requirements.

Pavement removed to drill borings was patched using a non-metallic, non-shrink, quick-setting grout.

3.2.8 Boring Log Organization and Presentation

Soil descriptions were made in general accordance with ASTM D2487, Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System) and ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The boring logs are presented in Appendix 1. Towill, Inc. surveyed the ground surface elevation of all borehole locations based on NAVD88 (North American Vertical Datum, 1988). The coordinates and surface elevations are shown on each boring log.

Boring logs were prepared for all 19 borings of P2. The Boring Log Key (Figure A1-1) summarizes coarse-grained and fine-grained soils and corresponding group names. General notes, abbreviations, sampler types, soil structure definitions, consistency and relative density terminology and moisture content descriptions that are incorporated into each of the boring logs are also included on the Boring Log Key. Each boring log presents boring specific details including: Field Engineer (Logged By), Quality Control Manager (Checked By), Drilling Start and Completion Dates, Drilling Contractor and Operator Name, Project Location, Drilling Method, Hammer Type and Drill Rig Type. Drilling Start and End Times for each day of drilling are shown within the material description column.

The field engineer for Parikh Consultants recorded the soil conditions encountered as the borings were drilled. At depths where sampling was not performed, field engineers based soil information on soil cuttings recovered during the rotary wash drilling process and driller's comments regarding drilling response (i.e., "chattering" noise from drill rods during drilling in sands and gravels, changes in drilling pressures at soil layer intervals, etc.). Field engineers recorded handheld field test results from pocket penetrometer and pocket torvane tests on the field boring logs, as well as results of air monitoring tests of the breathing zone using a Photo-Ionization Detector (PID) and Lower Explosive Limit (LEL/O2) meters. The final boring depth was also recorded. The field engineer from Parikh Consultants also recorded observations of caving conditions and locations where loss of drilling fluid occurred. Upon completion of the borings and laboratory testing, information recorded on the field log was entered into a gINT database and printed out using a gINT boring log template.

Soil samples were visually classified in the laboratory (see Section 4.1.1 Laboratory Visual Classification) prior to soil strength and property testing (see Section 4.1.2 through 4.1.7 and Section 4.2). The soil information presented on the gINT boring logs was prepared based on the results of the laboratory visual classification and index tests and were reviewed for Quality Assurance by HMM/Bechtel.

3.2.9 Standard Penetration Test (SPT)

The Standard Penetration Test (SPT) is a measure of the resistance of the soil during sampling using the split-spoon sampler. This resistance is an indicator of the consistency in fine-grained soils and density and strength in coarse-grained soils. The standard penetration resistance of the soil is defined as the number of blows (N) required to drive the sampler one foot into the soil with a 140-pound hammer dropped 30 inches. The hammer is lifted using a mechanical device to elevate the hammer (automatic hammer).

The number of blows required to advance the split-spoon samplers was counted and recorded for each 1-inch interval of driving by the field engineer. The SPT, in accordance with ASTM D1586, was halted if the total number of blows exceeded 100, the number of blows exceeded 50 in any 6-inch increment, or if the sampler was not advanced as a result of 10 consecutive blows. The distance driven for each of these refusal conditions was recorded. When the final penetration increment was less than 6 inches, refusal was indicated and the actual inches-advanced is presented on the logs.

In cases when the sampler did not meet the refusal criteria, the SPT blow count shown on the boring logs is the sum of the blows for the final 12 inches. The first 6-inch interval is not presented on the boring logs unless the sampling interval was 6 inches or less. The Boring Log Key presents a summary of blow count information.

Undisturbed coarse-grained soil samples are not possible to obtain using typical driven thick-walled samplers, pushed thin-walled samplers or 101 Geo-Barrel samplers. It is possible, however, to estimate the in-situ density using the SPT. For the 65% Engineering Design Investigation, the SPT was generally performed only at locations and depths where granular material was expected.

A Modified California (MC) sampler was also used to sample coarse-grained soils at selected depths of chosen borings. The uncorrected blow count using a driven MC sampler was recorded and is shown on the boring logs in Appendix 1. In order to obtain a comparable correlation of strength and density of soils to the SPT blow count (N-value), the Modified California blow count may be corrected by multiplying it by a correction factor. This correction factor is typically a function of sampler size and type of soil being sampled. Uncorrected Modified California blow counts are presented on the boring logs and are enclosed in parentheses to differentiate the values from SPT blow counts.

3.2.10 SPT Energy Calibration

To estimate the energy transfer ratio of the hammer on the Failing 1500 drill rig, ABE Engineering calibrated the efficiency of the automatic hammer during drilling of BH-85. The results of the calibration showed that the mean energy transfer ratio, based on 315 blows of the automatic hammer, was approximately 79% of the theoretical energy (140-lb hammer at 30-inch drop). The results of the energy calibration are presented in Appendix 1 after Logs of Borings. The Automatic Trip Hammer System on the Fraste Multidrill XL drill rig was not calibrated due to the limited number of SPTs performed on that rig. However, a calibration was performed on the Fraste Multidrill XL drill rig on a previous project in San Francisco in July of 2006. The results from that calibration demonstrated that the mean energy transfer ratio was approximately 82% of the theoretical energy (140-lb hammer at 30-inch drop). Although these results were not taken from a calibration performed on the SVRT project, they indicate that the energy transfer ratio is approximately 80 percent for SPTs taken along the alignment using an Automatic Trip Hammer System.

3.2.11 Air and Vapor Monitoring

Air monitoring of the work zone was conducted as part of the Work Plan to protect workers should exposure to contamination occur. The breathing zone around the drilling operations was monitored frequently using a Photo-Ionization Detector (PID) meter and a Low Explosive Limit/Oxygen (LEL/O₂) meter. The PID instrument used was an Environmental Instruments Co. Model "Determinator" Organic Vapor Meter (OVM) with a minimum detectable level of 0.1 parts per million (ppm). Monitoring of specific levels of hydrogen sulfide, ethane, butane and propane was not carried out. Monitoring of specific levels of methane was carried out. The LEL/O₂ meter was a GASTECH Model GT-201 with a minimum detectable level of oxygen (OXY) 0.1 ppm. The instruments were rented from Environmental Instruments, located in Concord, CA.

The initial work plan required air monitoring of the breathing zone surrounding the drill rig operation, primarily for worker safety. Readings were also taken of the soil samples as the sampler was extracted from the borehole. Generally, a minimum of three PID (OVM), LEL/O₂ (OXY) and methane (CH4) readings were each taken during drilling and sampling of all portal, station and tunnel borings. Along the tunnel alignment, three readings were typically taken within the 60-foot tunnel zone.

Readings (OVM, LEL/O_2 and methane) are shown at the corresponding borehole depths on the Logs of Borings (Appendix 1).

3.3 Cone Penetration Testing Program

3.3.1 Overview

The CPT program commenced on March 28, 2007. CPTs were conducted during two sequences March 28, 2007 through April 5, 2007 and August 13, 2007 through August 17, 2007. In addition to continuous CPT soundings, downhole seismic shear wave velocity measurements were obtained at several locations. Of the 25 CPTs, 13 were completed at the portals, six (6) were performed at the three proposed underground stations, and six (6) were completed at locations along the tunnel alignment. CPT frequencies and depths were selected based on design needs. The locations of all of the CPTs are presented in Figure 3-1 and Table 3-2.

3.3.2 Conventional CPTs

A total of 25 CPTs were conducted. The following sections describe the equipment, procedures, locations and results of the CPT program.

3.3.2.1 Equipment

Equipment utilized in conducting CPTs included a self-contained 25-ton CPT rig with hydraulic pushing system, a piezocone, cone rods and casing, a data acquisition system and a support truck and trailer.

The CPTs were performed using an International 25-ton capacity truck mounted rig with a self-contained power supply unit. The rig was equipped with hydraulic jacking systems to lift and level the pushing platform. The "dead weight" of the rig provided the reaction weight necessary for advancing the CPT tools. The conventional instrumented piezocone assembly used for the SVRT project included a cone tip with a 60-degree apex and a cone base area of 15 cm², a sleeve segment with a surface area of 200 cm², and a pore pressure transducer near the base (shoulder) of the cone tip (designated the u2 location).

Fugro's CPT cone rods are manufactured from high tensile strength steel and have a cross sectional area adequate to sustain up to 700 tsf tip pressure without buckling. A steel casing was generally placed in the upper clayey strata and was typically extended to depths of 20 to 75 ft, when used. The casing provided lateral support to prevent bending or buckling of the slender 10-foot sections of steel rod as they were hydraulically pushed into the ground.

The data acquisition system converted an analog signal from the cone penetrometer to a digital signal, which was monitored, recorded and presented in near-real time on the laptop computer. A support pickup truck/trailer contained a grout pump and mixer to properly abandon CPT holes after completion, a pressure wash system for cleaning the work area and maintaining clean equipment throughout field program, a steam cleaning system for environmental protocol if needed, and tools and supplies for daily operations.

3.3.2.2 Procedures

Prior to testing, the truck was lifted up and leveled on four pads to provide a stable reaction for the cone thrust. During the test, the instrumented cone was hydraulically pushed into the ground at the maximum rate of about 2 centimeters per second (cm/s), and readings of cone tip resistance, sleeve friction, and pore pressure were digitally recorded every second. As the test progressed, the CPT operator monitored the cone resistance and its deviation from verticality. Information collected during a push was stored digitally. The data files included project description and location, operator, data format information, and other pertinent information about the sounding. After completing a CPT, the hole was backfilled with cement-bentonite grout by the tremie method using a grout pump and mixer. The surface of the CPT holes was finished with rapid setting quickcrete. Grout mix and grouting procedures were completed in accordance with Santa Clara Valley Water District regulations. The work area was cleaned per City of San Jose requirements.

Fugro conducted the CPTs in general accordance with ASTM D5778. The continuous CPT soundings were typically advanced to refusal (500 to 700 tsf tip pressure), which ranged from approximately 34 to 149.9 ft in depth. Each CPT generally lasted between 2 and 5 hours.

More detailed descriptions of the procedures and equipment specifications of the CPT operations can be found in Appendix 2.

3.3.2.3 Locations

CPTs performed along the proposed tunnel alignment ("tunnel CPTs") were spaced at 200 to 300-foot intervals (combining both the 35% and the P2 Programs). CPTs performed at the proposed stations ("station CPTs") were spaced approximately 100 ft apart.

CPTs performed at the two portal locations were performed to obtain additional soil information at locations where the alignment had shifted laterally or moved north. CPTs at the portal locations were generally planned to depths a minimum of twenty feet below the maximum depth of the portal structure or cutoff wall.

CPTs at the proposed Alum Rock Station, Downtown San Jose Station and Diridon/Arena Station were generally planned to depths of 150 ft. At all but one location the CPT probe met refusal at shallower depths, which ranged from 43.7-ft below ground surface (bgs) to 115.5-ft bgs.

Tunnel CPTs were planned based on potential realignments of the tunnel or where previous soil information was not obtained due to tunnel depth changes. CPTs were generally planned to depths of at least 20 ft below the tunnel invert, based on the tunnel alignment at the time of drilling, but were terminated shallower at several locations due to refusal.

3.3.2.4 Results

The CPT logs present the measured cone (tip) resistance in tons per square foot (tsf), the measured sleeve friction in tsf, the friction ratio in percentage (including the Soil Behavior Type according to Robertson and Campanella in 1990 (see CPT correlation chart in Appendix 2, Key to CPT logs), the measured pore pressure in tsf at the u2 sensor location, and the estimated soil undrained shear strength (s_u) in ksf. Some of the data presented on the CPT logs is interpreted by Fugro and are based on assumptions that need to be verified with site-specific data. The interpreted data include the soil behavior type and the estimated soil undrained shear strength. The soil behavior type and estimated undrained shear strength are influenced by the soil unit weight (and resulting in-situ total stress condition), and the N_k -value. The range of selected N_k values was based on calibrations performed by Fugro comparing the CPT tip resistance with the strength determined from field vane shear testing in adjacent borings. A more detailed discussion regarding the undrained shear strength calibration is presented in Appendix 2.

The CPT logs show the range of undrained shear strengths calculated from CPT cone tip resistances (corrected for unequal end area effects) based on cone bearing capacity factors (N_k) of 12 and 15. CPT sounding logs for the 25 CPTs are presented in Appendix 2.

3.3.3 Seismic CPTs

A total of 12 SCPTs were conducted. The following sections describe the equipment, procedures, locations and results of the SCPT program.

3.3.3.1 Equipment

Downhole seismic shear wave velocity measurements were conducted using Fugro's seismic CPT system. The seismic CPT system includes the basic thrust system, a seismic cone assembly, a seismic wave source, and a digital recording seismograph.

3.3.3.2 Procedures

The seismic cone assembly is similar to the conventional cone assembly, with the addition of a three-component array of geophones. The geophones are orthogonally mounted inside the assembly about 15 cm above the cone tip. The seismic CPT system consists of a heavy metal beam that is positioned parallel to the cone truck and held firmly against the ground by the weight of the beam and additional weights placed on it. The beam is positioned at least 10 ft from the cone rods. Striking each end of the beam with a 12-pound sledgehammer generates seismic waves. The hammer blow from opposite ends of the beam generates shear waves with opposite polarity. Conventional CPT testing was temporarily halted at 5-foot intervals to perform the seismic testing and collect seismic data.

The hammer blows trigger the seismograph to record the time histories of the generated seismic waves as they travel through the soil. If the shear wave signal is clearly defined, the waveform is selected for stacking and the arrival time of the wave is recorded. Additional blows were similarly examined and stacked. A more detailed discussion regarding the signal selection and stacking is presented in Appendix 3. Waveforms are digitally recorded and saved in the seismograph's hard drive for further processing. After a complete set of seismic data is recorded, the cone is advanced to the next depth, and the procedure is repeated until the hole reaches the required depth or refusal.

The shear wave arrival time at each depth is determined from the recorded "stacked" signals. The average arrival time is determined and based on the horizontal offset of the seismic source from the CPT rods, a strike angle is estimated. The average vertical arrival time is determined by taking the sine of the strike angle. The incremental seismic velocity is the difference in vertical average arrival time between two depth increments, divided by the length of the increment (typically 5 ft). This seismic velocity is presented on the seismic CPT logs (Appendix 2).

Seismic CPT testing was performed in accordance with ASTM D577 and "Seismic Cone Penetration Test," by Robertson, Campanella, and Gillespie (1986).

3.3.3.3 Locations

Seismic shear wave velocity tests were conducted at 12 locations. Tests were performed at both portal locations, at each of the proposed station locations and along two stretches of the tunnel alignment.

Seismic cone testing was successfully performed at the following locations:

- Two Seismic CPTs at the East Portal (CPT-158 and CPT-161)
- Two Seismic CPTs at Alum Rock Station (CPT-162 and CPT-172)
- One Seismic CPT at the proposed Coyote Creek realignment to the south of Santa Clara St. (CPT-165)
- Two Seismic CPTs at Downtown San Jose Station (CPT-167 and CPT-169)
- Two Seismic CPTs at Diridon/Arena Station (CPT-168 and CPT-179)
- One Seismic CPT at the deeper tunnel alignment near the intersection of Asbury St. and Stockton Ave. (CPT-171)
- Two Seismic CPTs at the West Portal (CPT-173 and CPT-174)

The locations of the 12 seismic CPTs are shown in Figure 3-1.

3.3.3.4 Results

CPT sounding logs for the 12 seismic CPTs are presented on the Logs of seismic CPTs in Appendix 3. The seismic CPT logs provide graphical plots of the same data presented on conventional CPT logs, along with measured shear wave velocity in ft per second (fps).

3.3.4 CPT Completion and Abandonment

CPT locations were generally terminated at refusal or at the planned depth.

Prior to completion of the CPT, the Santa Clara Valley Water District (SCVWD) was contacted for notification of grouting. After CPT was performed to the planned depth or was terminated due to refusal, the CPT hole was grouted from the bottom up using a tremie pipe per SCVWD requirements. All Investigation Derived Waste (IDW) and any loose soil or cuttings from the CPT operation were placed in 55-gallon drums and removed from site. All drums containing IDW were characterized, labeled, and disposed of in accordance with applicable regulatory requirements. Integrated Waste Management (IWM), a subcontractor of Fugro West, processed all drums containing IDW.

Pavement removed to perform CPTs was patched using a non-metallic, non-shrink, quick-setting grout.

						·	-	•
Exploration	Completion	Boring	Station	Off		Structure	RW or S*	Purpose
	Date	Depth (ft)	(ft)	(ft)	R/L	Туре		
East Portal	0/4/0007	50.5	504.00	00		Dentel		
BH-101	6/4/2007	52.5	564+38	22	L	Portal	RW	Obtain info where portal and alignment shifted north and east.
BH-82	6/18/2007	92.5	570+08	22	L	Portal	RW	Obtain info where portal and alignment shifted north and east.
Tunnel from East I	Portal to Alui	n Rock St	ation					
No borings performed.						Tunnel		
Alum Rock Station		<u> </u>			_		_	
BH-83	8/28/2007	200.0	599+84	26	R	Station	S	Explore deeper strata and obtain info for pumping test program.
BH-84	7/16/2007	207.5	603+12	148	L	Station	RW	Explore deeper strata.
BH-85	7/10/2007	202.5	606+32	51	L	Station	RW	Explore deeper strata. Define sand layer at El. +10. MW location.
BH-86	7/31/2007	190.0	609+08	83	R	Station	S	Explore deeper strata and obtain info for pumping test program.
Tunnel from Alum	Rock Station	to Cross	over/Dov	vntov	/n St	ation		
BH-87	7/20/2007	201.5	648+42	103	L	Tunnel	RW	Explore deeper strata near proposed vent structure.
BH-88	6/18/2007	112.5	645+03	66	R	Tunnel	RW	Obtain info for potential southern tunnel alignment at Coyote Creek.
Crossover/Downto	own Station							
BH-89	6/8/2007	201.5	693+74	72	R	Station	RW	Explore deeper strata and obtain info for pumping test program.
BH-90	6/15/2007	211.5	699+59	16	L	Station	RW	Explore deeper strata.
BH-105	6/23/2007	51.5	701+51	2	R	Station	RW	Investigate for liquefaction at 1st St.
BH-104	10/4/2007	200.0	703+72	78	R	Station	S	Explore deeper strata and obtain info for pumping test program.
BH-91	6/22/2007	196.5	704+16	13	L	Station	RW	Explore deeper strata.
Tunnel from Cross	sover/Downto	own Statio	n to Dirio	don/A	rena	Station		
No borings performed.						Tunnel		
Diridon/Arena Stat	tion							
BH-92	11/17/2007	200.0	736+62	35	R	Station	S	Explore deeper strata and obtain info for pumping test program.
BH-93	6/27/2007	211.5	738+61	84	L	Station	RW	Station entrances and deeper stratigraphy.
BH-94	8/10/2007	200.0	741+61	82	R	Station	S	Explore deeper strata and obtain info for pumping test program.
Tunnel from Dirido	n/Arena Stat	tion to We	st Portal					
BH-81**	7/22/2005	150.5	789+62	19	L	Tunnel	RW	Explore deeper strata for stratigraphy and perform vibration monitoring
BH-95	7/24/2007	101.5	774+14	49	R	Tunnel	RW	Unexplored length of tunnel alignment.
BH-102	6/25/2007	80.0	796+49	19	L	Tunnel	RW	Explore deeper strata for stratigraphy and grain size info.
BH-103	6/27/2007	90.5	798+17	19	L	Tunnel	RW	Explore deeper strata for stratigraphy and grain size info.
BH-106	6/27/2007	90.0	800+21	31	L	Tunnel	RW	Explore deeper strata for stratigraphy and grain size info.
West Portal				-				
BH-96	9/12/2007	135.0	831+98	5	R	Portal	S	Explore deeper strata and obtain info for pumping test program.
BH-97	6/11/2007	91.5	833+53	6	R	Portal	RW	Obtain info where portal moved north.
BH-98	7/3/2007	61.5	836+41	42	R	Portal	RW	Obtain info where portal moved north.
BH-99	6/29/2007	81.5	838+21	9	L	Portal	RW	Obtain info where portal moved north.
BH-100***	7/3/2007	41.5	842+89	15	L	Portal	RW	Obtain info where portal moved north.
511100	1,0,2001	1 1.0	512103	10	-	1 01101	1.174	

Table 3-1 Summary of Exploratory Borehole Program

Note: Stations and offsets based on the April 25, 2008 S1 track alignment.

* RW = Rotary Wash Boring, S = Sonic Boring. Sonic boring logs are included in the Pumping Tests Data Report (HMM/Bechtel, 2008).

** BH-81 was completed near the end of 35% design phase and therefore could not be included in the 35% GDR. Information from BH-81

is included in this Phase Two - 65% Engineering Design - Geotechnical Data Report.

*** Stationing for BH-100 shown is based on Western Area Guideway alignment stationing (outside of Central Area Guideway alignment stationing).

	Completion	СРТ	Station	Offset		Structure	Seismic	-					
Exploration			Cone?	Purpose									
East Portal													
CPT-158	04/03/07	45.0	562+47.2	30.3	L	Portal	Y	Obtain info where portal and alignment shifted north and east.					
CPT-159	04/04/07	45.4	563+47.5	29.3	L	Portal	Ν	Obtain info where portal and alignment shifted north and east.					
CPT-160	04/04/07	45.4	565+38.8	36.8	L	Portal	Ν	Obtain info where portal and alignment shifted north and east					
CPT-161	04/03/07	105.0	568+89.3	26.0	L	Portal	Y	Obtain info where portal and alignment shifted north and east.					
Tunnel from Eas	st Portal to A	lum Rock	Station										
No CPTs performed						Tunnel							
Alum Rock Stat	ion												
CPT-162	08/13/07	73.2	600+71.5	139.5	L	Station	Y	Obtain additional deeper info on soil stratigraphy.					
CPT-172	08/16/07	113.4	607+63.3	65.5	R	Station	Y	Obtain additional info at station entrance location.					
Tunnel from Alu	m Rock Stat	ion to Cro	ssover/Do	wntov	vn Si	tation							
CPT-163	03/31/07	95.1	636+29.4	181.7	L	Tunnel	Ν	Obtain info for potential southern tunnel alignment at Coyote Creek.					
CPT-164	03/28/07	86.0	639+53.6	203.5	L	Tunnel	Ν	Obtain info for potential southern tunnel alignment at Coyote Creek.					
CPT-165	08/16/07	77.4	642+20.2	205.4	L	Tunnel	Y	Obtain info for potential southern tunnel alignment at Coyote Creek.					
CPT-166	03/29/07	89.2	649+27.5	193.6	L	Tunnel	Ν	Obtain info for potential southern tunnel alignment at Coyote Creek.					
Crossover	•												
No CPTs performed						Station							
Downtown Stati	on (Note: Se	e below; a	dditional (PTs p	blanı	ned based	on final	ized station entrance locations)					
CPT-167	04/02/07	90.7	701+08.6	10.8	R	Station	Y	Investigate for liquefaction at 1st St.					
CPT-169	08/17/07	85.4	706+79.2	145.1	L	Station	Y	Obtain additional info at station entrance location.					
Tunnel from Cro	ssover/Dow	ntown Sta	tion to Diri	idon/A	rena	Station							
No CPTs performed						Tunnel							
Diridon/Arena S	tation	•			•								
CPT-168	04/05/07	149.9	734+51.2	100	L	Station	Y	Obtain additional deeper info on soil stratigraphy.					
CPT-179	08/14/07	115.5	740+58.3	109	L	Station	Y	Obtain additional info at station entrance location.					
Tunnel from Dir	idon/Arena S	station to V	Vest Porta	I									
CPT-170	03/30/07	43.7	793+76.9	48.2	R	Tunnel	Ν	Investigate deeper stretch of alignment along Taylor St.					
CPT-171	03/30/07	74.8	794+95.9	41.8	R	Tunnel	Y	Investigate deeper stretch of alignment along Taylor St.					
West Portal													
CPT-173	03/29/07	38.4	828+05.7	91.3	L	Portal	Y	Investigate stretch of alignment with limited data.					
CPT-173A	03/31/07	33.8	828+02.5	92.6	L	Portal	Ν	Investigate stretch of alignment with limited data.					
CPT-173B	03/31/07	81.5	828+00.0	94.9	L	Portal	Ν	Investigate stretch of alignment with limited data.					
CPT-174	03/31/07	55.6	834+47.1	20.8	L	Portal	Y	Obtain info where portal moved north.					
CPT-174A	03/31/07	33.8	834+50.1	20.8	L	Portal	Ν	Obtain info where portal moved north.					
CPT-175	03/28/07	80.5	835+67.9	20.0	L	Portal	Ν	Obtain info where portal moved north.					
CPT-176	03/28/07	45.5	837+51.4	16.4	L	Portal	Ν	Obtain info where portal moved north.					
CPT-177	03/30/07	45.5	838+85.9	18.7	L	Portal	N	Obtain info where portal moved north.					
CPT-178*	03/29/07	45.5	841+50.2	15.4	L	Portal	Ν	Obtain info where portal moved north.					

Table 3-2 Summary of Exploratory Cone Penetration Testing Program

Note: Stations and offsets based on the April 25, 2008 S1 track alignment.

* Stationing shown is based on Western Area Guideway alignment stationing (outside of Central Area Guideway alignment stationing).

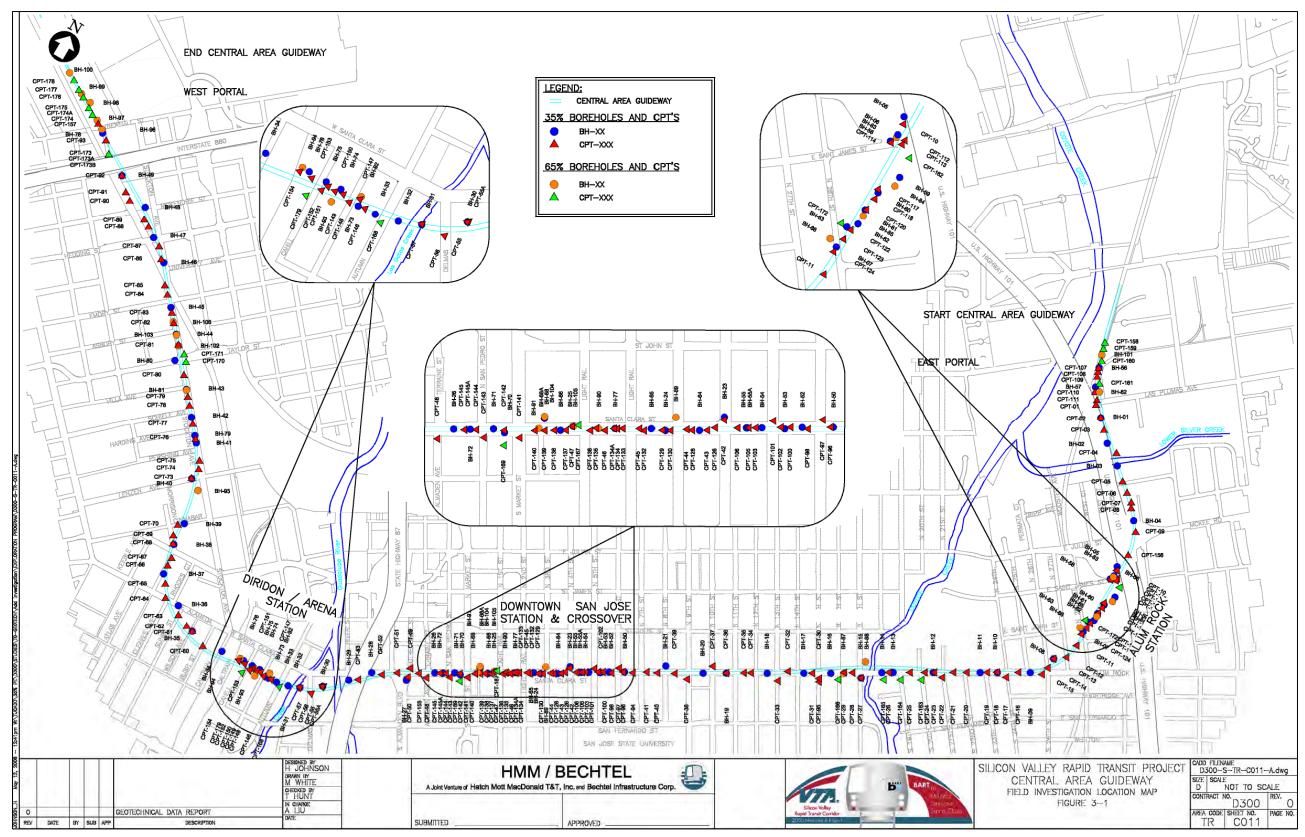


Figure 3-1 Field Investigation Location Map

This page is intentionally left blank.

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

3.4 Groundwater Dissolved Gas Sampling

Locus Technologies performed two phases of groundwater sampling and laboratory analyses for 30 groundwater wells during 65% ED geotechnical investigation phase. Phase 1 consisted of sampling and testing groundwater from 12 wells on May 21st and 22nd, 2008. Phase 2 consisted of sampling and testing groundwater samples from the remaining 18 wells on July 22nd and 23rd, 2008. The samples were obtained using low-flow purge methods in accordance with Environmental Protection Agency (EPA) "Ground-Water Sampling Guidelines for Supefund and RCRA Project Manager (2002)". All samples were obtained in airtight bottles. In addition to test samples, duplicate, "rinsate blank", and "travel blank" samples were also collected for quality control purposes. The phase 1 samples were shipped to Bioremediation Consulting, Inc. (BCI) in Watertown, Massachusetts and Gusmer Enterprise, Inc. (Gusmer) in Napa, California for laboratory analysis. Phase 2 samples were sent only to BCI.

BCI analyzed the water samples for methane, ethane, ethanethiol, argon, nitrogen, carbon monoxide, carbon dioxide, ammonia-nitrogen, sulfide, oxygen, hydrogen, and hydrogen sulfide. Gusmer analysed the samples for free and total Sulphur dioxide. Phase 2 samples, tested after Phase 1 samples, were analyzed for methane, nitrogen, carbon dioxide and sulfide by BCI.

A short summary report including the summary of sampling, laboratory analysis, and quality control review is provided in Appendix 10. Field activity logs, water sampling logs, chain of custody records, and laboratory analytical reports are presented in the attachments to the report, which are also included in the Appendix. The laboratory test results are summarized in Tables 3-3a and 3-3b.

											Samp	ole ID								
	Det.					MW-	Μ	MW-3D-	MW-3D-	MW-	MW-			TW-	TW-	TW-	TW-	TW-	TW-	
	Lim.	Units	4767	4768	4769	2E	W-	(r)	(r)-dup	5A	6J	ST-3	ST-5	2B	2B-	5A	6A	6B	8A	Trip Bl
Dissolved Gas, water matrix																				
Methane	0.2	μg/L	4.4	0.2	0.2	2.9	4.6	98	107	9.2	16	6.9	6.1	75	70	0.5	95	0.5	31	0.6
Ethane	0.2	μg/L	0.3	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Ethanethiol	0.07	mg/L	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07
Argon	2	mg/L	< 2	< 2	< 2	< 2	< 2	2	1.6 J	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	n.a.
Nitrogen	7	mg/L	34	15	15	33	36	34	28	25	24	33	32	33	29	34	24	24	33	21
Carbon monoxide	0.5	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon dioxide	0.2	mg/L	16	0.4	0.4	17	17	20	20	8	20	23	21	16	15	32	49	20	17	< 0.5
Free SO2		ppm	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5		<5 ppm	<5 ppm	<5 ppm	<5 ppm	
Total SO2		ppm	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5		<5 ppm	<5 ppm	<5 ppm	<5 ppm	
Chemical Tests																				
NH3-N Hach 8155	0.02	mg/L	0.03			< 0.02	< 0.02	0.06		0.10	0.02	< 0.02	0.08	0.03		0.10	0.04	0.52	0.03	
sulfide Hach 8131	0.003	mg/L	0.004	< 0.003	< 0.003	0.007	0	0.008		0	0.010	0.01	< 0.00	0.01		0.005	0.005	< 0.003	0.009	n.a.
Dissolved O2 Hach 8166		mg/L	n.a.	8.3	9.8	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	
Dissolved H2, water matrix																				
Sample Dilution			1	1	1	1	1	1		1	1	1	1	1		1	1	1	1	
Sample Result	0.3	nM	1.6	4.9	2.8	1.1	0.9	0.4		1.0	0.5	1.3	< 2	0.8		0.9	0.8	1.2	0.7	
Field DO			2.92	n.a.	n.a.	2.8	2.9	2.98		1.74	4.45	4.01	2.62	2.58		1.81	1.37	4.98	1.97	

Table 3-3a Summary of Phase 1 Laboratory Test Results

Table 3-3b Summary of Phase 2 Laboratory Test Results

				Sample ID													
	Det. Lim.	Units	4783	4784	4785	4786	MW-1	MW-5B	MW-6D	NW-01	NW-05	NW-6	ST-10	ST-11	ST-12	ST-13	Trip Bl
Dissolved Gas, water matrix																	
Methane	0.2	μg/L	35	0.7	1.8	1.0	0.5	0.9	1.9	2.0	2.1	2.1	0.1	0.4	1.0	1.0	0.4
Nitrogen	7	mg/L	27	15	22	18	17	28	21	35	20	26	27	27	23	27	29
Carbon dioxide	0.2	mg/L	23	< 0.2	66	< 0.2	1.5	37	72	11	2.7	12	17	17	110	56	0.7
Chemical Test																	
sulfide Hach 8131	0.01	mg/L	0.012	< 0.01	0.017	< 0.01	0.019	< 0.01	0.010	0.025	< 0.11 (1)	0.011	< 0.01	< 0.01	< 0.01	0.015	< 0.01
	Hach turbidity interference correction procedure unsuccessful Sample ID																
				MW-	MW-	MW-	MW-					ST-8					
	Det. Lim.	Units	MW-2C	2G	3C	4 A	4A lab	ST-1	ST-2	ST-7	ST-8	lab					
Dissolved Gas, water matrix,																	
Headspace GC, EPA meth 5021A																	
Methane	0.2	μg/L	7.7	39	9.9	8.3	8.2	2.0	31	1.5	1.7	1.3					
Nitrogen	7	mg/L	32	26	35	24	24	28	22	31	37	37					
Carbon dioxide	0.2	mg/L	< 0.2	24	22	< 0.2	< 0.2	38	3.7	29	31	31					
Chemical Test																	
sulfide Hach 8131	0.01	mg/L	< 0.01	0.028	< 0.01	0.033		< 0.01	0.017	< 0.01	< 0.01						

Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

This page is left intentionally blank.

4.0 Laboratory Testing

4.1 Introduction

The laboratory soil testing program for the Phase 2 65% Design Investigation expands the information gained from the 10% Conceptual Engineering (CE) Investigation (URS, 2003) and the 35% Preliminary Engineering (PE) Investigation (HMM/Bechtel, 2005a). The laboratory tests were performed from July 2007 through November 2007. In general, the majority of soil samples tested for classification purposes were selected from the strata that were relatively unexplored in previous investigations. Parikh Consultants, Inc. (PCI) in Milpitas, CA, performed the majority of index and classification testing, such as visual classifications, natural moisture contents, fines content, sieve analyses, sieve and hydrometer analyses, Atterberg Limits, and unit weights.

Additional specialty soil testing was performed on selected samples at various laboratories throughout the United States and outside the country. Some of these laboratories also performed classification and index tests on the samples used in the specialty testing. The soil tests, and the laboratories where they were performed, are summarized in Table 4-1. The testing program is discussed in subsequent sections. The test results are provided in the Appendices listed in Table 4-1.

This page is intentionally left blank.

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

Test Type	Parikh Consultants, Inc., Milpitas, CA	Fugro Consultants, Inc. (Fugro), Houston, TX	SGI Testing Services (SGI), Norcross, CA	Shanon & Wilson, Inc. (S&W), Seattle, WA	Cooper Testing Laboratory (Cooper), Palo Alto, CA	Praad Geotechnical, Inc. (Praad), and UCLA, Los Angeles, CA	CAMET Research, Inc. (CAMET), Goleta, CA	Chemistry of Concrete, Goleta, CA	Twining Laboratories of Southern California, Long Beach, CA	Pacific Materials Laboratory, Goleta, CA	SINTEF, Trondheim, Norway	Analytic Consulting Group, Inc., Ventura, CA	University of Texas at Austin, Geotechnical Laboratory, TX
Visual Classification	Appendix 4												
Moisture Content	Appendix 4	Appendix 5		Appendix 7		Appendix 9							
Unit Weight	Appendix 4	Appendix 5				Appendix 9							
Sieve Analyses	Appendix 4		Appendix 6		Appendix 8						Appendix 11		
Consolidation						Appendix 9							
Sieve Analysis and Hydrometer	Appendix 4									Appendix 12			
Materials Finer than No, 200 Sieve	Appendix 4												
Atterberg Limits	Appendix 4	Appendix 5		Appendix 7		Appendix 9					Appendix 11		
X-Ray Radiography		Appendix 5											
Cyclic Simple Shear						Appendix 9							
Cyclic Triaxial Shear		Appendix 5											
Large Scale Direct Shear			Appendix 6										
Direct Shear					Appendix 8								
Sticky Limit				Appendix 7									
Maximum Index Density			Appendix 6		Appendix 8								
Minimum Index Density			Appendix 6		Appendix 8								
Petrography												Appendix 12	
X-ray Fluorescence (XRF)								Appendix 12					
X-ray powder Diffraction (XRD)							Appendix 12						
Clay ID							Appendix 12						
Durability							-rr		Appendix 12				
Soil Abrasion									FF		Appendix 11		Appendix 11

Table 4-1 Laboratory Testing Program – List of Appendices

This page is intentionally left blank.

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

4.1.1 Laboratory Visual Classification

Laboratory visual classification of soils was carried out in general accordance with ASTM D2487, Test Method for Classification of Soils for Engineering Purposes, and ASTM D2488, Practice for Description and Identification of Soils (Visual-Manual Procedures). Visual classification of soils collected in undisturbed Shelby tubes was performed on the soil at the bottom of the tube after removing excess disturbed material.

101 Geo-barrel samples were obtained as continuous cores, and were classified at regular intervals or when there was a change in material type. Field classifications were adjusted based on laboratory visual classifications and supplemented with results of laboratory testing. Final classifications appear in the boring logs (Appendix 1), and in the laboratory classification tests results (Appendix 4) of this report.

4.1.2 Moisture Content

Moisture content testing was performed in general accordance with ASTM D2216, Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures. The tests were assigned to a selected portion of samples from each boring at varying depths.

The moisture content tests were generally conducted within three (3) days of the samples arriving at PCI's laboratory. The moisture content tests on specialty test samples were not performed within three (3) days because more time was required for their selection and testing. Shelby tube samples that were not tested, or that were stored for future testing, were sealed with heated microcrystalline wax. The 101 Geo-barrel core samples were not tested for moisture content because their sampling method kept them exposed for some time during sampling. Moisture content data appears at the corresponding sample depth on the boring logs in Appendix 1 and Figures and Tables in Appendices 4, 5, 7 and 9 (for PCI, Fugro West, Inc. (FWI), Shannon & Wilson, Inc. (S&W), and Praad Geotechnical/UCLA (PGI/UCLA) data, respectively).

4.1.3 Unit Weight

Unit weight testing was performed in general accordance with U.S. Army Corps of Engineers "Engineer Manual", EM 1110-2-1906 (1970). The tests were assigned to portions of the tube samples from each boring at varying depths.

The total unit weight was obtained by dividing the weight of a sample by the volume of the sample container. The dry unit weight was obtained by oven drying the sample and measuring the change in weight. This change in weight was used to determine the moisture content. The 101 Geo-barrel core samples were not tested for unit weight because their sampling and storing methods do not allow accurate determination of volumes. Dry unit weight data appear at the

corresponding sample depth on the boring logs in Appendix 1 and figures and tables in Appendices 4, 5 and 9 (for PCI, FWI and PGI/UCLA data, respectively).

4.1.4 Sieve Analysis

Sieve analysis testing was carried out in general accordance with ASTM D422, Standard Method for Particle-Size Analysis of Soils. Sieve analyses were assigned for granular samples obtained at varying depths.

As applicable, test results included percentage by weight finer than each of the ASTM Sieves 3 in., 2 in., 1-1/2 in., 1 in., 3/4 in., 1/2 in., 3/8 in., No. 4, No. 10, No. 20, No. 40, No. 60, No. 100, and No. 200 for each sample tested. Test results for sieve analyses in the form of gradation curves (particle size versus percent passing by dry unit weight) can be found in Appendices 4, 6 and 8 (for PCI, SGI and Cooper Testing Laboratory (CTL) data, respectively). Also, the fines content determined by the percentage (by weight) of material passing the No. 200 sieve is indicated in the boring logs (Appendix 1).

4.1.5 Sieve and Hydrometer Analysis

Combined sieve and hydrometer analyses were performed in general accordance with ASTM D422. These tests were performed on a limited number of fine-grained and coarse-grained samples obtained at varying depths.

The results are presented in a summary table and as gradation curves in Appendix 4. The fines content determined by the percentage of material (by weight) passing the No. 200 sieve is also reported in the boring logs (Appendix 1).

4.1.6 Atterberg Limits

The Liquid Limit, Plastic Limit, and Plasticity Index were determined in general accordance with ASTM D4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. These tests were assigned for fine-grained soils obtained at varying depths.

The test results are shown on the boring logs in Appendix 1 (for PCI's data, respectively), and Figures and Tables in Appendices 4, 5, 7 and 9 (for PCI, FWI, Shannon & Wilson and PGI/UCLA data, respectively).

4.1.7 Materials Finer than No. 200 Sieve

The determination of the total amount of material finer than the No. 200 Sieve was performed in general accordance with ASTM D1140, Standard Test Method for Amount of Material in Soils Finer than the No. 200 Sieve. The test results are presented on the boring logs in Appendix 1 as well as on the gradation curves in Appendix 4.

4.2 Specialty Geotechnical Testing

Specialty geotechnical testing consisted of evaluating shear strength properties and maximum/minimum index densities of sandy and gravelly soils, dynamic soil properties of silty sand to sandy silt and clayey soils, and adhesive properties of high-plasticity clays.

4.2.1 Direct Shear (Conventional)

Direct shear tests were performed on sand samples to measure the drained shear strength parameters, friction angle (ϕ ') and cohesion (c'). The tests were performed in general accordance with ASTM D 3080, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Condition.

Three (3) disturbed sand samples were collected from borings MW-2D, MW-6K, and MW-4A that were performed for the pumping test. The boring logs and laboratory test results for these borings are presented in Pumping Test Data Report (HMM/Bechtel, 2008). The samples were then transported to CTL for testing. Maximum and Minimum index density tests and sieve analyses were performed on the samples before performing direct shear tests (See Sections 4.2.4 and 4.1.4, respectively). A total of 27 initial direct shear tests were performed: three (3) samples at three (3) relative densities under (3) confining pressures. Four additional tests were performed for one sample (MW-4A) at four different confining pressures. Gravel size particles greater than 4.75 mm were sieved out from the specimens to eliminate boundary effects of test apparatus. Each specimen was prepared by compacting to a specified relative density ranging from 65 % to 95 % based on the minimum and maximum densities determined. The specimen was then subjected to a specified surcharge pressure before testing at a constant rate of strain. It should be noted that one of the samples (MW-6K) yielded a fines content greater than 15%, thus invalidating the maximum density. Thus, the relative density values for this sample will be biased and therefore correlations between relative density and strength should not be used. The test results are provided in Appendix 8.

Additionally, one (1) disturbed sand sample obtained using Modified California sampler was also shipped to CTL to perform three (3) direct shear tests at different normal pressures.

4.2.2 Large Scale Direct Shear

Larger scale direct shear tests were performed on gravel samples to measure the drained shear strength parameters, friction angle (ϕ ') and cohesion (c'). The tests were performed in general accordance with ASTM D 3080. The difference between conventional and large-scale direct shear tests is the size of the test specimens. The test specimens in large-scale direct shear tests were 1-foot square in cross-section and 5 inches thick. The larger specimen size allowed the testing of gravel size particle up to 1.25 inches. Testing of specimens containing larger

than 1.25 inches gravel size particles is not conventionally performed in United States.

Three (3) disturbed gravel samples from the borings performed for the pumping test program were transported to SGI Laboratories for testing. Approximately 100 lb of material was collected for each specimen. Maximum/Minimum index density tests, and sieve analyses were performed on the samples before performing direct shear tests (See Sections 4.2.4 and 4.1.4, respectively). A total of 11 direct shear tests were performed. Each specimen was prepared by compacting to a specified relative density ranging from 65 % to 95 %. The specimen was then subjected to a specified surcharge pressure before testing at constant rate of strain. The test results are provided in Appendix 6.

4.2.3 Sticky Limit

High plasticity (fat) clay is expected to adhere or stick to metal surfaces under certain conditions of plasticity and water content, thus affecting tunneling and excavation operations. Therefore, for high plasticity clays, the concept of adhesion or sticky limit has been introduced and is defined as the lowest water content at which soil adheres to metal tools. This test is not standardized by the ASTM and is uncommon in typical geotechnical applications. The tests were performed following the procedure developed by S & W (Appendix 7).

A total of 32 samples were tested for sticky limits. The samples were tested in two batches. The first batch consisted of 15 samples from the 35% PE and Phase 2 65% Engineering Design investigation. The samples, classified as lean and fat clay visually and/or by laboratory tests by PCI, were sent to S&W who also determined Atterberg Limits. Lean clay samples were included for comparison with fat clays. The second batch consisted of 17 clay samples from Phase Two 65% Engineering Design investigation and Pumping Test investigation (Pumping Test Data Report, HMM/Bechtel, 2008). Sticky limit tests were not performed on lean clay samples from the second batch. The samples from 35% PE investigations and Pumping Test investigations were used because relatively few high plasticity clay samples were found in the Phase 2 65% Engineering Design Investigation. The test results are provided in Appendix 7.

4.2.4 Maximum and Minimum Index Density

Maximum and minimum index density tests were performed on sand and gravel samples prior to direct shear tests by CTL and SGI, respectively. For test specimens at CTL, gravel size particles retained on No. 4 (4.75 mm) sieve were removed. For test specimens at SGI, particles retained on 1.25-inch sieve were removed. The maximum index density tests were performed in general accordance with ASTM D 4253, Standard Test Methods for Maximum Index density tests were performed in general accordance with ASTM D 4254, Standard Test Methods for Maximum index density tests were performed in general accordance with ASTM D 4254, Standard Test Methods for Maximum index density tests were performed in general accordance with ASTM D 4254, Standard Test Methods for Maximum index density tests were performed in general accordance with ASTM D 4254, Standard Test Methods for Maximum index density tests were performed in general accordance with ASTM D 4254, Standard Test Methods for Maximum index density tests were performed in general accordance with ASTM D 4254, Standard Test Methods for Maximum index density tests were performed in general accordance with ASTM D 4254, Standard Test Methods for Maximum index density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM D 4254, Standard density tests were performed in general accordance with ASTM

Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.

Three (3) disturbed sand and three (3) gravel samples were sent for testing to CTL and SGI, respectively. For maximum index density, each oven-dried test specimen was placed in a mold and subjected to a constant surcharge of 2 pound per square inch (psi). The specimen was then electromagnetically vibrated for 8 to 10 minutes. The maximum density was calculated by dividing the mass of the densified soil by its volume (average height of densified soil times area of mold). For minimum index density, each specimen was poured into a container of known volume in such a manner that bulking and particle segregation was prevented and compaction minimized. The test results for gravels and sands are provided in Appendices 6 and 8, respectively. As discussed in Section 4.2.1, one of the samples sent to CTL had a fines content greater than 15%, thus nullifying the maximum index density test. For more details, refer to Appendix 8.

4.2.5 Shipping and X-ray of Relatively Undisturbed Samples

Relatively undisturbed Shelby tube samples were sent to PGI/UCLA in Los Angeles and FWI's laboratory in Houston, Texas. Six (6) sealed Shelby Tubes were shipped by car to PGI and UCLA, and three (3) were shipped via air to FWI's laboratory in specially fabricated, padded containers designed to minimize disturbance of the samples and that maintained the tubes in a vertical position. The soil samples sent to the laboratory consisted of silty sand, clayey sand, silty, clayey sand, and lean clay with sand. The Shelby tubes received by FWI's laboratory were X-rayed to determine the availability and quality of the material inside the tubes. Interpretation of soils using X-ray radiographs were performed in accordance with ASTM D4452, Methods for X-Ray Radiography of Soil Samples, with the slight modifications that are described in detail in Appendix 5. Images of the X-ray sample radiography are presented in Appendix 5.

4.2.6 Cyclic Triaxial Shear

Cyclic triaxial shear tests were performed by FWI on silty sand, clayey sand, silty, clayey sand, and lean clay with sand samples. The samples were tested to evaluate the ability of soil to resist the shear stresses induced in soil mass due to cyclic loading. The tests were performed in general accordance with ASTM D 5311, Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil.

Nine (9) cyclic triaxial shear tests were performed. Each selected test specimen was water saturated followed by isotropic consolidation in a consolidation cell. Each specimen was then subjected to sinusoidally varying axial load to produce a specific cyclic stress ratio. Pore water pressures generated under undrained conditions during the tests were recorded. The test results are provided in Appendix 5. Index and classification tests such as natural moisture content, unit weight, Atterberg Limits and fines content were also performed on the samples.

4.2.7 Cyclic Simple Shear

Cyclic simple shear tests were performed by PGI/UCLA on clay samples to measure the rate of straining effect on the cyclic shear strength. To increase saturation levels, the soil samples were soaked under a vertical stress corresponding to the in-situ vertical stresses for 24 to 48 hours while still inside the tubes. A suite of shear tests consisting of monotonic loading and cyclic stress-strain applications were then performed over the extruded and trimmed specimens. The test results are provided in Appendix 9. Details of the testing apparatus are described in Duku et al. (2007). In addition, index and classification tests such as natural moisture content, unit weight, Atterberg Limits and fine content were also performed on the samples

Although strain-dependent modulus degradation and damping ratio increase with strain could also be obtained from this type of tests, limitations of the equipment used did not permit to fully saturate the specimen under back pressure. Thus the test results are questionable and should not be taken into consideration for design purposes.

4.2.8 Soil Abrasion

Soil Abrasion Testing (SAT) was performed to determine the abrasiveness of soil to the Tunnel Boring Machine (TBM) disc cutter steel. This test is not standardized by ASTM, but is currently under development. The test procedure consists of measuring the cutter steel wear. The test is based on the NTNU Abrasion test (AV/AVS) for measuring steel wear due to hard rock. It was performed in general accordance with "New test methodology for estimating the abrasiveness of soils for TBM tunneling" (Nilsen B. et al. 2007). The testing was performed between August 12 and September 9, 2008.

Four bulk soil samples were sent for testing at SINTEF Rock and Soil Mechanics laboratory in Trondheim, Norway. The soil samples consisted of four soil types: Lean Clay (USCS: CL), Clayey Sand (SC), Poorly Graded Sand (SP), and Poorlygraded Gravel with Silt and Sand (GP-GM). The soil samples were selected from 35% PE phase and 65% ED phase geotechnical investigations. Although clays are known to be non-abrasive, the clay sample was included as a baseline comparison. The tests were performed on the portions of samples passing through 1 mm sieve size. Prior to the tests, Atterberg Limits were determined for clay sample, and gradation analysis performed on sand and gravel samples.

In addition to the four soil samples sent to SINTEF, a portion of gravel sample was sent to the geotechnical laboratory at University of Texas at Austin (UT). The purpose of sending a specimen for similar testing at UT was to compare the effect of grinding the bigger size soil particles on test results, and also to verify if SAT could be carried out at an alternative laboratory within United States for any future testing for the project. The testing at UT included testing on virgin as well as modified soil specimens passing through 1mm and 4mm size sieves. The modified soil specimens consisted of gravel-size particles grinded to less than 1 and 4mm size. UT performed testing on specimens passing through 1mm size sieve after they observed problems during testing on specimens passing through 4mm size sieve. The details and results of abrasion tests are provided in Appendix 11.

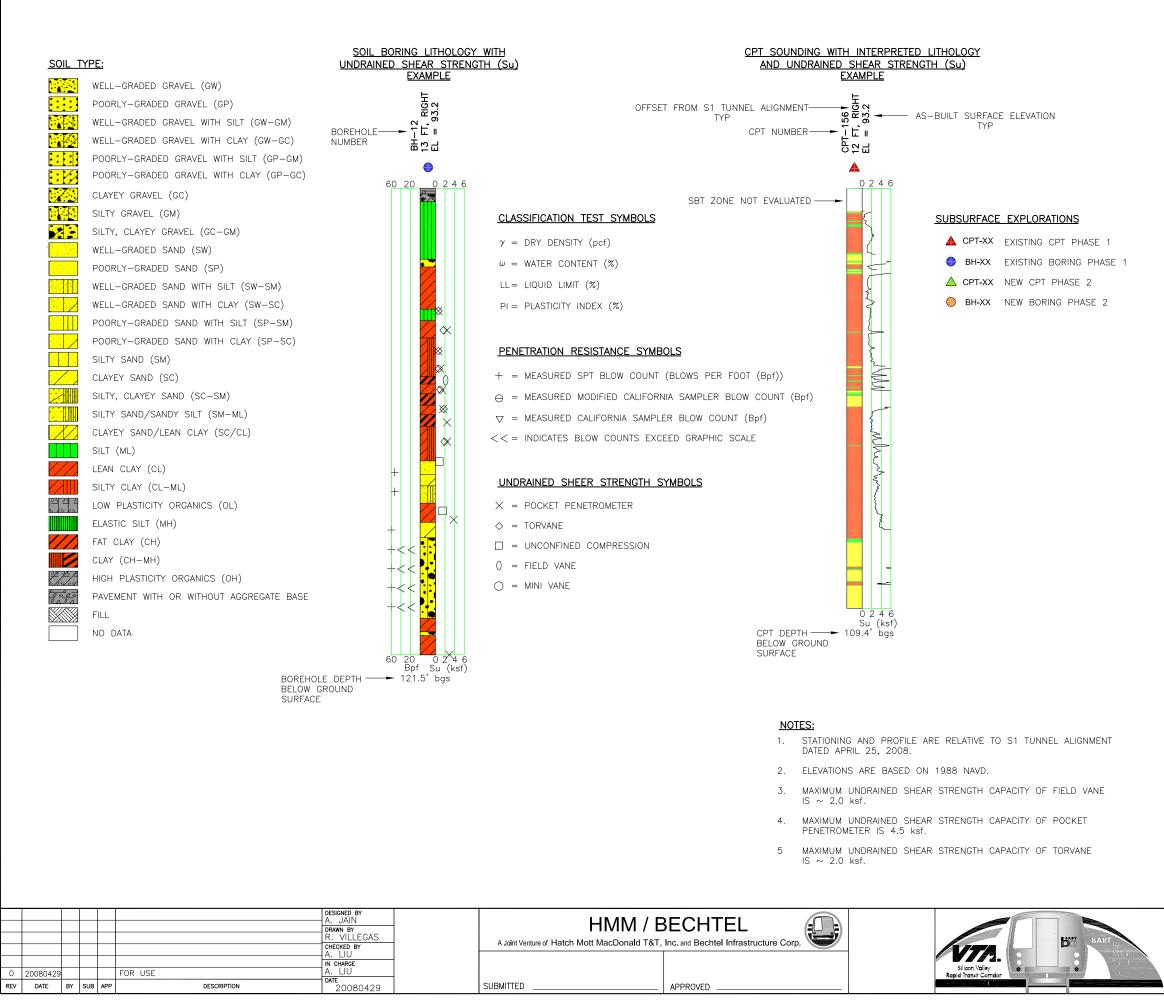
4.2.9 Mineralogy

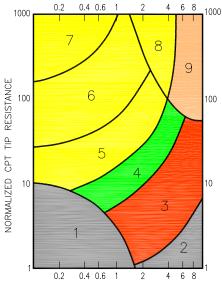
The mineralogy testing program consisted of X-ray powder diffraction analysis (XRD), wavelength dispersive X-ray flourescense analysis (XRF), clay ID; and petrography. The testing program also included sieve and hydrometer analyses, and durability testing on selected cohesionless samples. The XRD, XRF, and Clay ID measurements were performed according to generally accepted industry standards^{*}. The Clay ID measurements were performed only on cohesive samples. Petrography analyses were performed in accordance with ASTM C295; durability testing: ASTM D 3744; and sieve and hydrometer analyses: ASTM D422. The testing program was conducted from April through June 2008, and results provided to us in July.

A total of 11 samples were selected from 35% PE and 65% ED investigation phases, and sent to CAMET Research (CAMET) located in Goleta, California. CAMET performed XRD and Clay ID testing on a portion of the provided samples, and sent the remaining portions to the following California laboratories for different testing: Chemistry of Concrete laboratory in Goleta carried out XRF measurements, Analytical Consulting Group, Inc. in Ventura carried out petrography analyses, Twining Laboratories of Southern California in Long Beach performed durability testing, and Pacific Materials Laboratory in Goleta conducted sieve and hydrometer analyses. These laboratories performed the testing under the overview of CAMET.

The samples included both cohesive and cohesionless soils. The XRD, XRF, Clay ID and petrography tests consisted of determining mineralogical composition of soil samples using spectrometers. The durability tests were performed to determine the resistance of soil samples to generating fines on mechanical agitation in the presence of water. Though the durability testing is not conventional for tunneling purposes; CAMET performed the tests due to insufficiency of samples for Los Angeles Abrasion testing. Sieve and hydrometer analyses were performed to determine the USCS classification of cohesionless soil samples. The test results are provided in Appendix 12.

^{*}The references for testing are mentioned in CAMET's report in Appendix 12.


5.0 Summary and Future Data Reports


The content of this report summarizes the data from 19 boreholes, 25 CPTs, and associated laboratory tests conducted during the Phase Two 65% Engineering Design Investigation. Sticky Limit, mineralogy and soil abrasion tests were performed on samples from the 35% PE Investigation and the 65% Engineering Design Investigation. The Plan and Profile Drawings presented in Figures 5-1 through 5-43 of this report are updated from those presented in the 35% Preliminary Engineering Geotechnical Data Report (HMM/Bechtel, 2005a) to include the information from the additional borings and CPTs.

The Plan and Profile Drawings include information from the six sonic borings completed during the pumping test program. The Pumping Test Data Report (HMM/Bechtel, 2008) presents the boring logs and summarizes the sonic drilling, sampling and laboratory samples obtained from the sonic borings.

A Phase Three (P3) Geotechnical Investigation Data Report will be prepared to include information from the boreholes advanced during the final stages of design.

Figure 5-1 Geotechnical Plan and Profile Legend

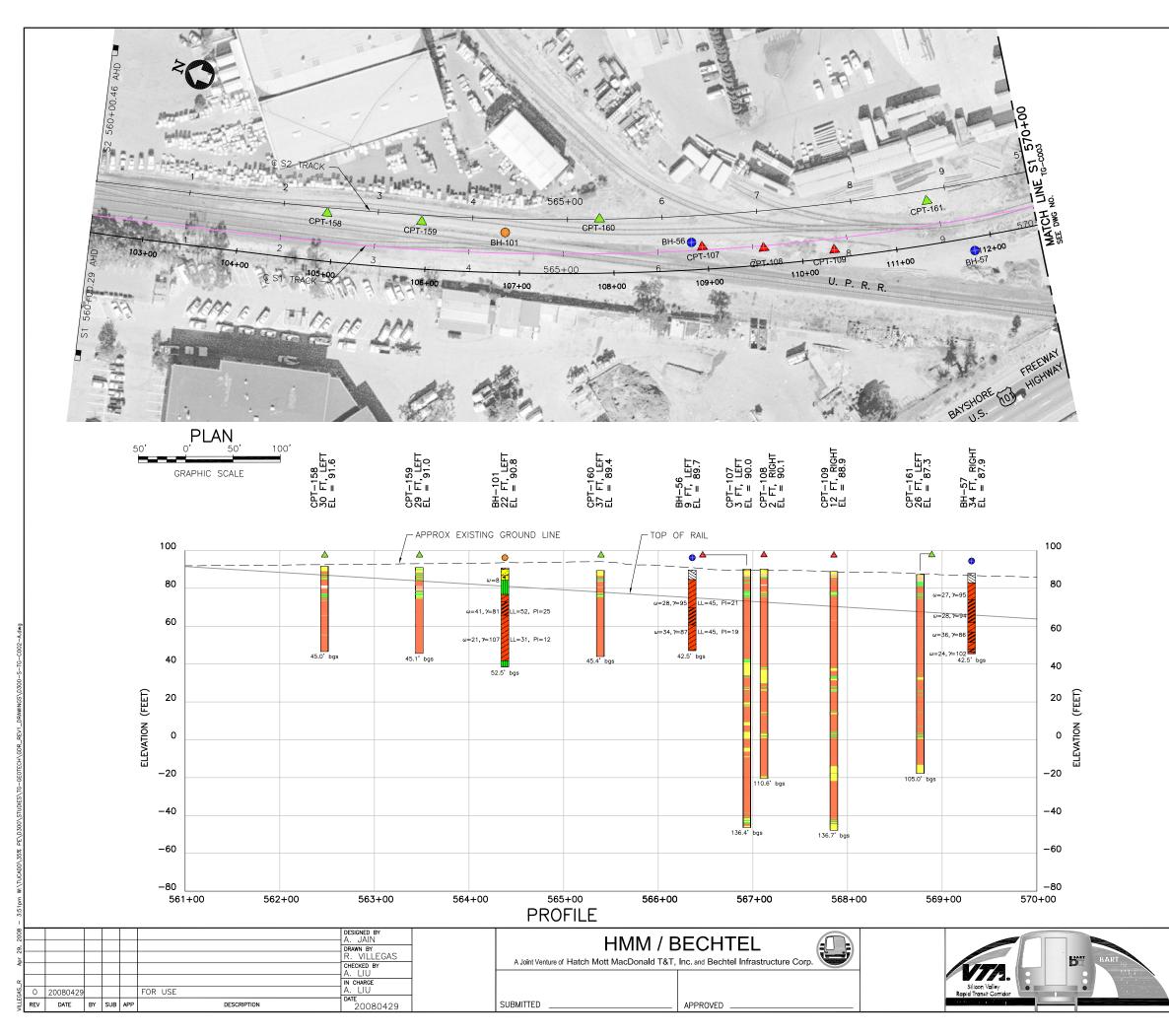
NORMALIZED FRICTION RATIO (%)

ZONE	SOIL BEHAVIOR TYPE (SBT)						
1	SENSITIVE FINE-GRAINED						
2	ORGANIC MATERIAL						
3	CLAY TO SILTY CLAY						
4	CLAYEY SILT TO SILTY CLAY						
5	SILTY SAND TO SANDY SILT						
6	CLEAN SANDS TO SILTY SANDS						
7	GRAVELLY SAND TO SAND						
8	VERY STIFF SAND TO CLAYEY SAND*						
9	VERY STIFF FINE-GRAINED*						

*OVERCONSOLIDATED OR CEMENTED

CPT CORRELATION CHART (MODIFIED FROM ROBERTSON, 1990)

<u>LEGEND</u>


- ---- EXISTING GROUND SURFACE
- ------ TUNNEL EXTENTS
- ----- TUNNEL SPRINGLINE
- ------ EXCAVATION BOUNDERIES

6. CPT UNDRAINED SHEAR STRENGTH VALUES TRUNCATED AT 6.0 ksf.

- 7. CPT UNDRAINED SHEAR STRENGTH NOT APPLICABLE FOR SBT ZONES 5, 6, 7, AND 8, HENCE NOT SHOWN.
- BORING LOGS FOR BH-83, BH-86, BH-92, BH-94, BH-96 AND BH-104 ARE INCLUDED IN PUMPING TEST DATA REPORT (HMM/BECHTEL, FEBRUARY 2008).
- FOR BORINGS BH-24, BH-52, BH-58, BH-70 AND BH-74, CLASSIFICATION TEST RESULTS ARE NOT SHOWN AT CORRECT DEPTHS. REFER TO BORING LOGS IN APPENDIX 1 OF THIS PHASE TWO - 65% ENGINEERING DESIGN INVESTIGATION GEOTECHNICAL DATA REPORT.

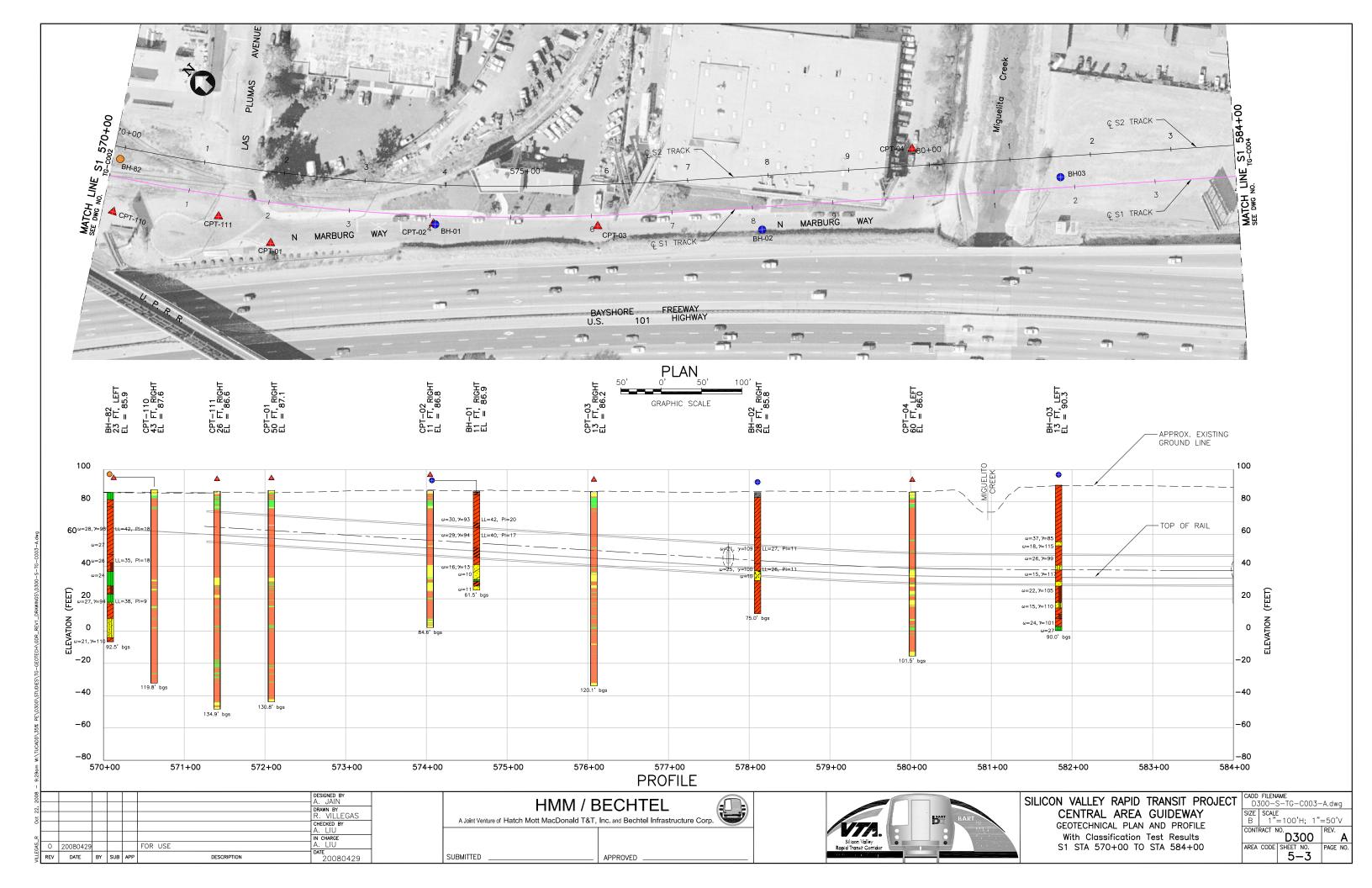
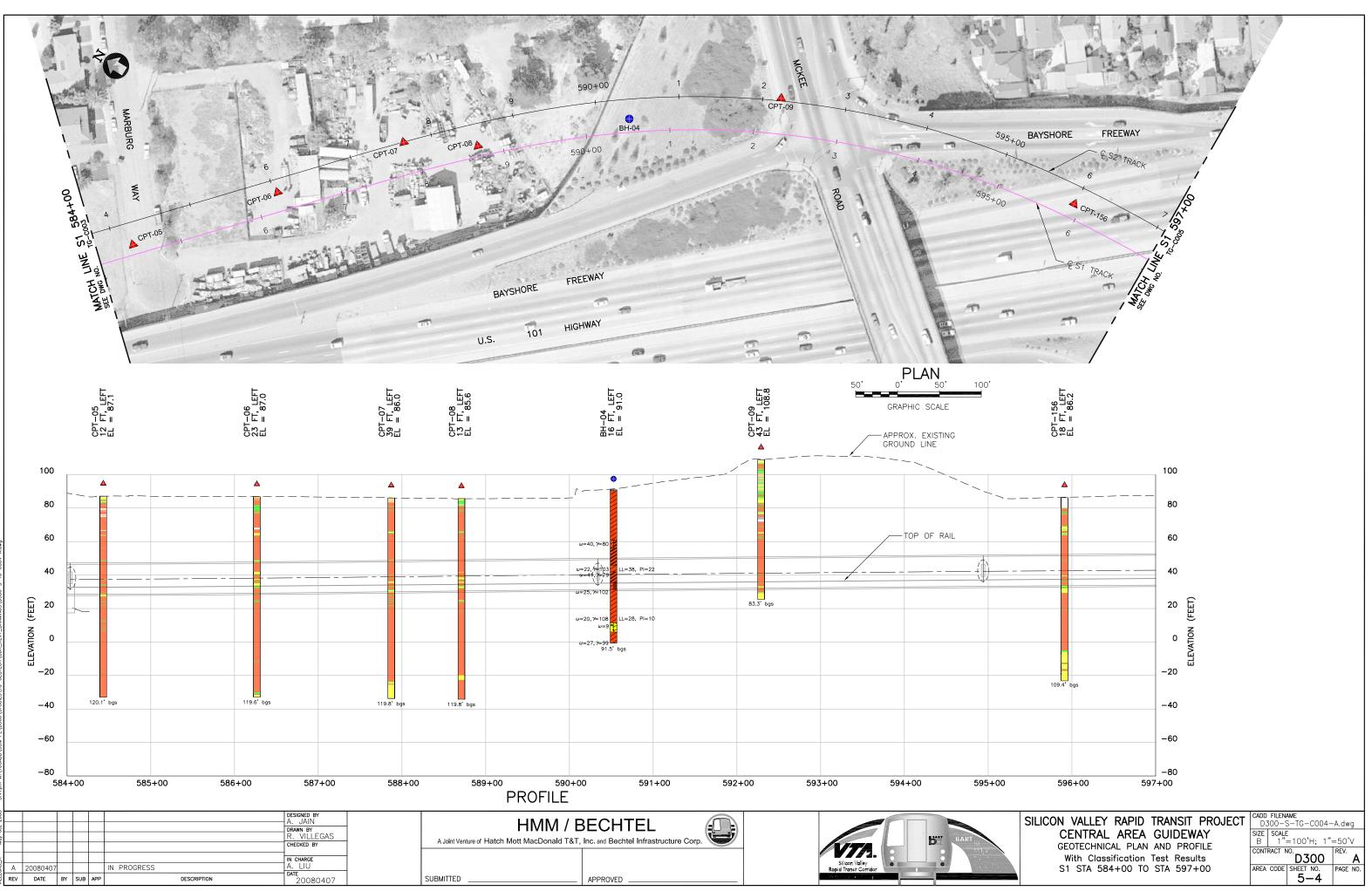
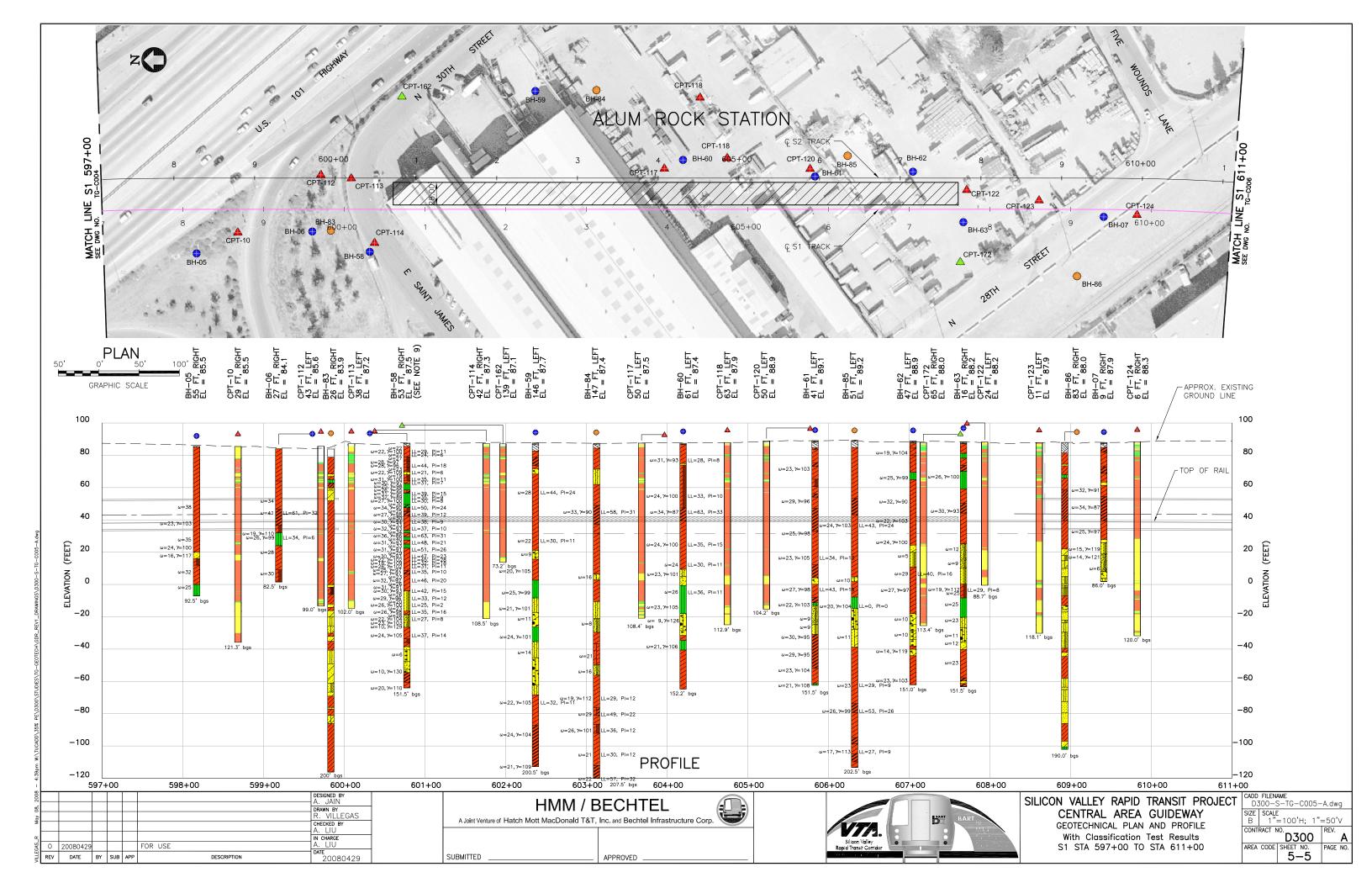

SILICON VALLEY RAPID TRANSIT PROJECT	CADD FILENAME D300-S-TG-C001-A.dwg					
CENTRAL AREA GUIDEWAY GEOTECHNICAL PLAN AND PROFILE	SIZE B	SCAL	e NTS			
LEGEND		RACT I	^{™.} D300	REV.		
	AREA	CODE	SHEET NO. 5-1	PAGE NO.		

Figure 5-2 Geotechnical Plan and Profile with Classification Test Results: STA 561+00 to STA 570+00



	SILICON VALLEY RAPID TRANSIT PROJECT	CADD FILENAME D300-S-TG-C002-A.dwg						
	CENTRAL AREA GUIDEWAY	SIZE B		: =100'H	; 1"=	=50'V		
	With Classification Test Results	CONT	RACT N	^{10.} D30	00	REV.		
١	S1 STA 561+00 TO STA 570+00	AREA	CODE	SHEET N	0. 2	PAGE NO.		


Figure 5-3 Geotechnical Plan and Profile with Classification Test Results: STA 570+00 to STA 584+00

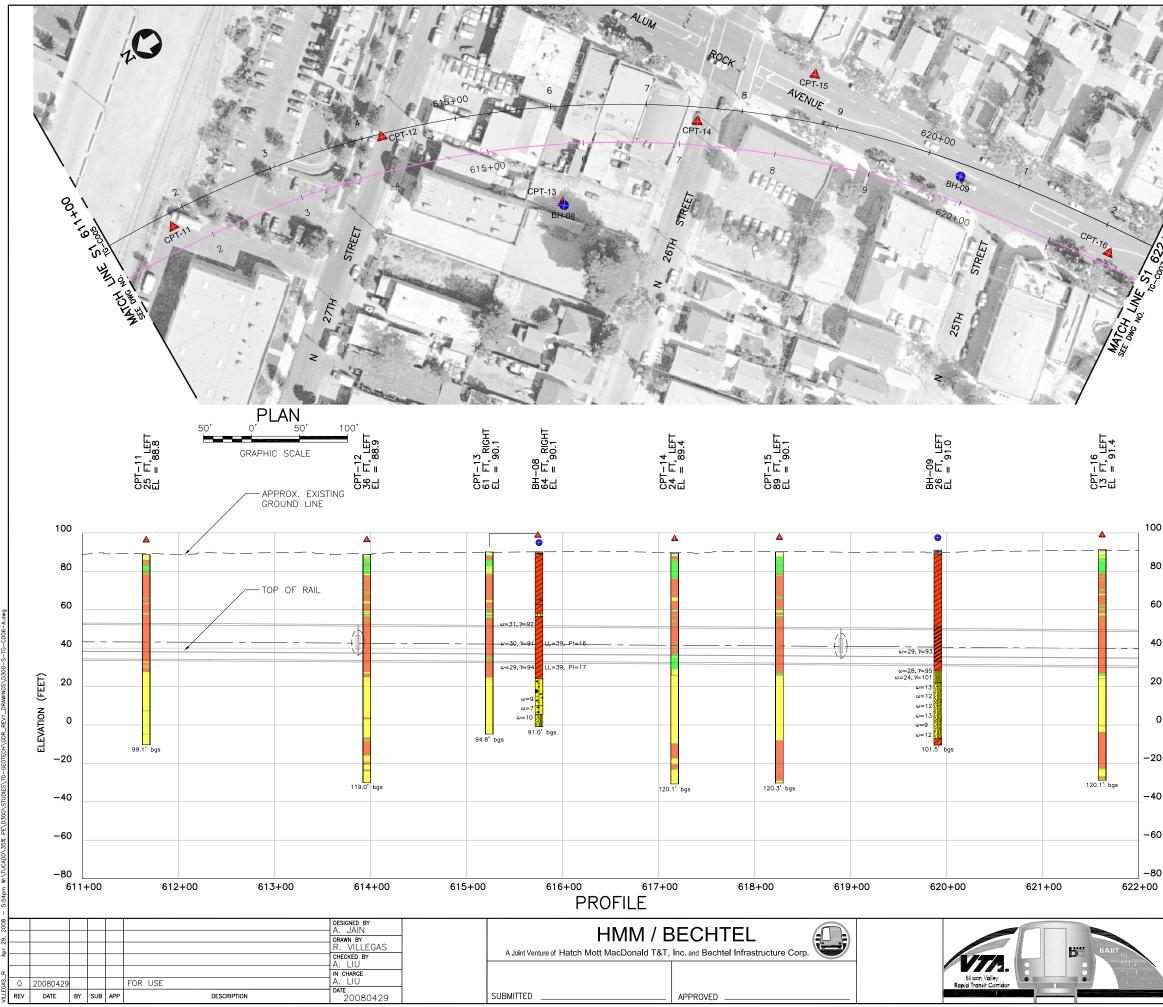
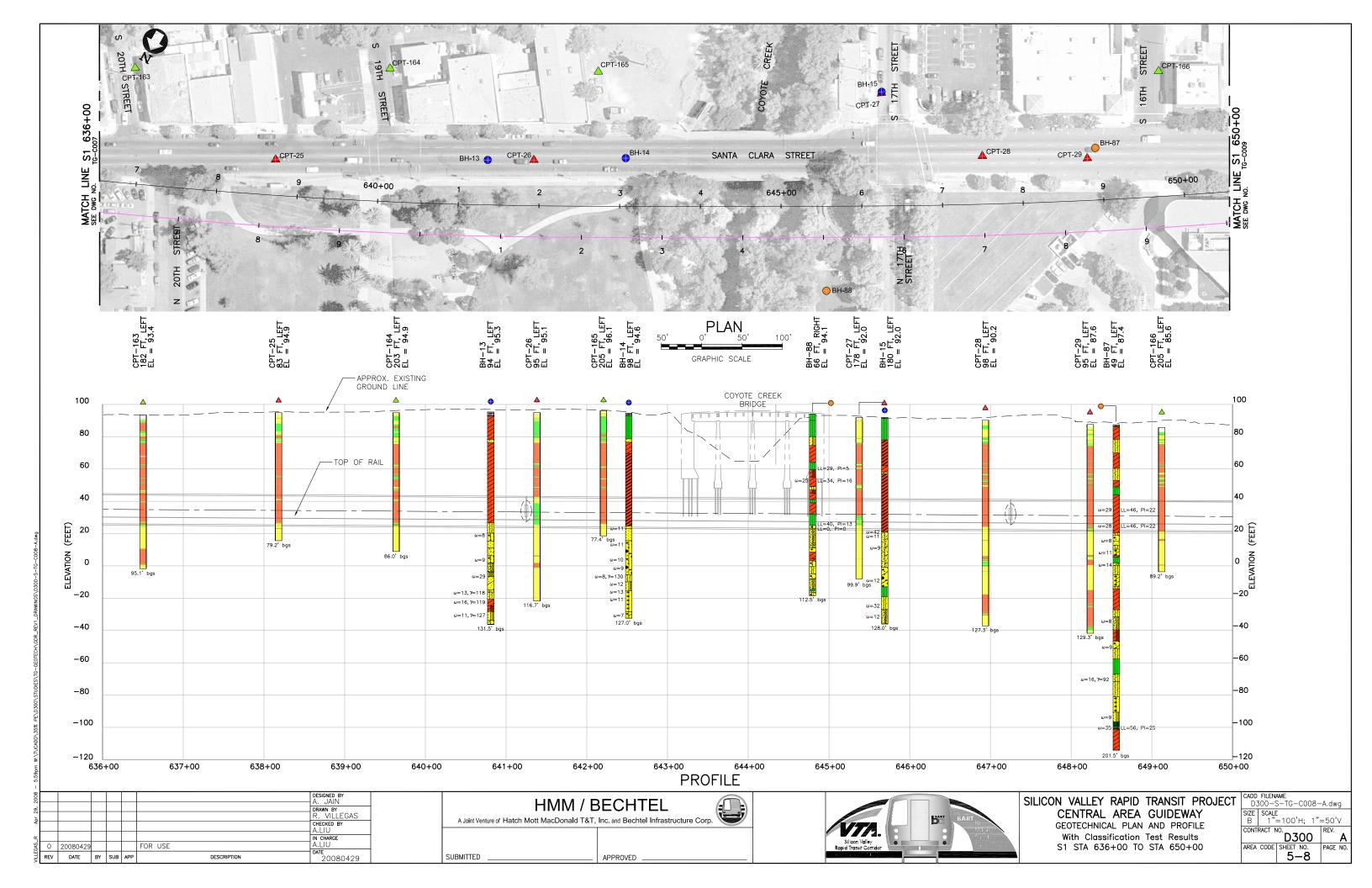

Figure 5-4 Geotechnical Plan and Profile with Classification Test Results: STA 584+00 to STA 597+00

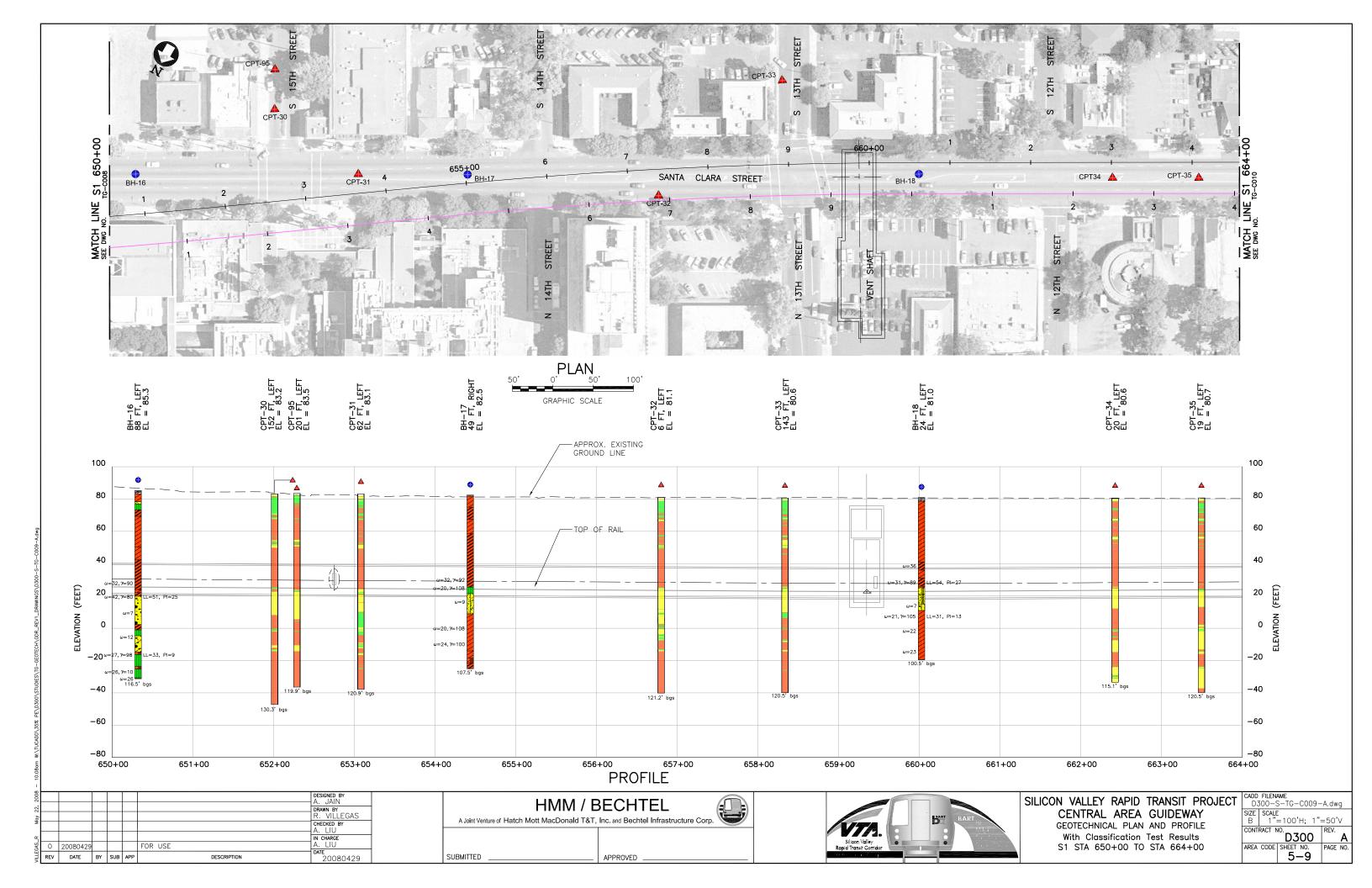
Figure 5-5 Geotechnical Plan and Profile with Classification Test Results: STA 597+00 to STA 611+00

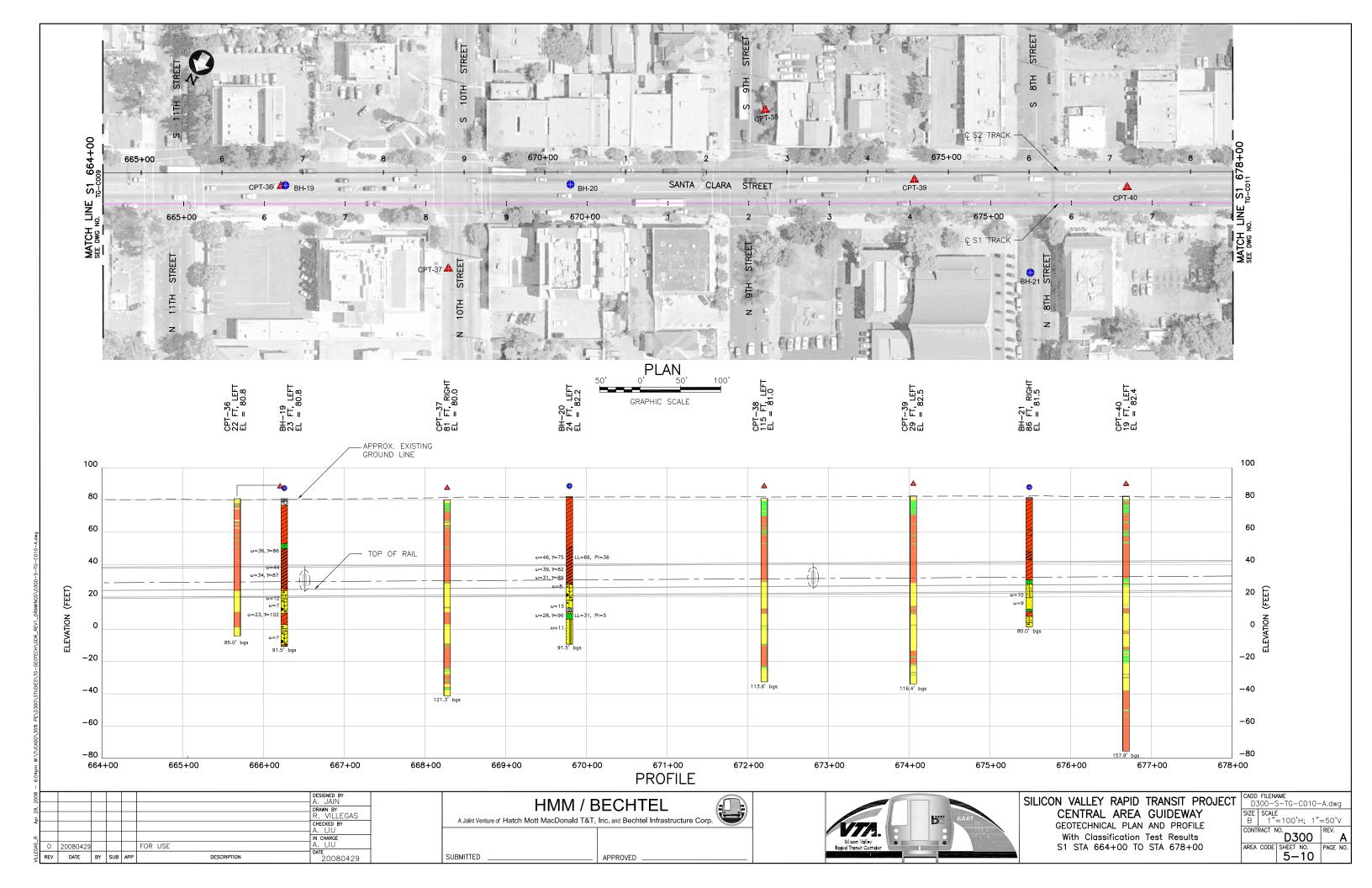


Figure 5-6 Geotechnical Plan and Profile with Classification Test Results: STA 611+00 to STA 622+00



10,			
Coo, 22, 400			
ř			
0			
10			
0			
-0			
	Ê		
0	ELEVATION (FEET)		
0	ELEVATI		
20			
-0			
0			
10 D			
	SILICON VALLEY RAPID TRANSIT PROJECT CENTRAL AREA GUIDEWAY GEOTECHNICAL PLAN AND PROFILE With Classification Test Results S1 STA 611+00 TO STA 622+00	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	


Figure 5-7 Geotechnical Plan and Profile with Classification Test Results: STA 622+00 to STA 636+00


Figure 5-8 Geotechnical Plan and Profile with Classification Test Results: STA 636+00 to STA 650+00

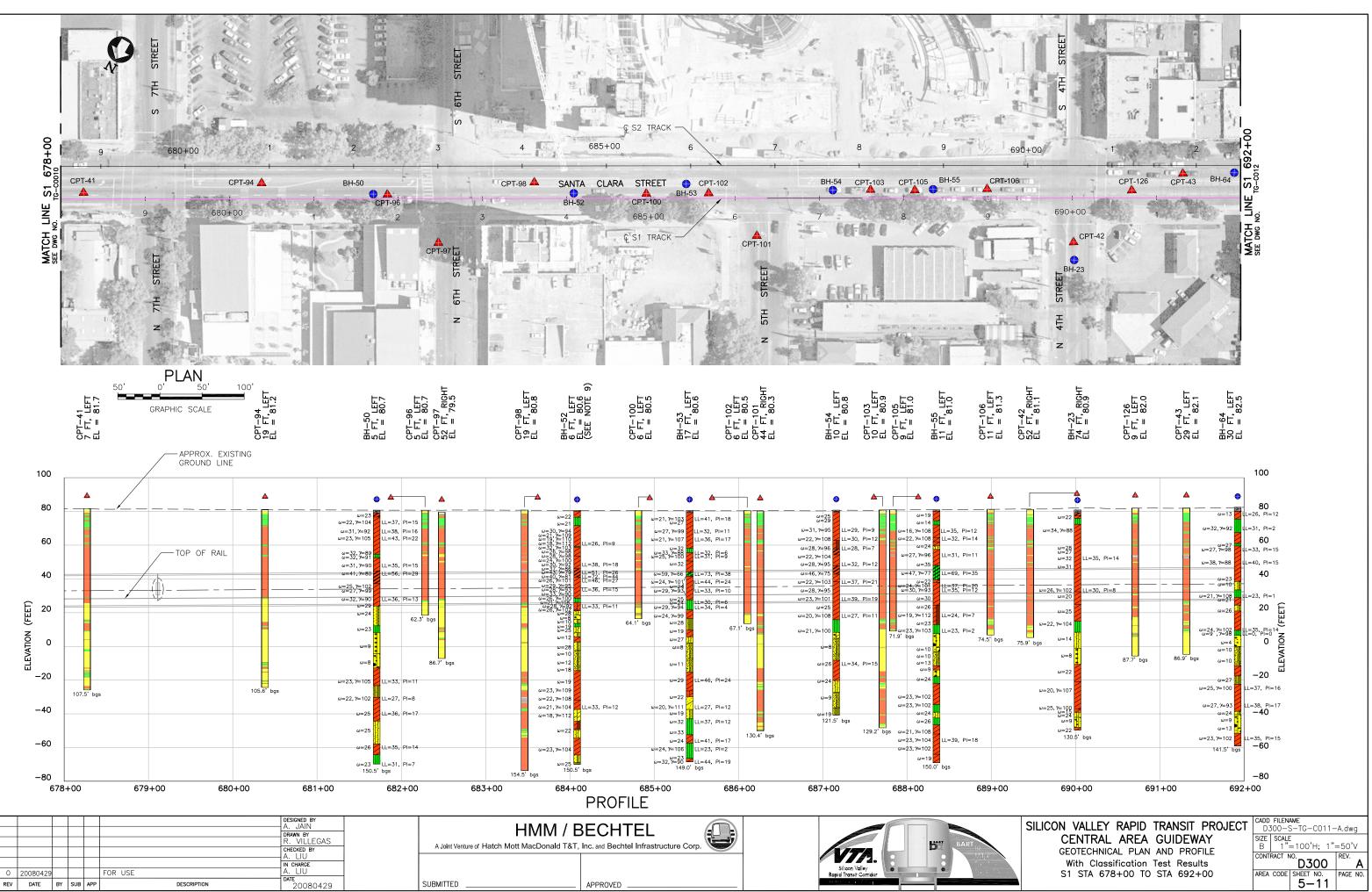

Figure 5-9 Geotechnical Plan and Profile with Classification Test Results: STA 650+00 to STA 664+00

Figure 5-10 Geotechnical Plan and Profile with Classification Test Results: STA 664+00 to STA 678+00

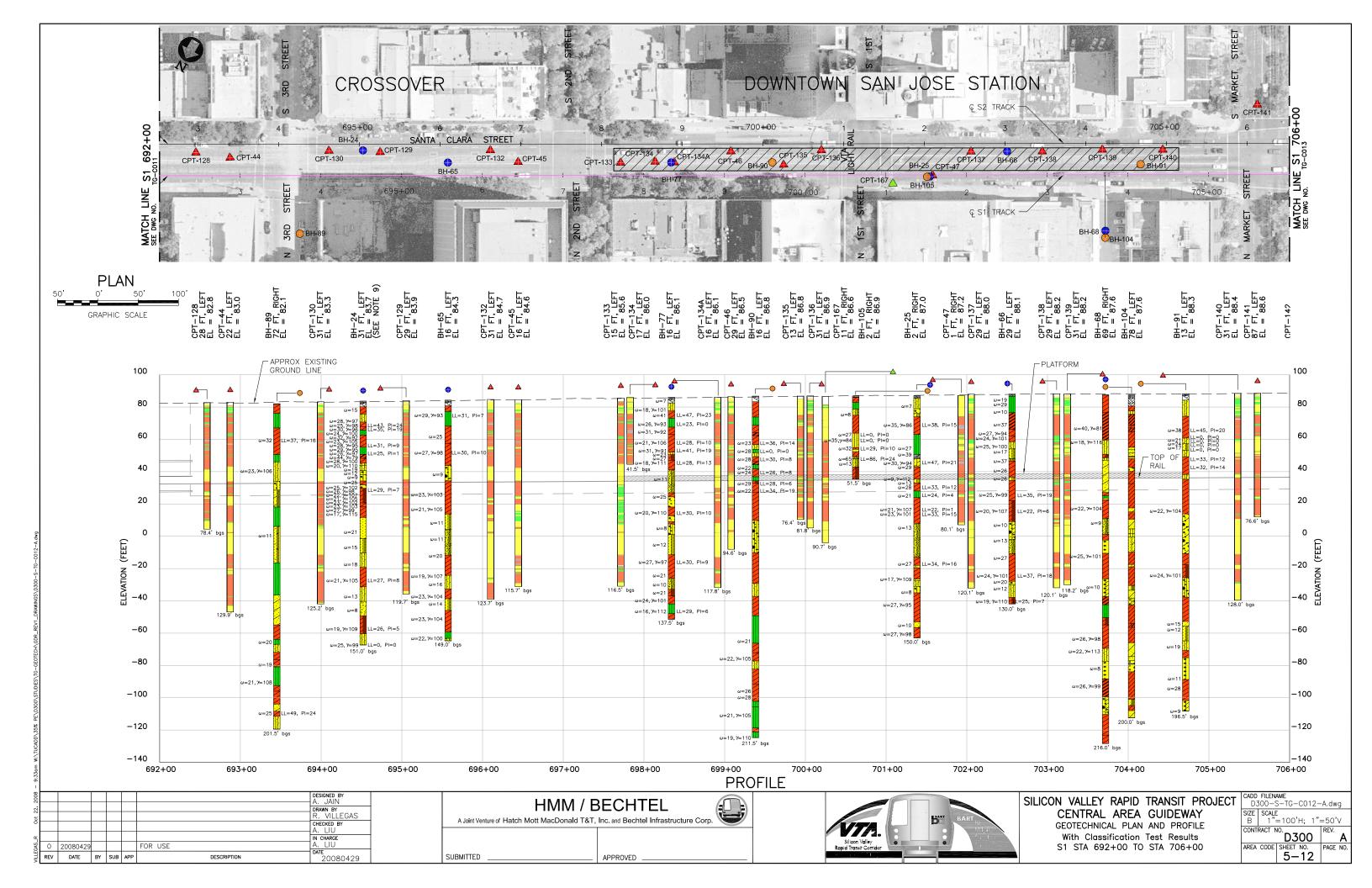
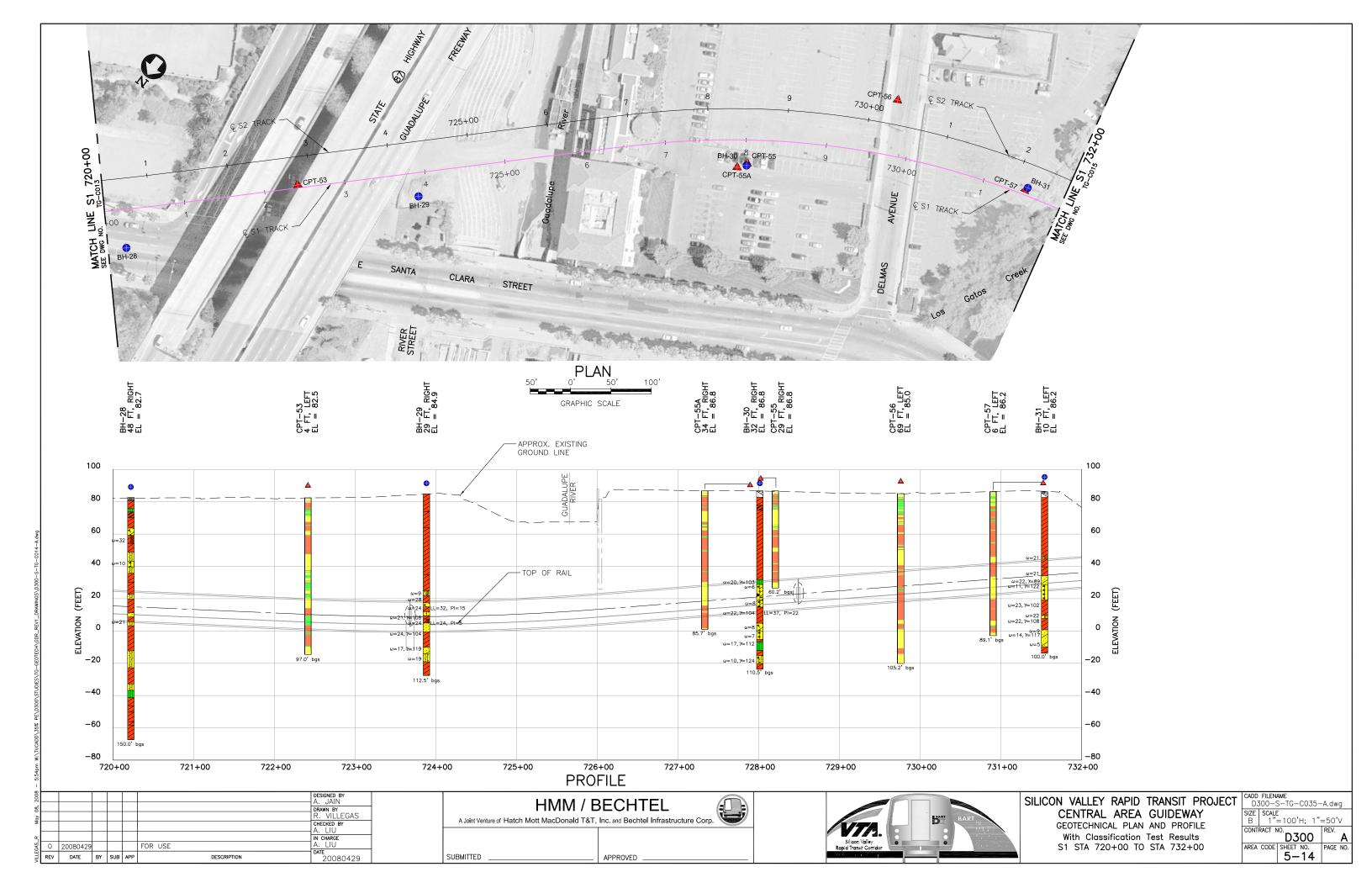
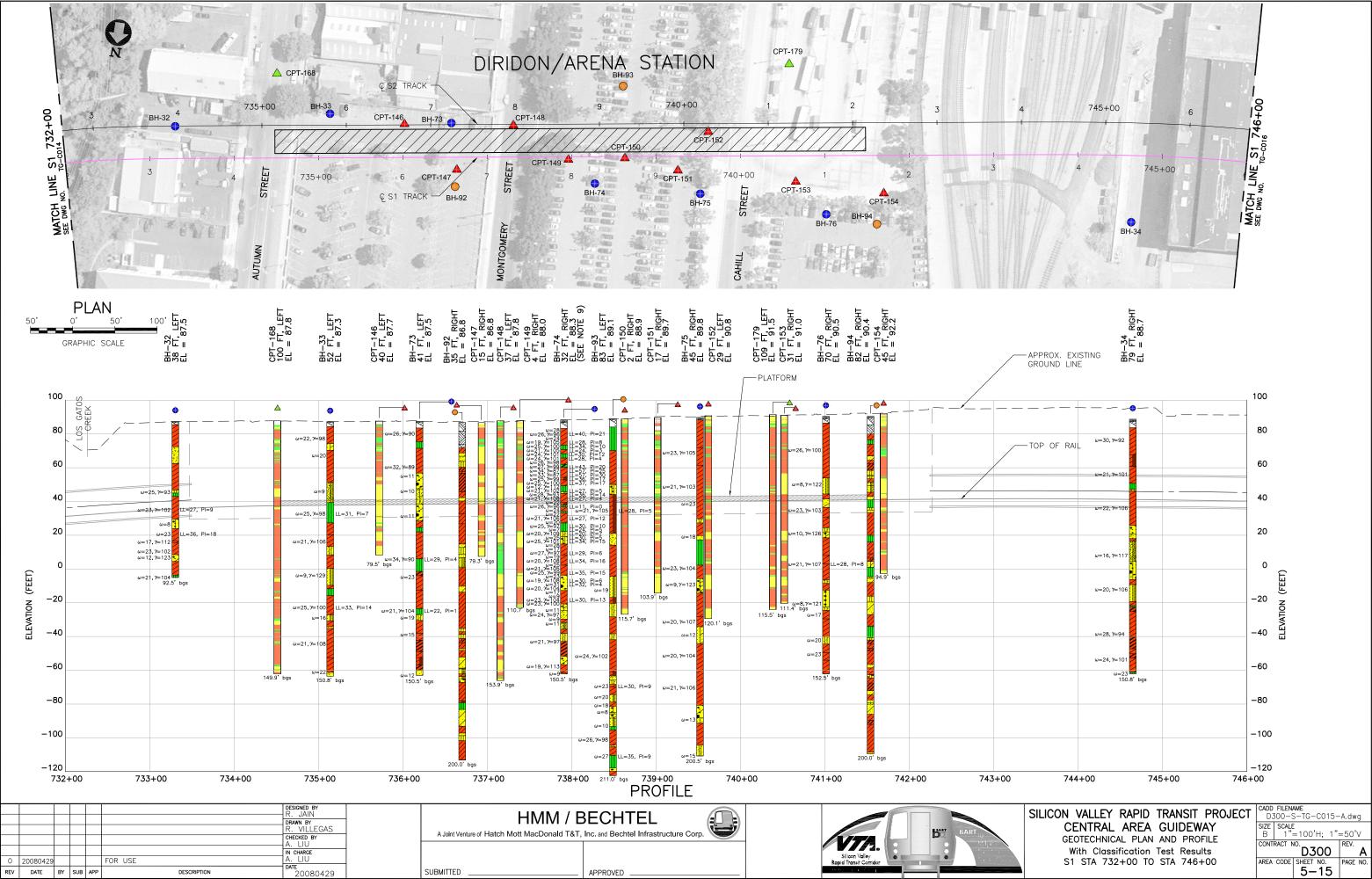
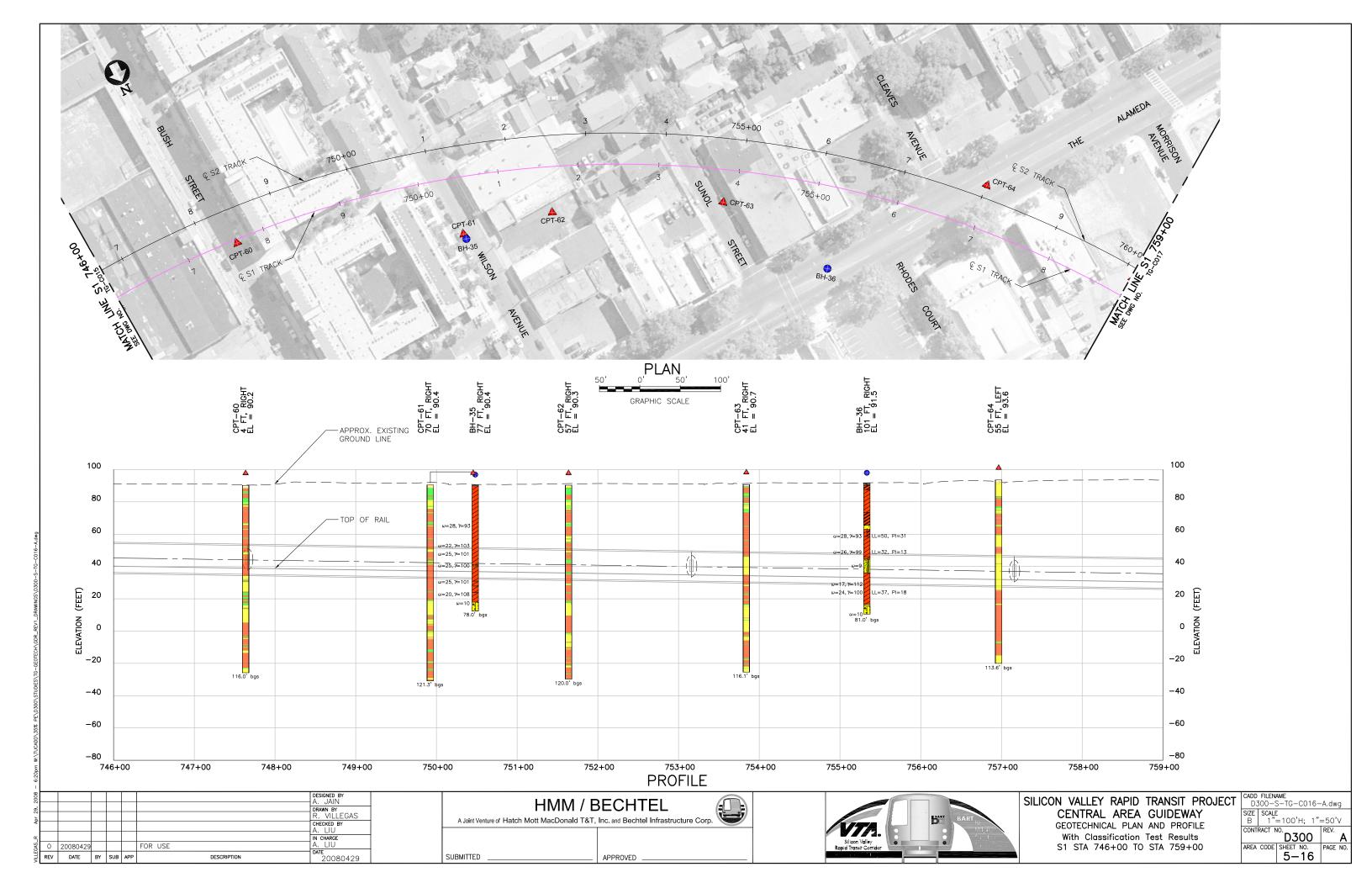


Figure 5-11 Geotechnical Plan and Profile with Classification Test Results: STA 678+00 to STA 692+00

y 08, 2008 – 4:45pm W:\TUCADD\35% PE\D300\STUDIES\TG-GEOTECH\GDR


Figure 5-12 Geotechnical Plan and Profile with Classification Test Results: STA 692+00 to STA 706+00


Figure 5-13 Geotechnical Plan and Profile with Classification Test Results: STA 706+00 to STA 720+00


Figure 5-14 Geotechnical Plan and Profile with Classification Test Results: STA 720+00 to STA 732+00

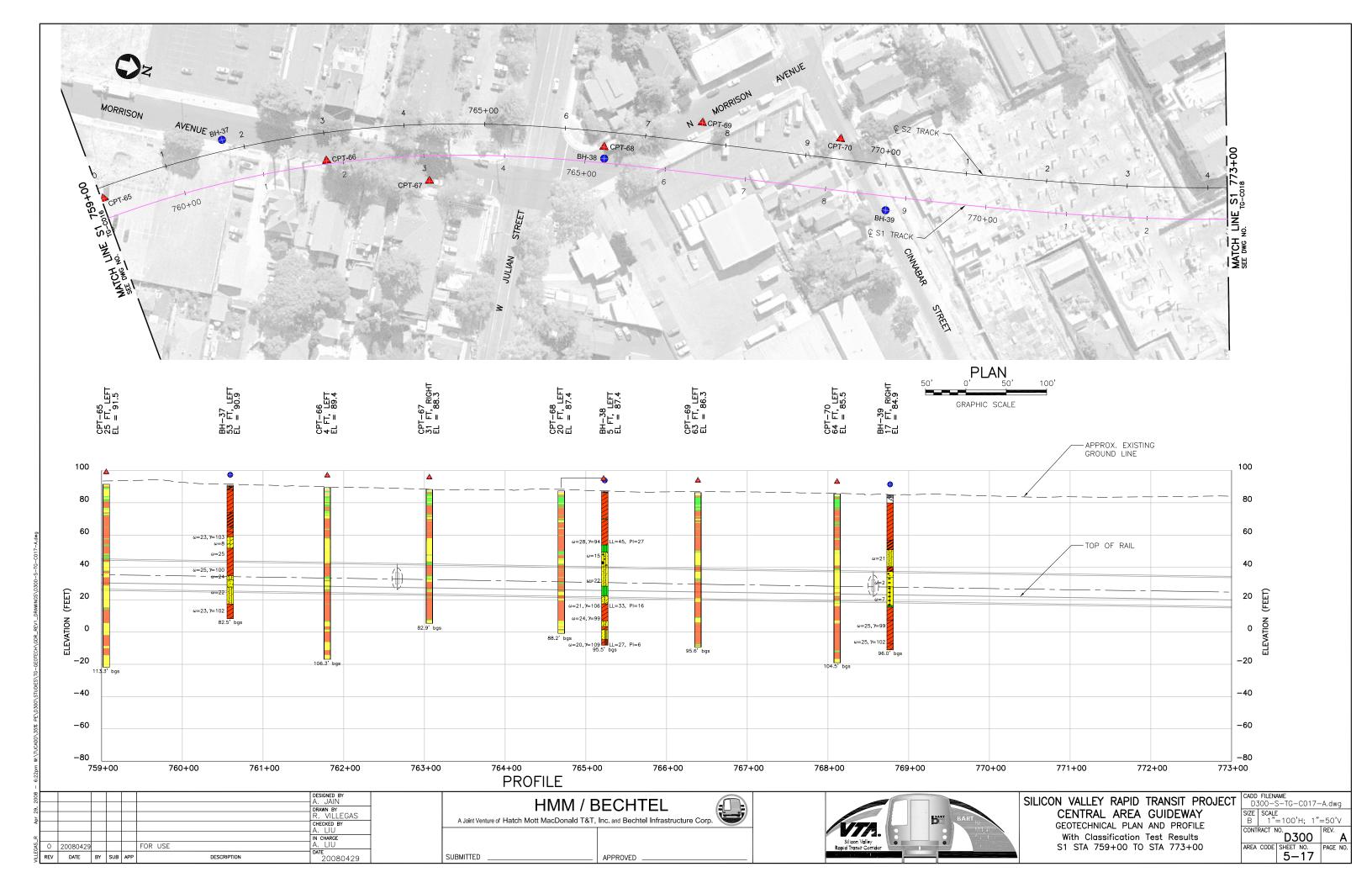
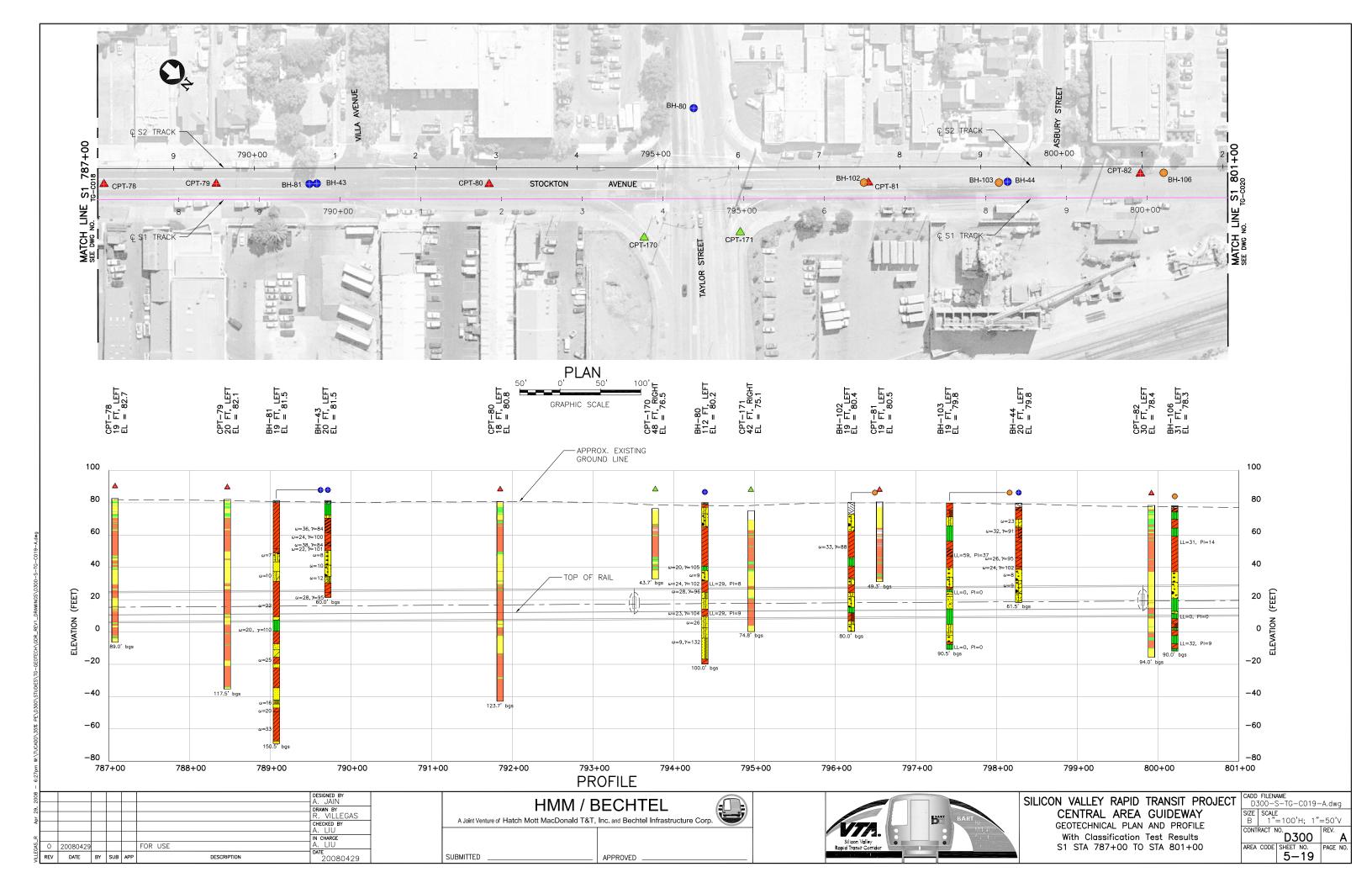
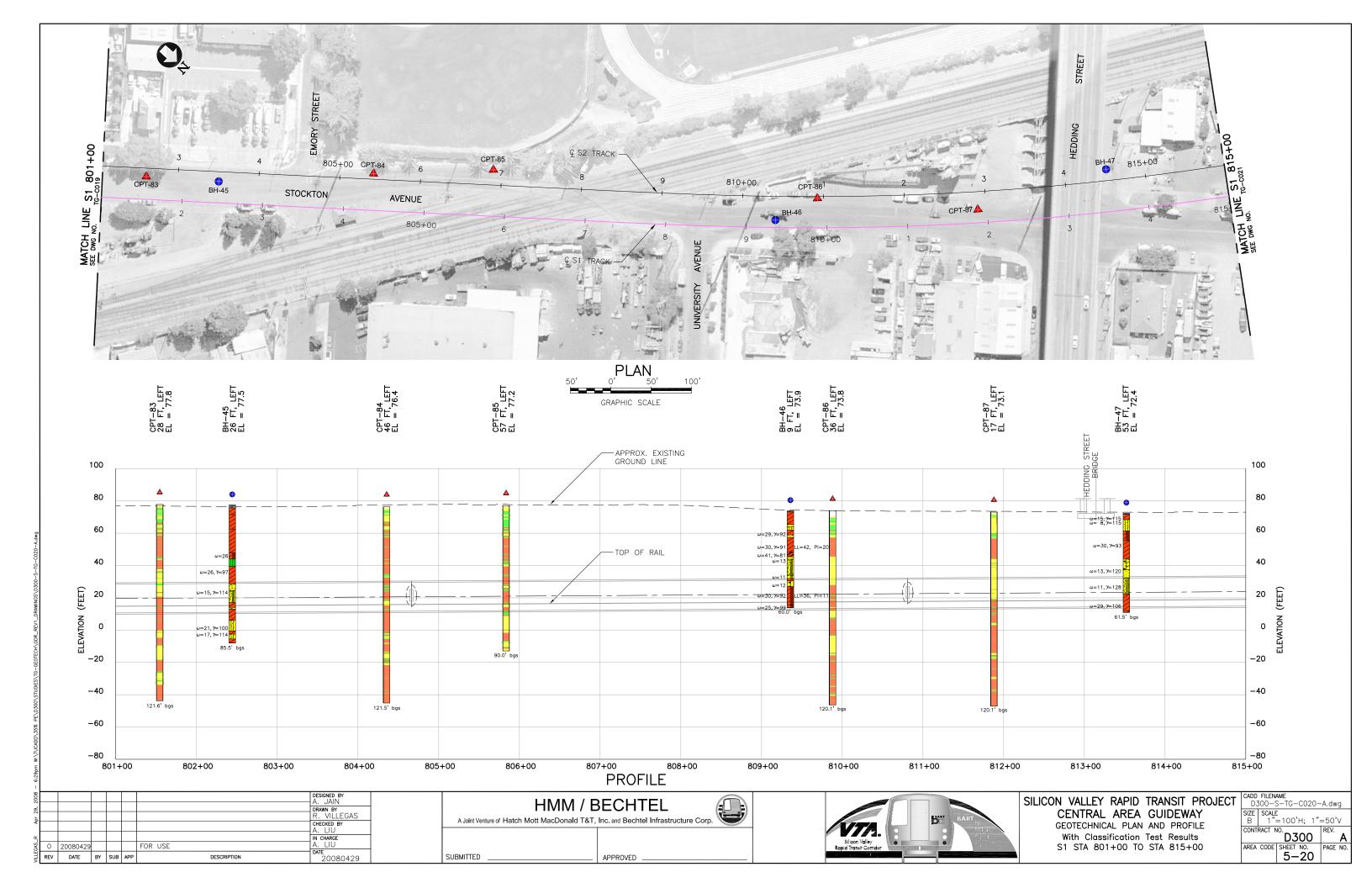
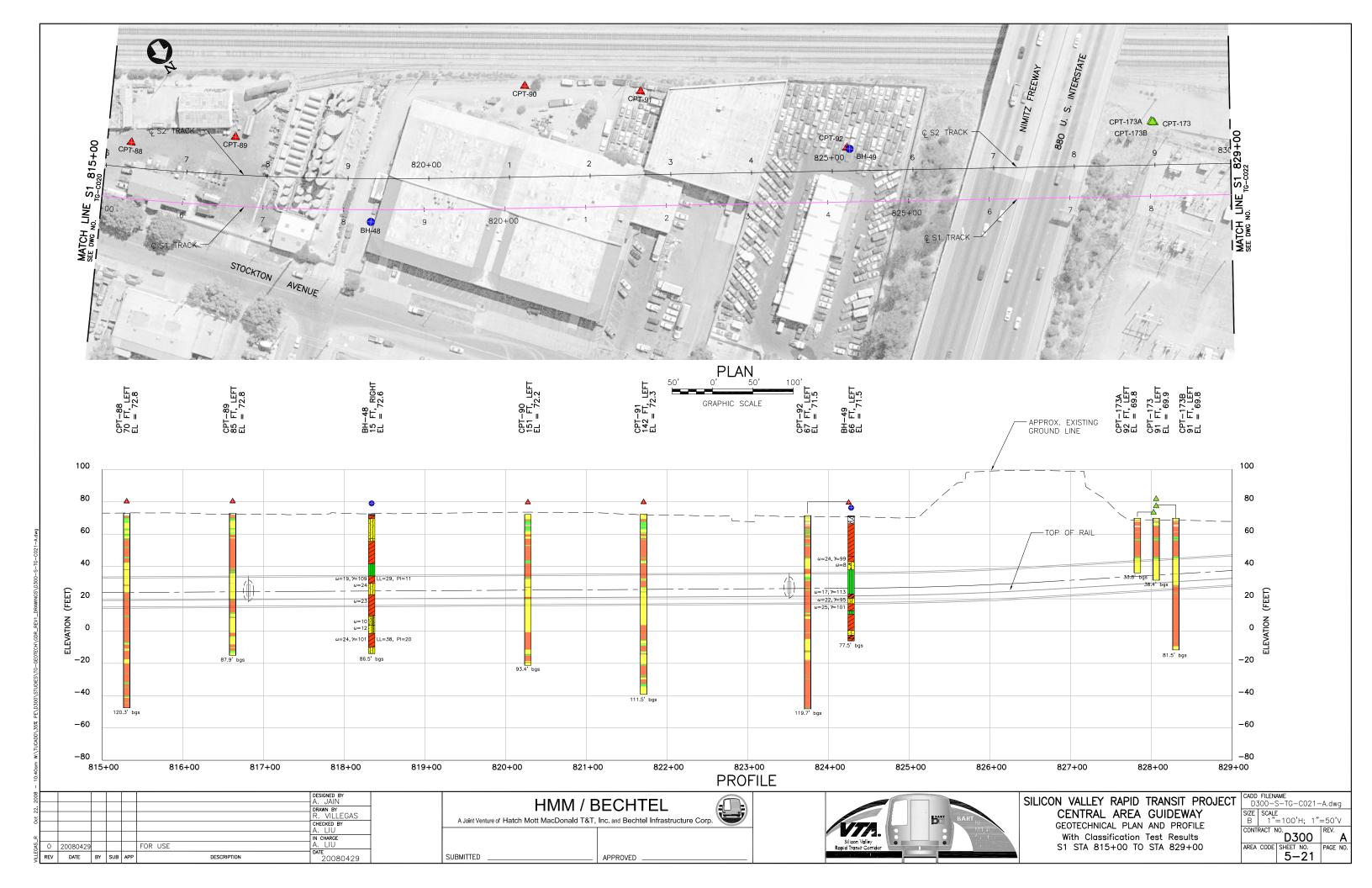
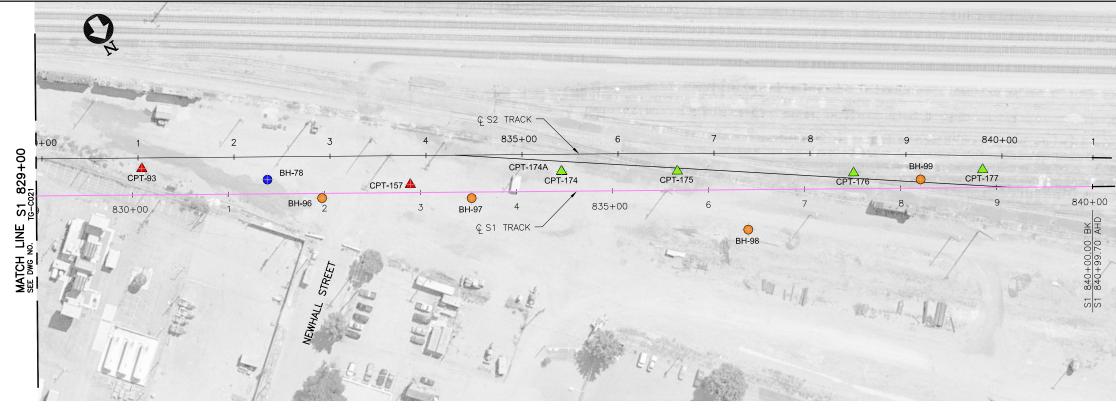

Figure 5-15 Geotechnical Plan and Profile with Classification Test Results: STA 732+00 to STA 746+00

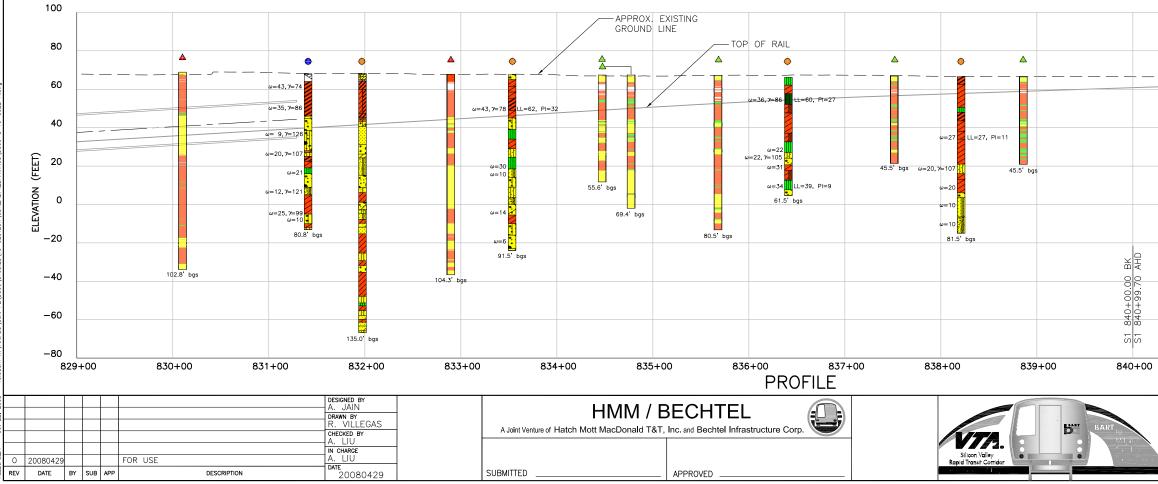

Figure 5-16 Geotechnical Plan and Profile with Classification Test Results: STA 746+00 to STA 759+00


Figure 5-17 Geotechnical Plan and Profile with Classification Test Results: STA 759+00 to STA 773+00


Figure 5-18 Geotechnical Plan and Profile with Classification Test Results: STA 773+00 to STA 787+00


Figure 5-19 Geotechnical Plan and Profile with Classification Test Results: STA 787+00 to STA 801+00


Figure 5-20 Geotechnical Plan and Profile with Classification Test Results: STA 801+00 to STA 815+00


Figure 5-21 Geotechnical Plan and Profile with Classification Test Results: STA 815+00 to STA 829+00

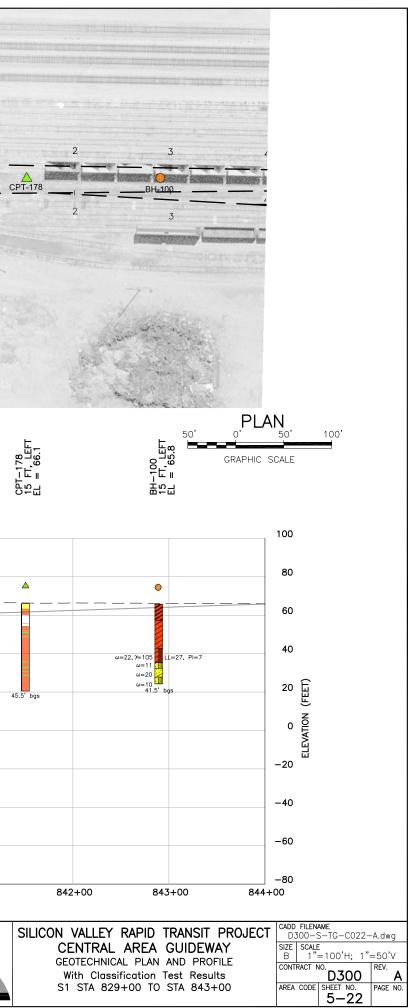
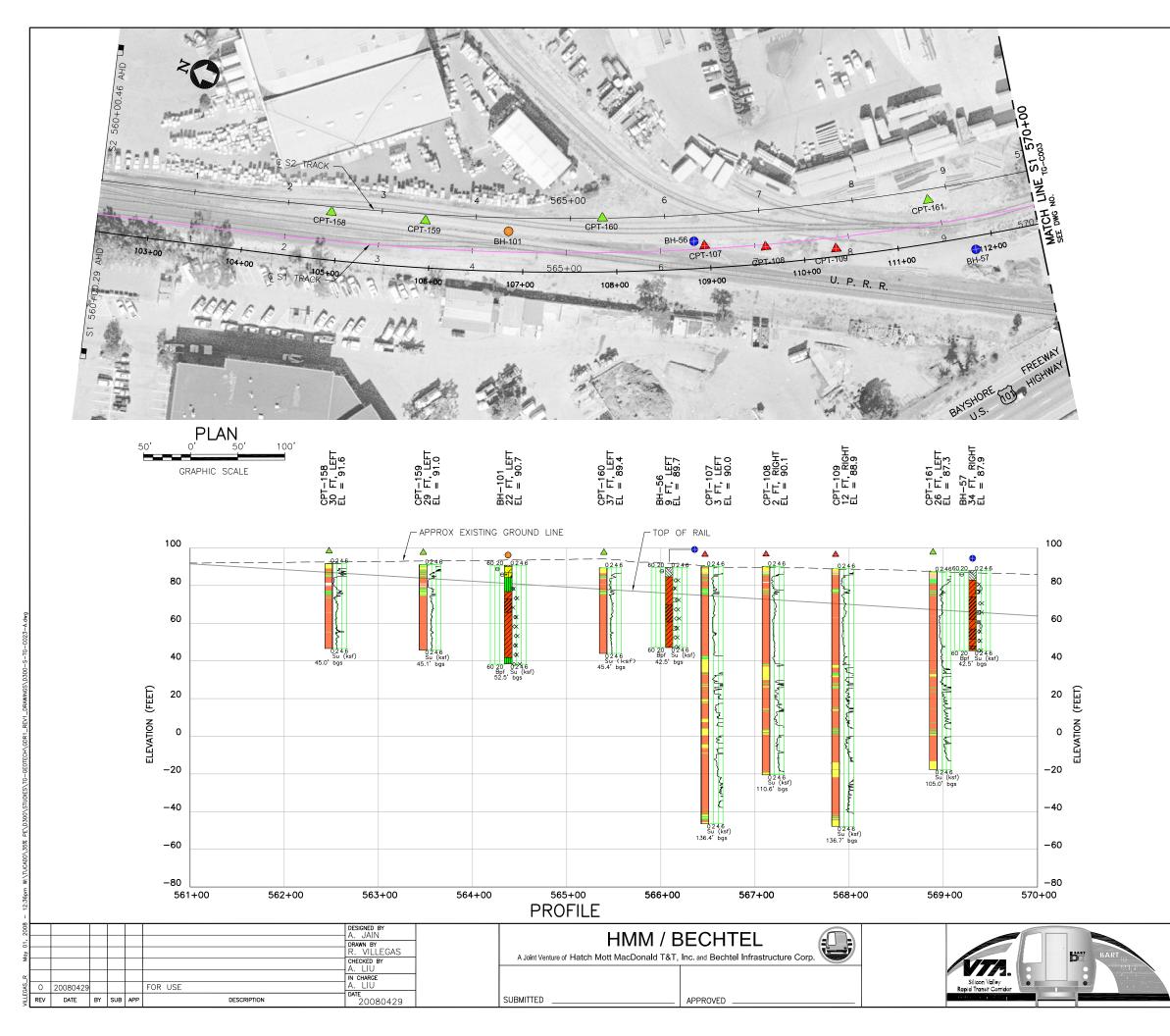


Figure 5-22 Geotechnical Plan and Profile with Classification Test Results: STA 829+00 to STA 843+99



CPT-93 EL = 68.9 27 FJ, LEFT EL = 68.0 BH-78 15 FJ, LEFT EL = 68.0 BH-96 6 FJ, LEFT EL = 67.5 EL = 67.5 EL = 67.4 CPT-174 EL = 67.5 EL = 66.1 EL = 66.1 EL = 66.1 EL = 66.1 EL = 66.5 EL = 66.6 EL = 66.6

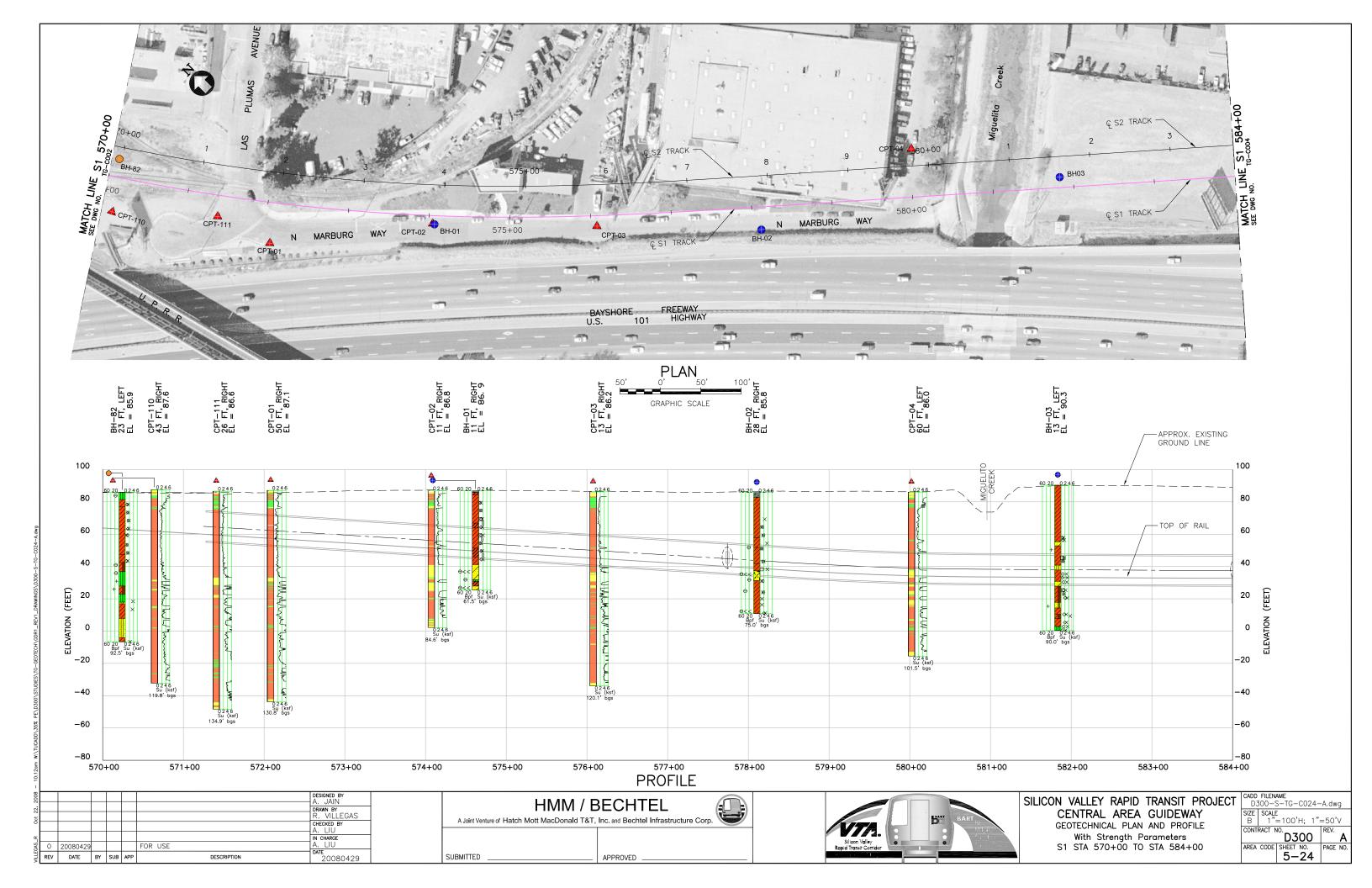
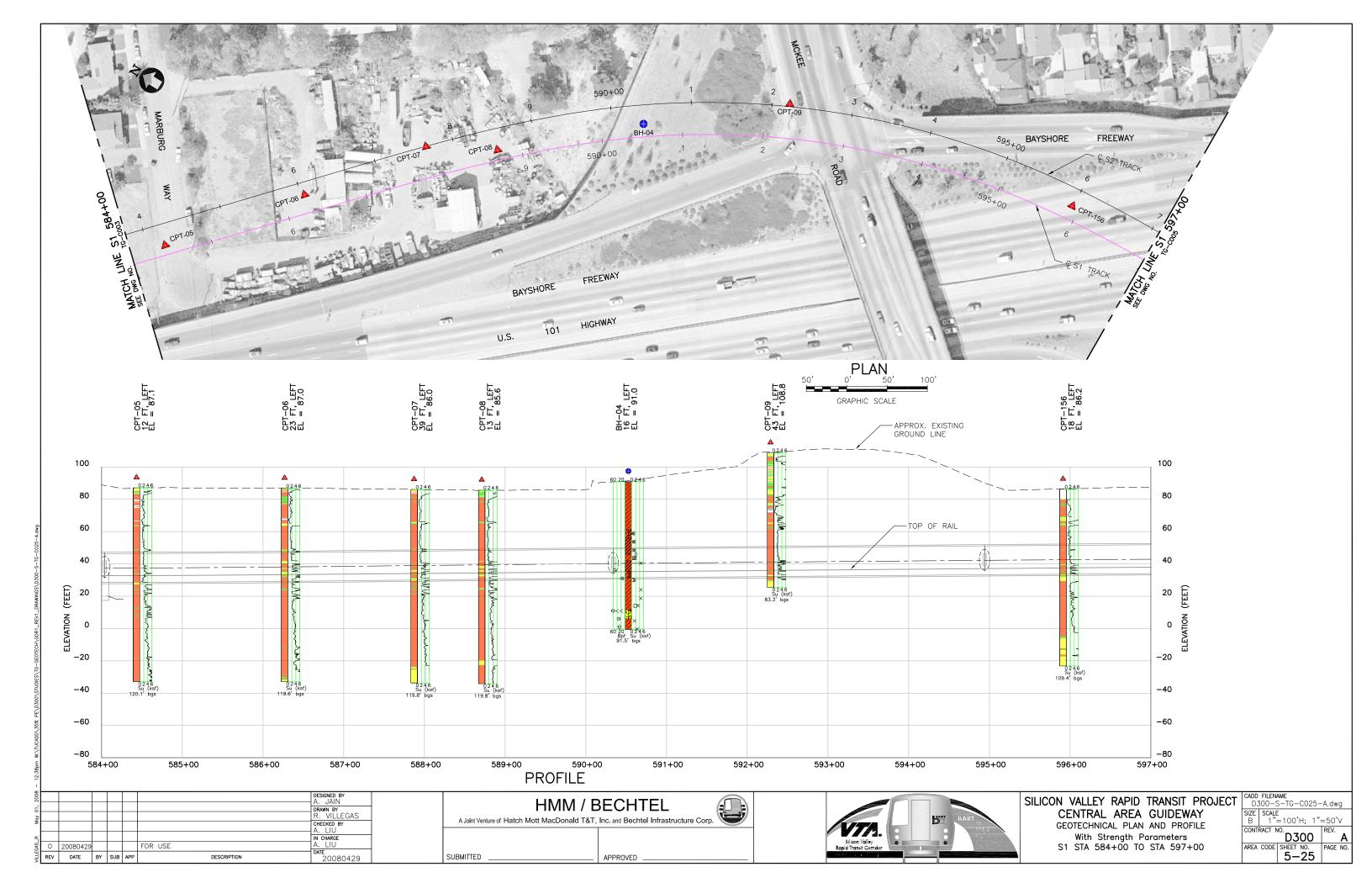
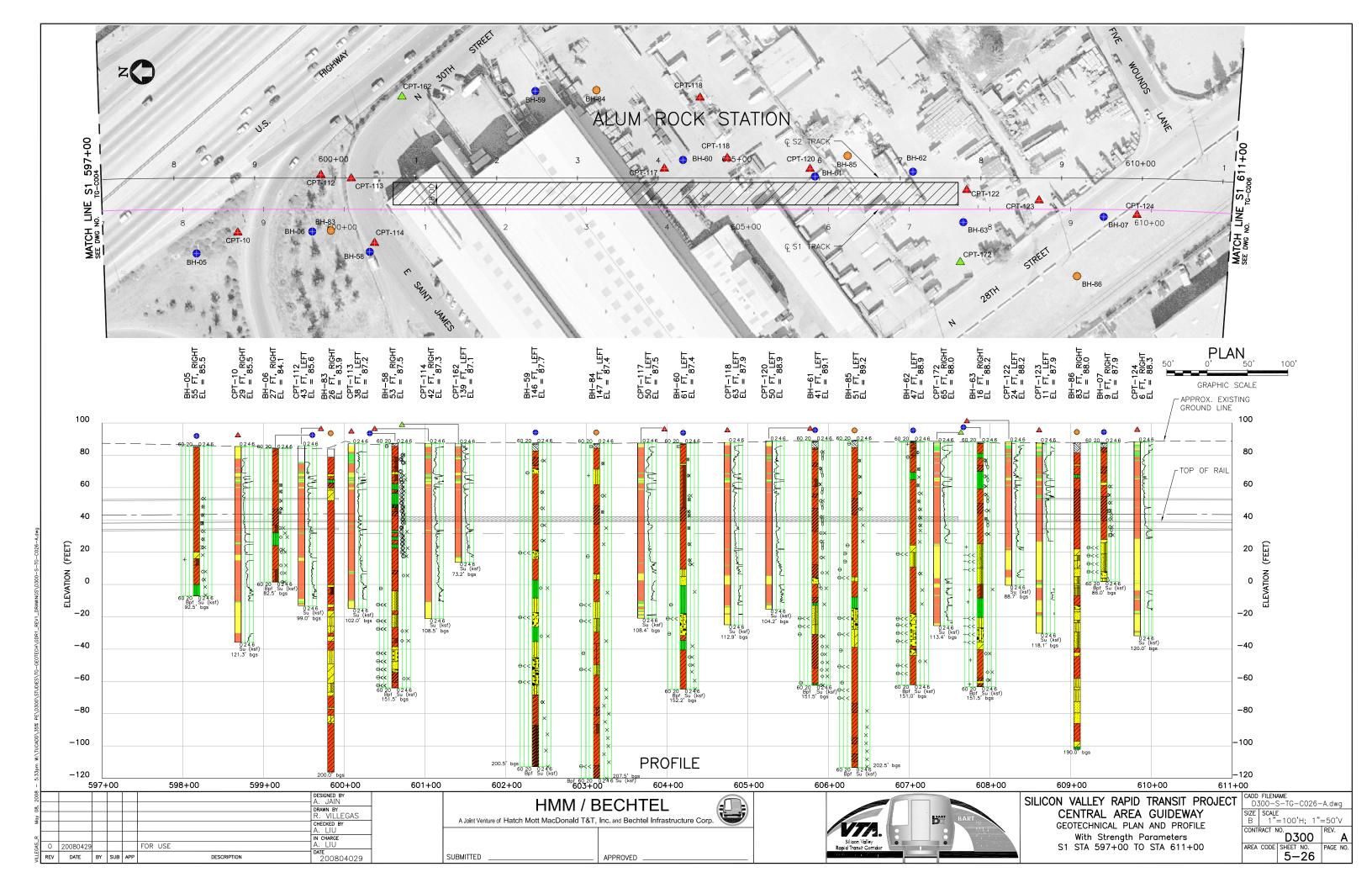


Figure 5-23 Geotechnical Plan and Profile with Strength Parameters: STA 561+00 to STA 570+00



	SILICON VALLEY RAPID TRANSIT PROJECT	CADD FILENAME D300-S-TG-C023-A.dwg			
	CENTRAL AREA GUIDEWAY	SIZE B	SIZE SCALE B 1"=100'H; 1"=50'V		
With Strengt	With Strength Parameters	CONT	RACT N	^{10.} D300	REV.
	S1 STA 561+00 TO STA 570+00	AREA	CODE	SHEET NO. 5-23	PAGE NO.


Figure 5-24 Geotechnical Plan and Profile with Strength Parameters: STA 570+00 to STA 584+00

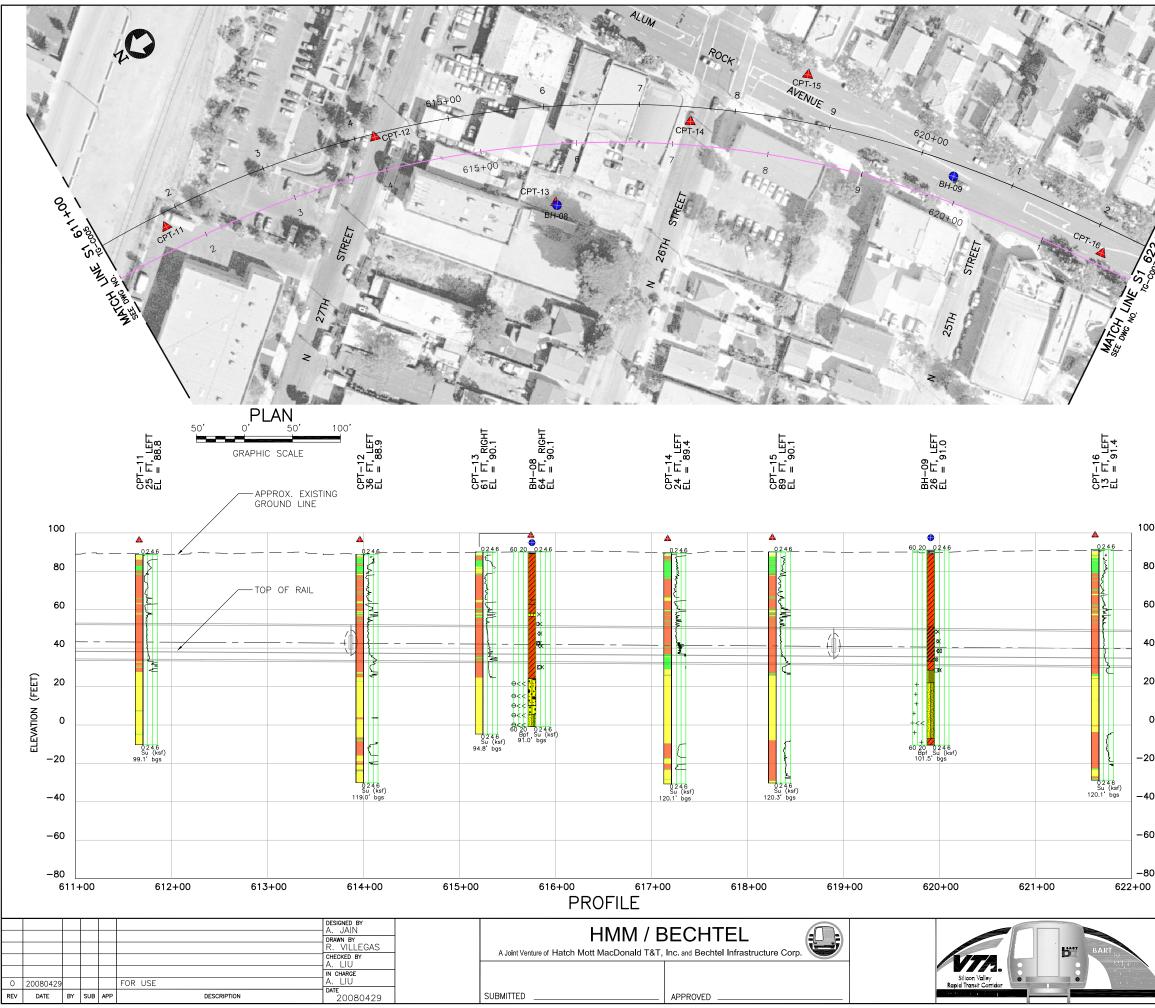
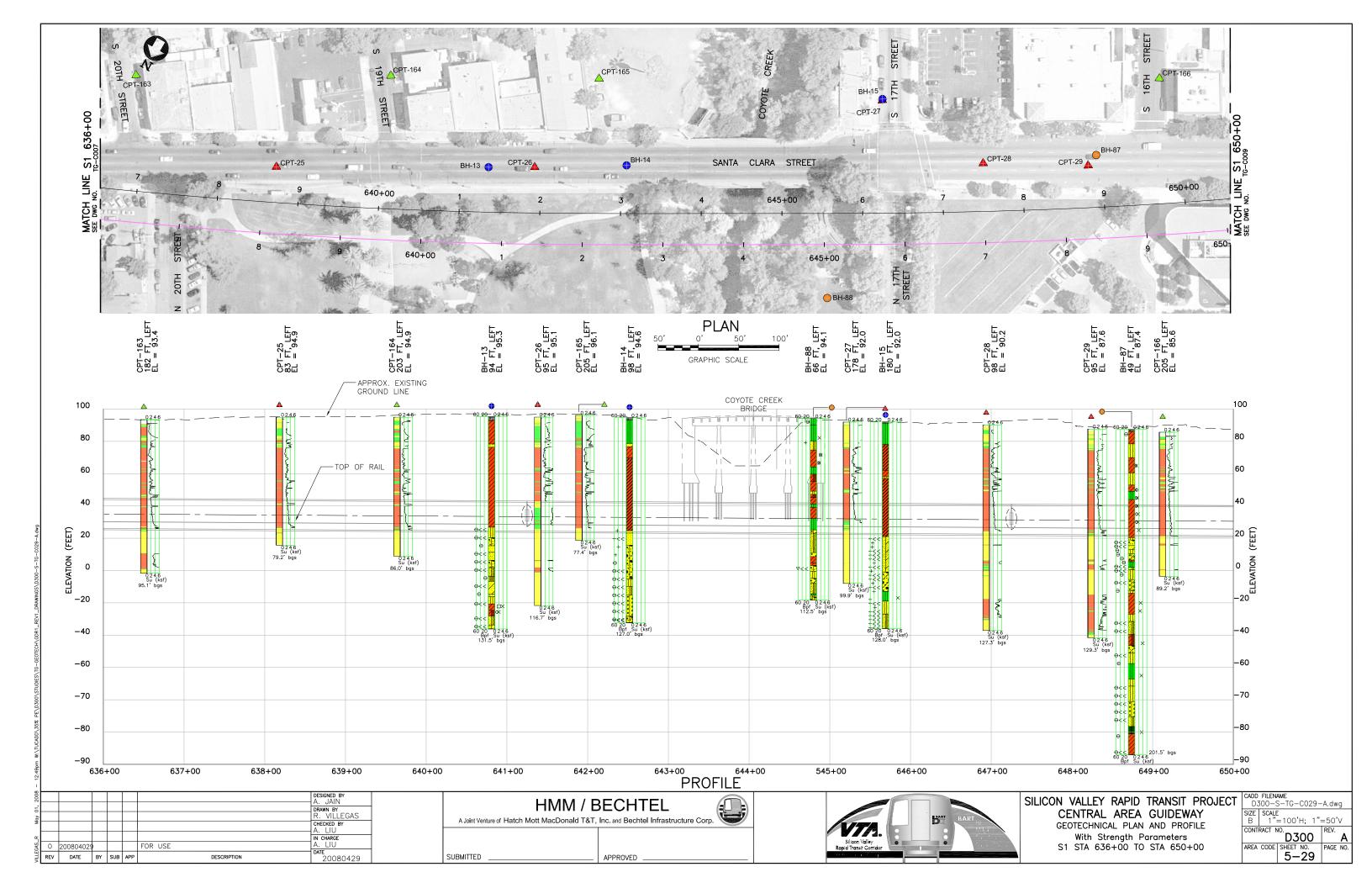

Figure 5-25 Geotechnical Plan and Profile with Strength Parameters: STA 584+00 to STA 597+00

Figure 5-26 Geotechnical Plan and Profile with Strength Parameters: STA 597+00 to STA 611+00

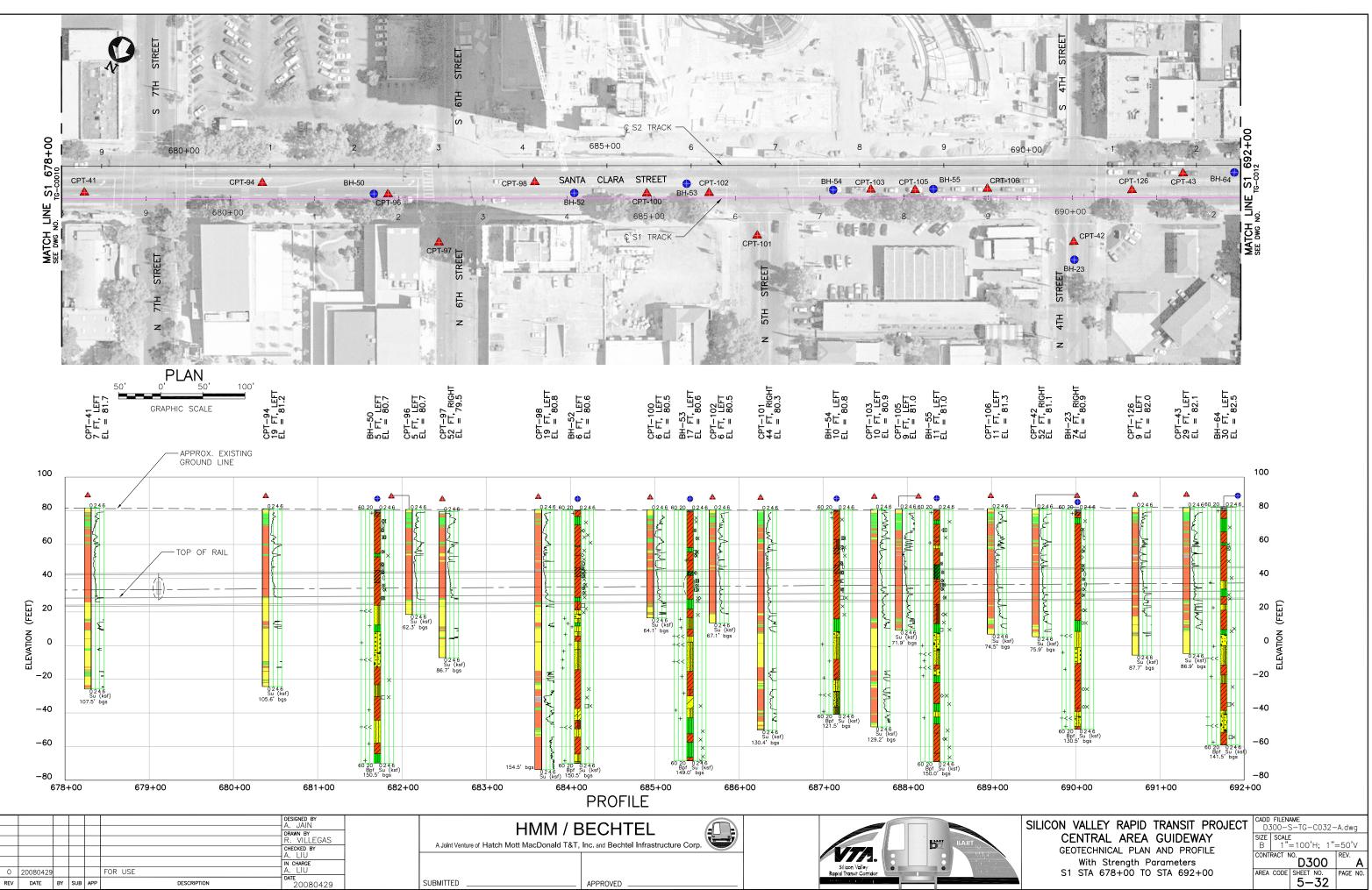
Figure 5-27 Geotechnical Plan and Profile with Strength Parameters: STA 611+00 to STA 622+00



100×25×00			
00			
30			
60			
ю			
20			
0	ELEVATION (FEET)		
20	ELEVA		
ю			
60			
30 D			
	SILICON VALLEY RAPID TRANSIT PROJECT CENTRAL AREA GUIDEWAY GEOTECHNICAL PLAN AND PROFILE With Strength Parameters S1 STA 611+00 TO STA 622+00	$\begin{tabular}{ c c c c c c c } \hline CadD FILENAME & $D300-S-TG-C027-A.dwg$ \\ \hline SIZE & SCALE & $1"=100'H; $1"=50'V$ \\ \hline CONTRACT NO. & $D300$ & $Rev.$ \\ \hline D3000 & $Rev.$ \\ \hline AREA CODE & SHEET NO.$ $PAGE NO.$ \\ \hline 5-27$ & $PAGE NO.$ \\ \hline \end{tabular}$	

Figure 5-28 Geotechnical Plan and Profile with Strength Parameters: STA 622+00 to STA 636+00

Figure 5-29 Geotechnical Plan and Profile with Strength Parameters: STA 636+00 to STA 650+00


Figure 5-30 Geotechnical Plan and Profile with Strength Parameters: STA 650+00 to STA 664+00

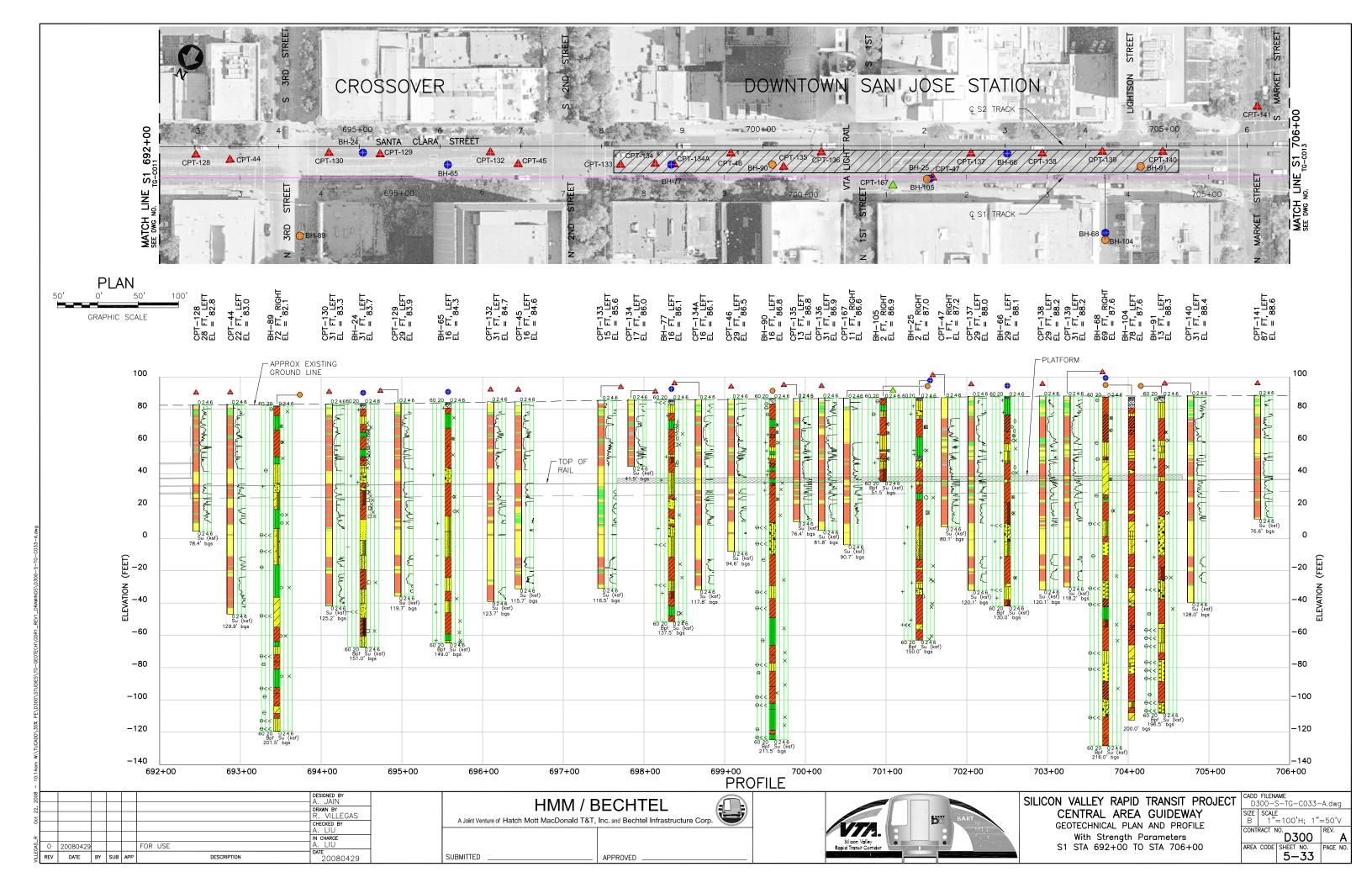

Figure 5-31 Geotechnical Plan and Profile with Strength Parameters: STA 664+00 to STA 678+00


Figure 5-32 Geotechnical Plan and Profile with Strength Parameters: STA 678+00 to STA 692+00

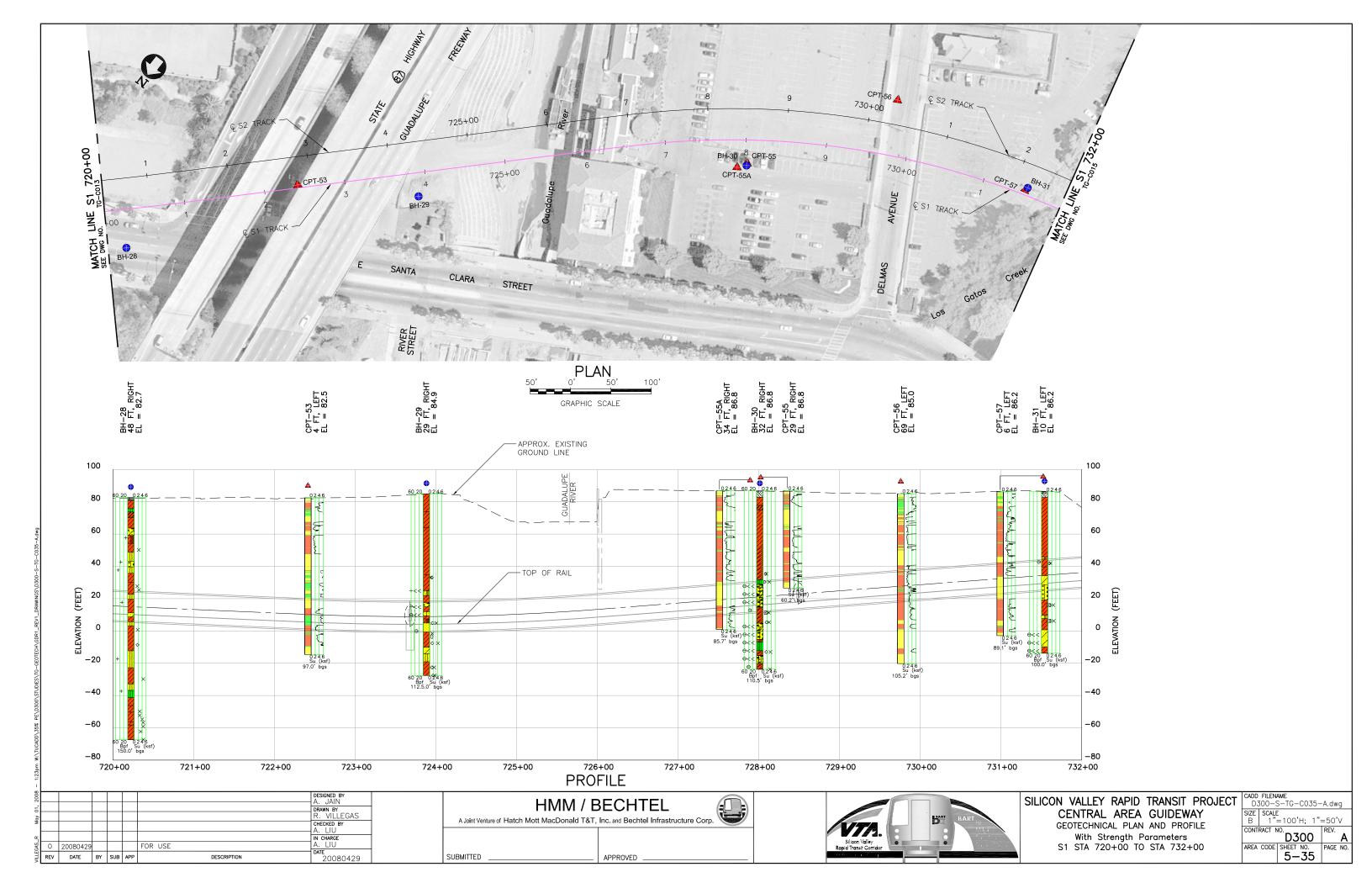

Figure 5-33 Geotechnical Plan and Profile with Strength Parameters: STA 692+00 to STA 706+00

Figure 5-34 Geotechnical Plan and Profile with Strength Parameters: STA 706+00 to STA 720+00

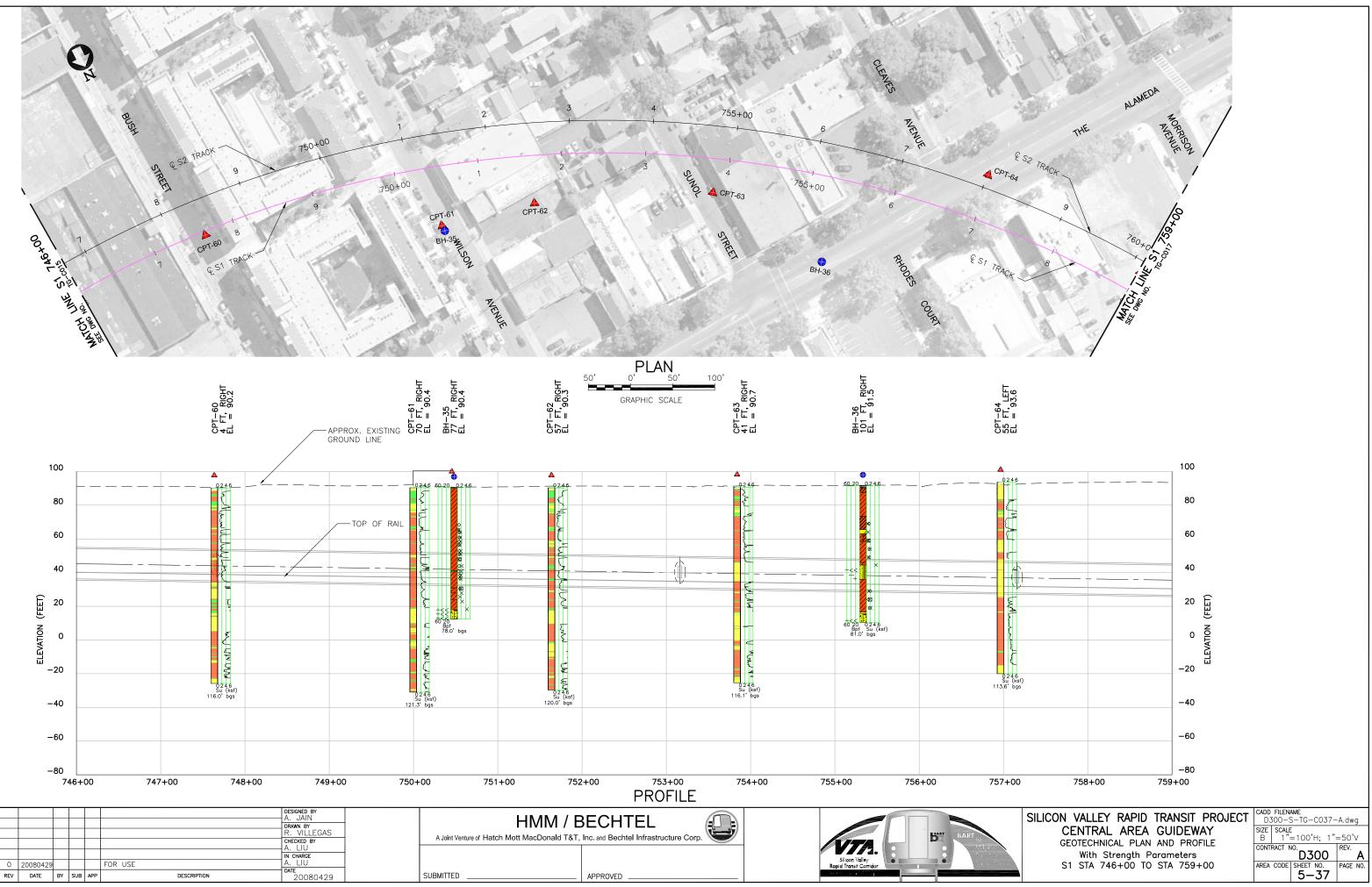
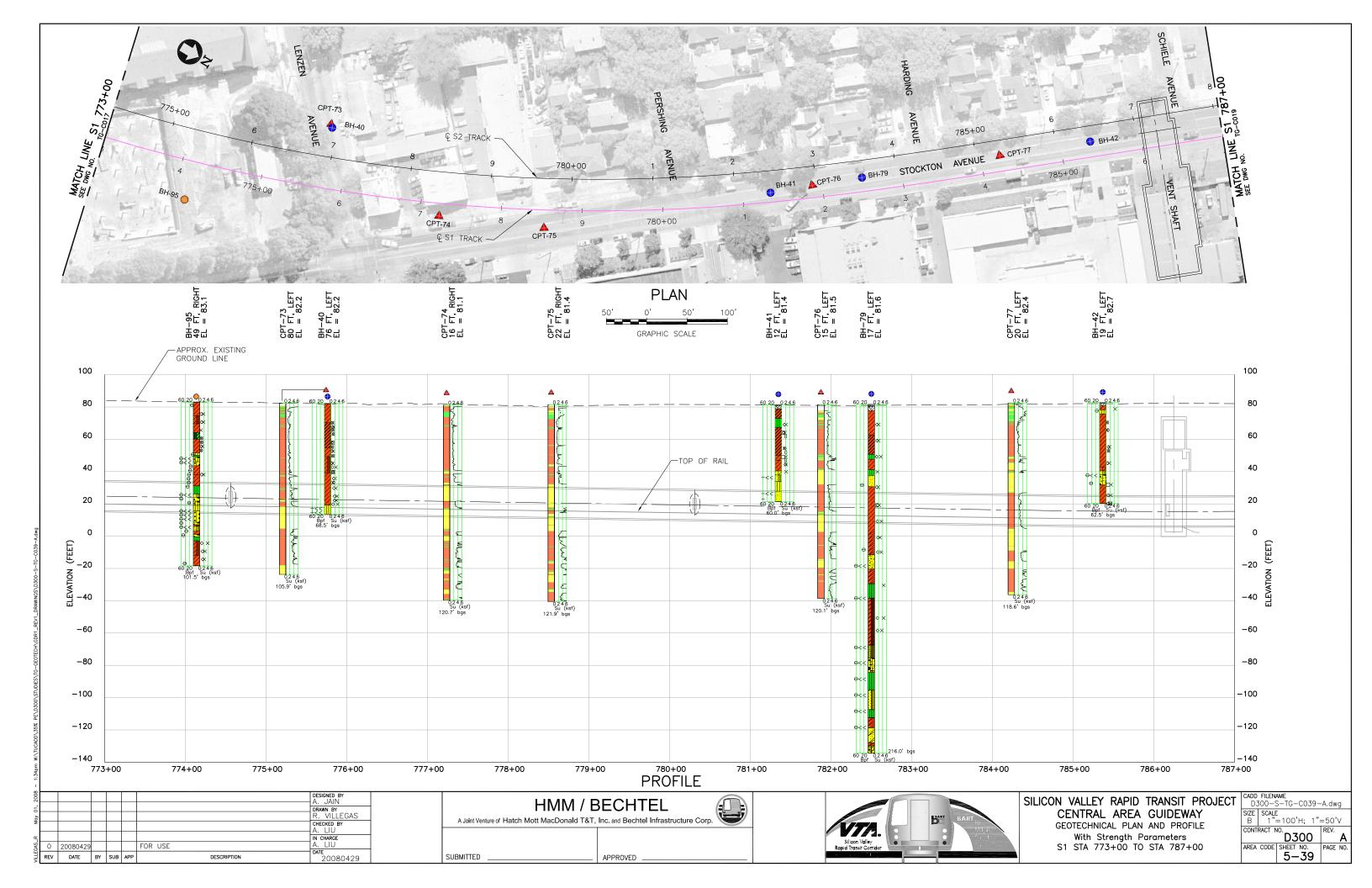
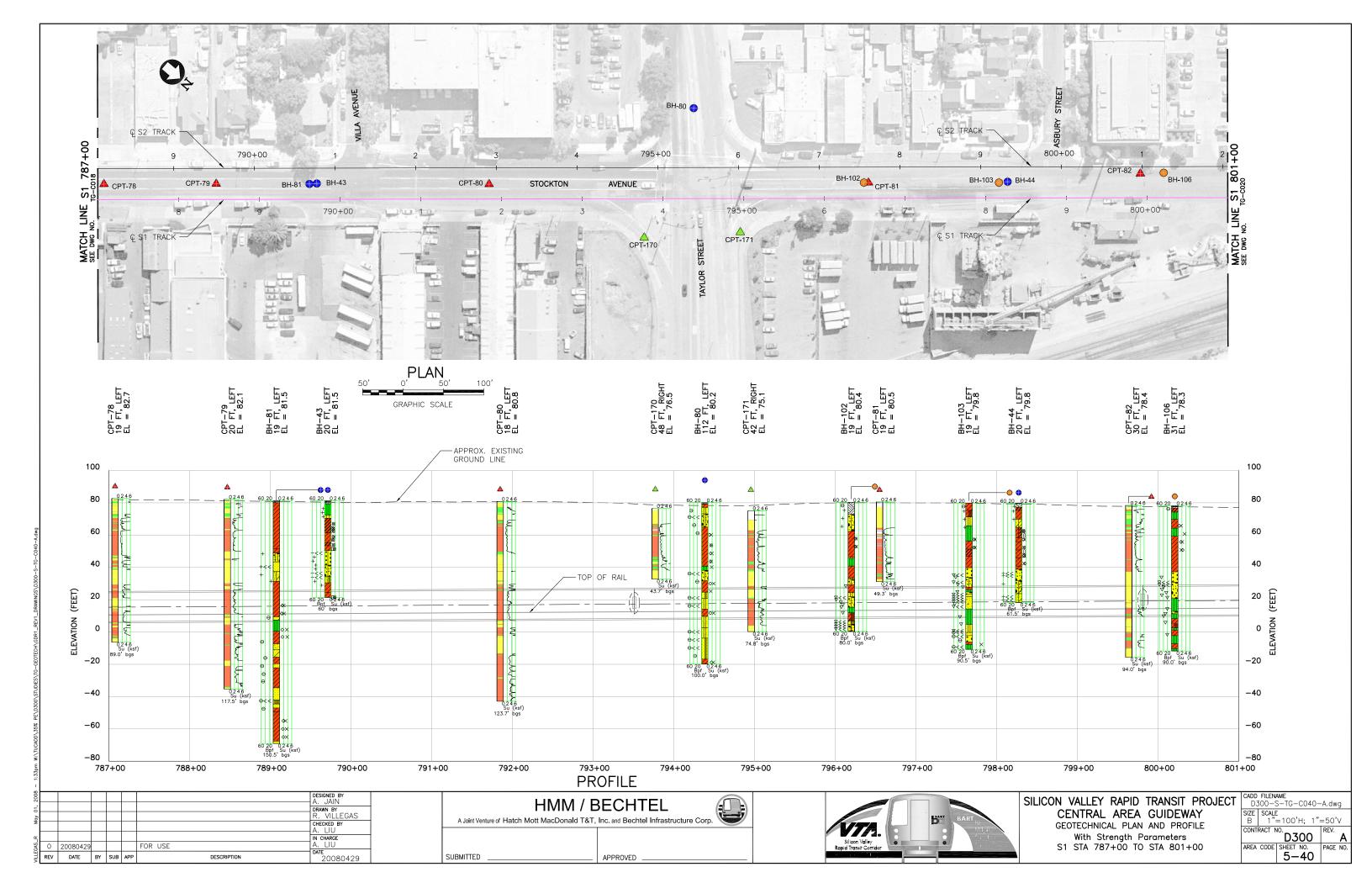
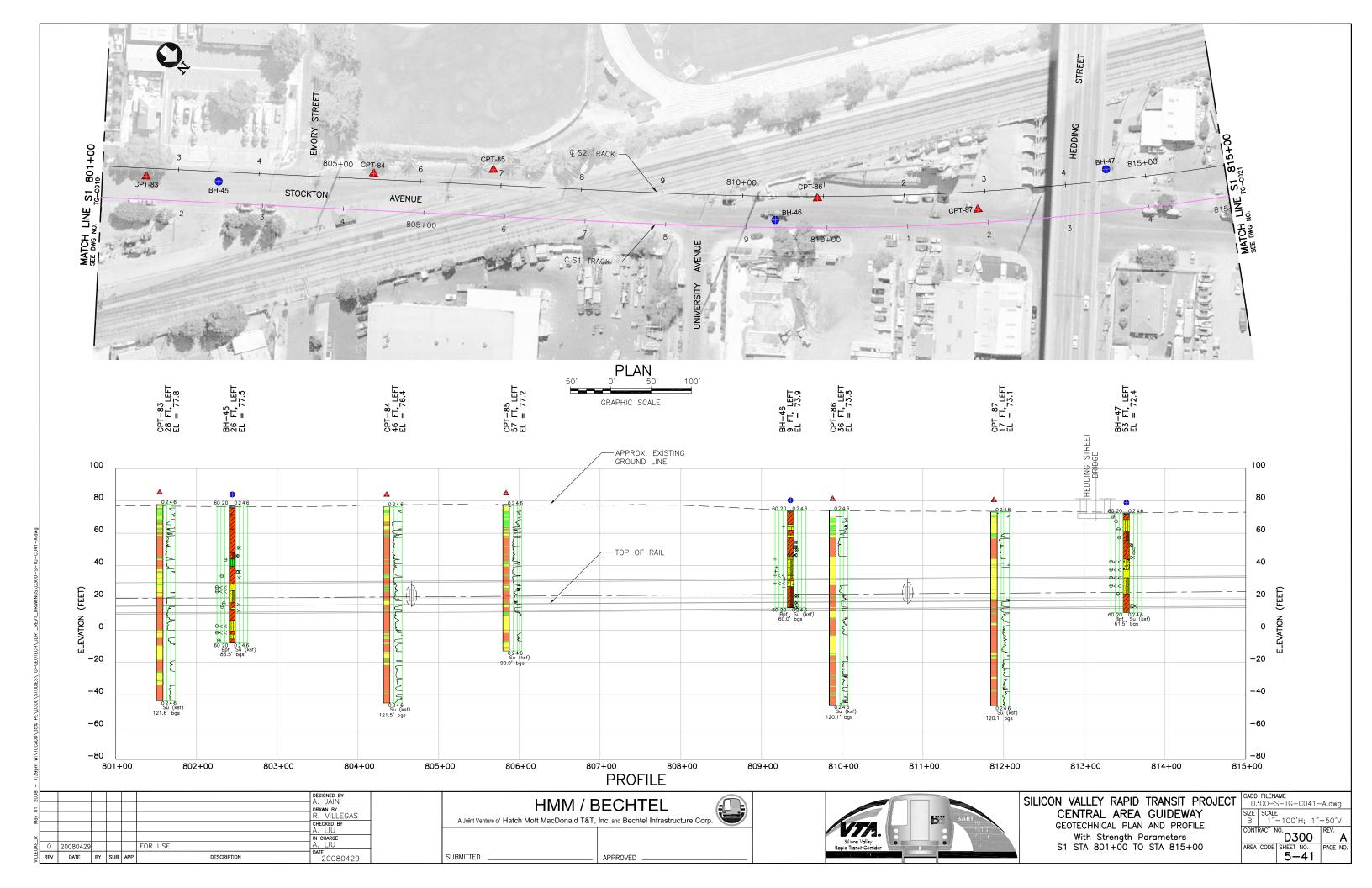
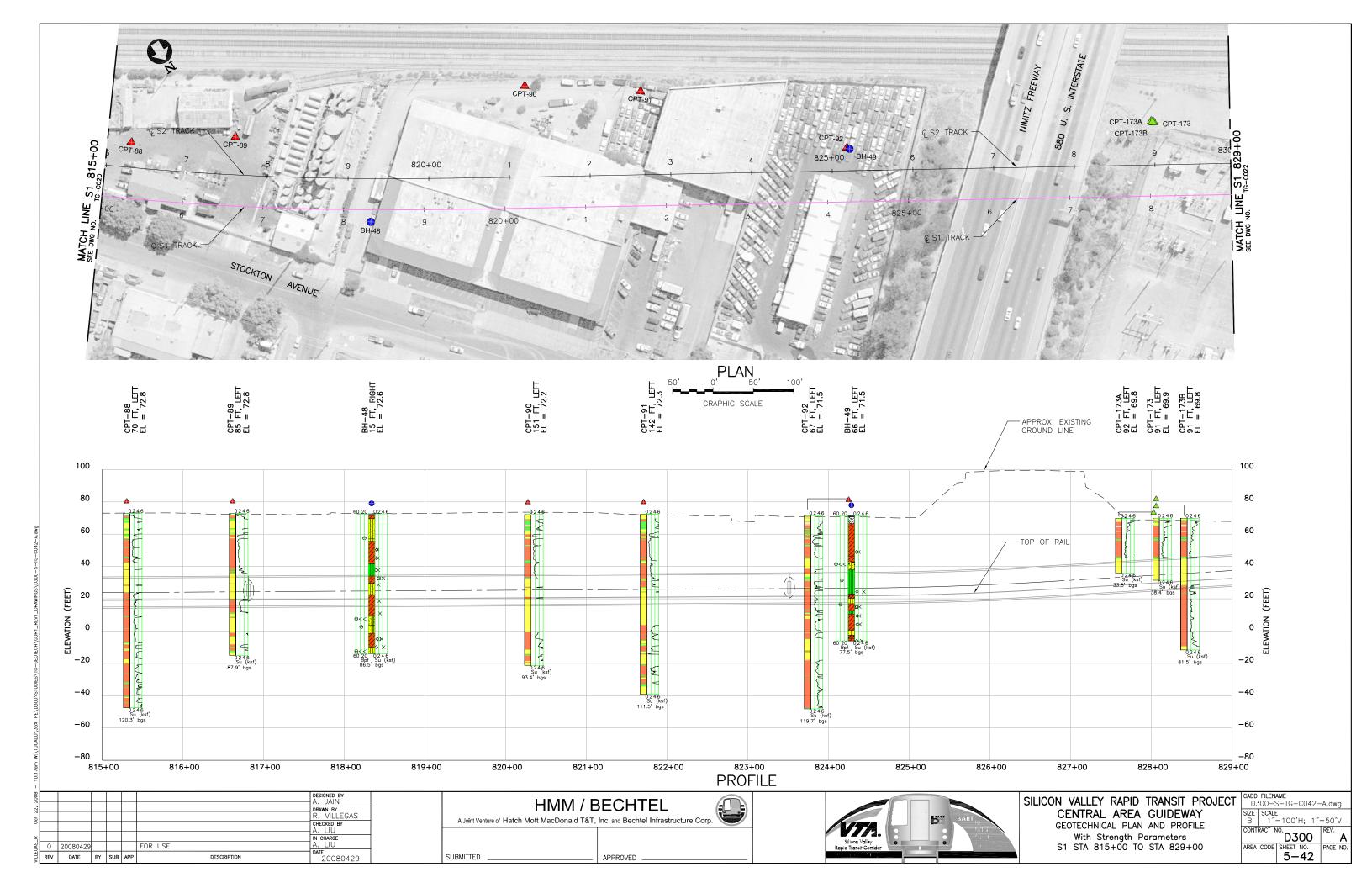

Figure 5-35 Geotechnical Plan and Profile with Strength Parameters: STA 720+00 to STA 732+00

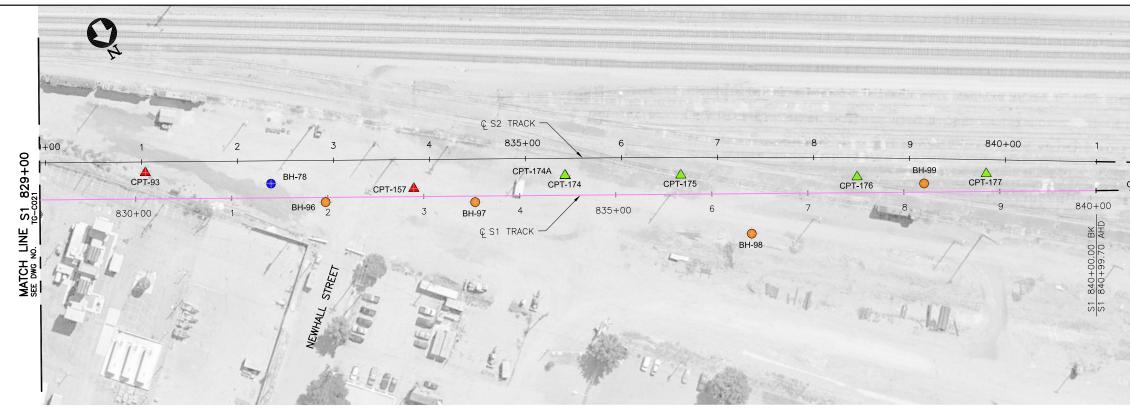
Figure 5-36 Geotechnical Plan and Profile with Strength Parameters: STA 732+00 to STA 746+00

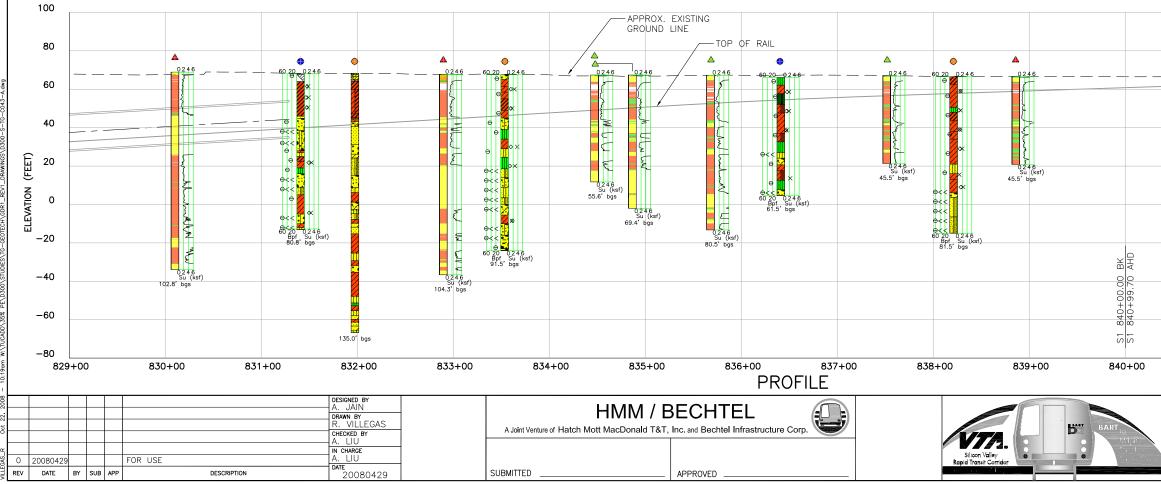

Figure 5-37 Geotechnical Plan and Profile with Strength Parameters: STA 746+00 to STA 759+00


Figure 5-38 Geotechnical Plan and Profile with Strength Parameters: STA 759+00 to STA 773+00


Figure 5-39 Geotechnical Plan and Profile with Strength Parameters: STA 773+00 to STA 787+00


Figure 5-40 Geotechnical Plan and Profile with Strength Parameters: STA 787+00 to STA 801+00


Figure 5-41 Geotechnical Plan and Profile with Strength Parameters: STA 801+00 to STA 815+00


Figure 5-42 Geotechnical Plan and Profile with Strength Parameters: STA 815+00 to STA 829+00

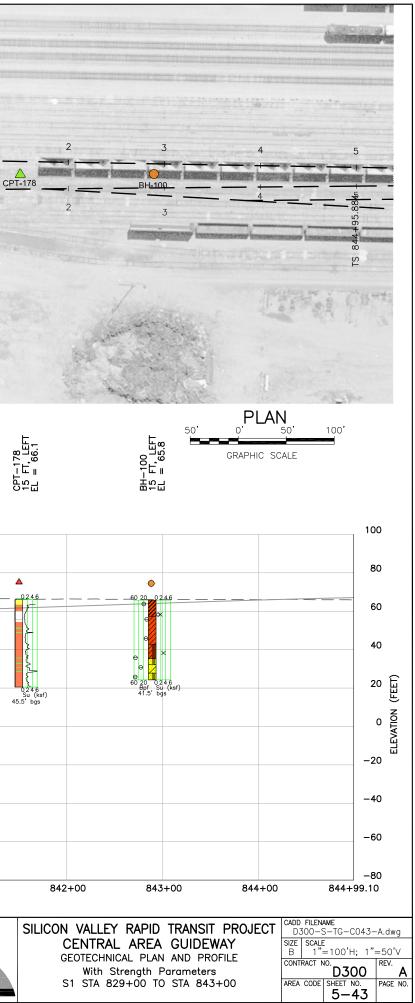


Figure 5-43 Geotechnical Plan and Profile with Strength Parameters: STA 829+00 to STA 843+99

REFERENCES

American Society for Testing and Materials: Annual Book of ASTM Standards

Douglas, Y., Zavala, B. (2002). "Ground-water sampling guidelines for Supefund and RCRA project managers," Ground Water Forum Issue Paper

Duku, P.M., Stewart, J. P., Whang, D. D., Venugopal, R. (2007). "Digitally controlled simple shear apparatus for dynamic soil testing," Geotech. Testing Journal, ASTM, 30 (5), 368-377.

HMM/Bechtel (2004). "Review of Available Geotechnical Data-Bart to San Jose Project, Segments 3 and 4," Report No P0503-D300-RPT-GEO-001, issued to VTA.

HMM/Bechtel (2005a). "Tunnel Segment Geotechnical Data Report," Report No P0503-D300-RPT-GEO-002, Rev. 0 issued to VTA.

HMM/Bechtel (2005b). "Tunnel Segment Hydrogeology Report," Report No P0503-D300-RPT-DE-020, Rev. 0 issued to VTA.

HMM/Bechtel (2007). "Tunnel Segment Design Quality Plan," Plan No P0503-D300-PLN-QC-001, issued to VTA.

HMM/Bechtel (2008). "Pumping Test Data Report," Plan No P0503-D300-RPT-GEO-005, Rev. 0 issued to VTA.

Nilsen, B., Dahl, F., Holzhauser, A., Raleigh, P. (2007). "New Test Methodology for estimating the abrasiveness of soils for TBM tunneling," RETC 2007 Proceedings, pp. 104-116.

Robertson, P., K. (1990). "Soil Classification Using the Cone Penetration Test," *Canadian Geotechnical Journal*, v. 27.

Robertson, P. K., Campanella, R. G., Gillespie, D. and Greig, J. (1986). "Use of Piezocone Data," *Proceedings of the ASCE Specialty Conference In-situ 1986: Use of In-situ Tests in Geotechnical Engineering*, Blacksburg, 1263-80.

URS (2003). "Geotechnical Exploration Findings and Recommendations Report, Santa Clara Valley Transportation Authority (VTA), Bart Extension to Milpitas, San Jose and Santa Clara, 10% Conceptual Engineering" Vol. II: Tunnel and Underground Stations Segment." Prepared for Earth Tech, Inc., October 2003.

U.S. Army Corps of Engineers (1970). "Laboratory Soils Testing ", EM 1110-2-1906, Nov. 30, 1970.

This page is intentionally left blank.

APPENDICES

This page is intentionally left blank.

Appendix 1: Logs of Borings

INTRODUCTION

Parikh Consultants, Inc. (PCI), was retained to perform subsurface exploration for 65 % Engineering Design phase of Silicon Valley Rapid Transit (SVRT) project. They performed the exploration from June 4, 2007 through August 1, 2007. The work was performed in general accordance with the project scope and technical specifications prepared by us.

PURPOSE AND SCOPE

The purpose of this exploration was to obtain and provide subsurface data along the proposed tunnel alignment for the project. The scope included performing 19 rotary wash borings to different depths. The depths of borings ranged from 40 feet to 210.5 feet. The summary of exploration program is provided in Table A1-1. Pitcher Drilling Company (Pitcher) was retained as the driller. One to two drilling crews were utilized. A similar methodology used during 35 % Preliminary Engineering phase was employed for rotary wash drilling, sampling and logging, as described in Appendix 1 of 'Tunnel Segment Geotechnical Data Report, Vol. II of VI, P0503-D300-RPT-GEO-002, Rev. 0 (HMM/Bechtel, September 2005). In addition to the samplers used during 35% phase, a geo-barrel and California samplers were also used to obtain disturbed samples during this phase of investigations. Specifications of these samplers are noted on Figure A1-1. The boring logs were presented to us in gINT database software format. The gINT database software acts as a repository of the borings data. We provided the gINT templates. The gINT produced boring logs are provided in Figures A1-2 through A1-21. The boring log for BH-81, which was performed near the end of 35% engineering design phase, is also included.

	Boring Depth	Surface		Of	fset	Structure	
Exploration	(ft)	Elevation (ft)	Station (ft)	(ft)	R/L	Туре	Driling Type
East Portal							
BH-101	52.5	90.8	564+38	22	L	Portal	RW
BH-082	92.5	85.9	570+08	22	L	Portal	RW
Alum Rock Stat	tion						
BH-083 [#]	200.0	83.9	599+84	26	R	Station	S
BH-084	207.5	87.4	603+12	148	L	Station	RW
BH-085	202.5	89.2	606+32	51	L	Station	RW
BH-086 [#]	190.0	88.0	609+08	83	R	Station	S
Tunnel from Al	um Rock Statio		er/Downtown St	ation			
BH-087	201.5	87.4	648+42	103	L	Tunnel	RW
BH-088	112.5	94.1	645+03	66	R	Tunnel	RW
Crossover/Dow	ntown Station					•	•
BH-089	201.5	82.1	693+74	72	R	Station	RW
BH-090	211.5	86.8	699+59	16	L	Station	RW
BH-105	51.5	86.9	701+51	2	R	Station	RW
BH-104 [#]	200.0	87.6	703+72	78	R	Station	S
BH-091	196.5	88.3	704+16	13	L	Station	RW
Diridon/Arena	Station					-	-
BH-092 [#]	200.0	86.8	736+62	35	R	Station	S
BH-093	211.5	89.1	738+61	84	L	Station	RW
BH-094 [#]	200.0	90.4	741+61	82	R	Station	S
Tunnel from Ci	ossover/Downt	own Station t	o West Portal			1	•
BH-081*	150.5	81.5	789+62	19	L	Tunnel	RW
BH-095	101.5	83.1	774+14	49	R	Tunnel	RW
BH-102	80.0	80.4	796+49	19	L	Tunnel	RW
BH-103	90.5	79.8	798+17	19	L	Tunnel	RW
BH-106	90.0	78.3	800+21	31	L	Tunnel	RW
West Portal							
BH-096 [#]	135.0	68.2	831+98	5	R	Portal	S
BH-097	91.5	67.5	833+53	6	R	Portal	RW
BH-098	61.5	66.1	836+41	42	R	Portal	RW
BH-099	81.5	66.5	838+21	9	L	Portal	RW
BH-100**	41.5	65.8	842+89	15	L	Portal	RW

 Table A1-1
 Summary of Exploratory Borehole Program - Phase 2 65% Engineering Design Investigation

 Silicon Valley Rapid Transit Project - Central Area Guideway

Notes

A. Stations and offsets are based on the April 25, 2008 S1 track alignment.

B. RW = Rotary Wash, S = Sonic, R/L = Right/Left of S1 track alignment.

C. * BH-81 was completed near the end of 35% engineeting design phase, and therefore could not be included in the 'Tunnel Segment Geotechnical Data Report (HMM/Bechtel, 2005a)'. Information from BH-81 is included in this Phase Two - 65% Engineering Design Report.

D. ** Stationing for BH-100 shown is based on Western Area Guideway alignment stationing (outside of tunnel alignment stationing).

E. [#]Part of pumping test program, and included in 'Pumping Test Data Report (HMM/Bechtel, Feb 2008)'.

SVRT BORING LOGS LEGEND ZATUGENERALIUSERSJAIN_AIGINTSVRT_PHASE 2_041808.GPJ TESTLIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 4/29/08 03:22 p

	MAJOR D	IVISIONS		Ģ	GROUP NAMES		GE	ENERAL NOTES				
		Clean gravels	GW	We	ell-Graded Gravel		Classifica D2488	ation of Soils per ASTM D2487 or				
		less than 5% fines	GP	• Poo	orly Graded Gravel		Geologic Formation noted in bold font at the top of interpreted interval					
	-		GW-GM	We	ell-Graded Gravel with Silt			ted Blowcounts for Modified				
SUILS ned /e	GRAVELS	Gravels with	GW-GC	We	ell-Graded Gravel with Clay (or	r Silty Clay)	California	a Liner Sampler shown in () "				
u v ained		5-12% fines	GP-GM	Po	orly Graded Gravel with Silt		 Length of sample symbol approximates recovery length 					
NEL % ret 00 si	MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4		GP-GC	Poo	orly Graded Gravel with Clay (or Silty Clay)	"X" in Sample No. column indicates that the was no recovery during sampling.					
More than 50% retained on the No. 200 sieve	SIEVE	Gravels with	GM	Silt	y Gravel			ER DRIVING RESISTANCE				
л free nthe		more than 12% fines	GC	Cla	yey Gravel			of blows with 140 lb. hammer, falling drive sampler 1-ft. after seating				
COAKSE-GRAINED More than 50% retair on the No. 200 siev			GC-GM	Silt	y, Clayey Gravel			6-in.; for example,				
3		Clean sand less than 5%	sw	We	ell-Graded Sand		Blows/ft	Description				
		fines	SP	Po	orly Graded Sand		25	25 blows drove sampler 12" after initial 6" of seating				
	SANDS		SW-SM	We	ell-Graded Sand with Silt		50/7"	50 blows drove sampler 7" after initial 6" of seating				
	MORE THAN 50% OF COARSE FRACTION	Sands with 5-12% fines	SW-SC	We	ell-Graded Sand with Clay (or	Silty Clay)	Ref/3"	50 blows drove sampler 3" during				
	PASSING NO. 4 SIEVE	0 1270 11100	SP-SM		orly Graded Sand with Silt			initial 6" seating interval (Ref=Refusal)				
	-		SP-SC	<u>.</u>	orly Graded Sand with Clay (o	r Silty Clay)		GTH TEST METHOD				
		Sands with more than	SM []	<u>/:</u>	y Sand		Q = Unco	nfined Compression onsolidated Undrained Triaxial				
		12% fines	SC /	H-	yey Sand y, Clayey Sand		T = Pocket Torvane (tv) P = Pocket Penetrometer (pp)					
		AND CLAYS	ML	Silt				ature Vane Shear Test Vane Shear Test (vs)				
SUILS sses eve			CL		an Clay		OTHER	TESTS				
L) S(passe sieve	Liquid Lir	nit Less than 50%	CL-ML	'n1—	y Clay		k = Perm Consol =	EI = Expansion Index Consolidation OVM = Organic Vap				
RAINED SO or more passes No. 200 sieve			OL ΨΨ	Org	ganic Silt		Gs = Spe	cific Gravity Measurement ticle Size Analysis				
FINE-GRAINED 50% or more pa the No. 200 sid		AND CLAYS	мн	Ela	stic Silt		PM = Pre	ssuremeter wer Explosive Limit				
50% 50% the	OILTO		сн	Fat	Clay		OXY = Ox	kygen Level Reading (%)				
LL.	Liquid Lim	it Greater than 50%	ОН	Org	ganic Clay		CO2 = Carbon dioxide Level Reading (ppm CH4 = Methane Level Reading (ppm)					
	HIGHLY ORG	ANIC SOILS	PT	Pea	at or Highly Organic Soils		H2S = Hy	drogen Sulphide Level Reading (pp				
			FILL		bris or Mixed Fill phalt Concrete Pavement with	Aggregate	WATER	LEVEL SYMBOLS				
				Ba	se gregate Base	Aggregate		asured Depth to Water				
					ment Concrete		Ay See	pages encountered				
		SAMPLER	TYPE				SOIL S	STRUCTURE				
				- 🖂	Fissi	ured: Containing shri usually more or	inkage or rel less vertica	lief cracks, often filled with fine sand or si I.				
	1	2 3	4 5 6 GB	$' \succeq$	Pock	ket: Inclusion of mat of the sample.	erial of differ	rent texture that is smaller than the diame				
Sam	plers and sample	SPT MC SH r dimensions (unles	BB PS GB s otherwise noted in re	CS	Parti	ing: Inclusion less th	nan 1/8 inch	thick extending through the sample.				
1	SPT Sampler, d		4 Bulk Bag Samp		Sear			thick extending through the sample.				
	1 3/8" ID, 2" ÓD	()	5 Pitcher Sampler	(PS)		-		is thick extending through the sample.				
2	MOD CA Liner 3 2.416" ID, 3" OE	`	2 7/8" ID, 3" OD 6 Geo-Barrel Sam		GB)	soil types.	·					
3	Thin-walled Tub 2 7/8" ID, 3" OD		2 2/5" ID, 4 3/4" 7 California Samp	OD `	/ Inter			of alternating layers of different soil type. f pockets of different soil type, and layere				
			1.975 " ID, 2.5"			or laminated s	structure is n	not evident.				
	Clave	CONSISTENCY Blows/Foo		7	RELATIVE DE	Blows/Foot		INCREASING VISUAL MOISTURE CONTENT				
\vdash	Clays	SPT	Strength (ksf)	-	Sands and Gravels	SPT	-					
	Very Soft Soft	< 2 2 - 4	0 - 0.25 0.25 - 0.5		Very Loose Loose	0 - 4 4 - 10		Dry				
	Medium	4 - 8	0.5 - 1		Medium Dense	4 - 10 10 - 30		Moist				
	Stiff	8 - 15	1-2	1			1					
	Very Stiff	15 - 30	2 - 4		Dense	30 - 50		Wet				

Information on each boring log is a compilation of subsurface conditions and soil or rock classifications obtained from the field as well as from laboratory testing of samples. Strata have been interpreted by commonly accepted procedures. The stratum lines on the logs may be transitional and approximate in nature. Water level measurements refer only to those observed at the time and places indicated, and can vary with time, geologic condition, or construction activity.

TERMS AND SYMBOLS USED ON BORING LOGS

ELEVATION, ft DEPTH, ft	SYMBOL SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Stockton Ave., between Schiele Ave. and Villa Ave. N 1,949,237 E 6,151,102 SURFACE EL: 81.5 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
30				5 inches ASPHALT CONCRETE over 12 inches AGGREGATE BASE							
				LEAN CLAY (CL)							
5-											
5											
10-											
•										••••••	
				∇							
15- 5											
										••••••	
20-											
25-											
5											
										•••••	
30- 10	\square			SANDY LEAN CLAY (CL)		•••••					
	1	. 🖂	52	SILTY GRAVEL WITH SAND (GM), very dense,						•••••	
35-	10			brown, moist, medium grained sand, subangular gravel up to 1 inch		7	12			• • • • • • • • • • •	
5										•••••	
40-				POORLY GRADED SAND WITH GRAVEL (SP), very dense, brown, moist, medium grained sand,							
.0	2 8"	×	79	subangular gravel up to 1 inch (LEL=0.0, OVM=0.0, OXY=19.8)							
45-	3	×	59	WELL-GRADED SAND WITH CLAY AND GRAVEL (SW-SC), very dense, brown, moist, medium to coarse grained sand, subrounded gravel up to 1/2		10	11				

BORING DEPTH: 150.5 ft DEPTH TO WATER: 14.4 ft., 7/21/05

START DATE: July 20, 2005 COMPLETION DATE: July 22, 2005 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Rope and Cathead RIG TYPE: Failing 1500

DATE: July 20, 2005 ETION DATE: July 22, 2005 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-81

Silicon Valley Rapid Transit Project San Jose, California

Sheet 1 of /

Project No.	213213	

	- 1												Sheet 2 of
ELEVATION, ft DEPTH, ft		MA I ERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Stockton Ave., between Schiele Ave. and Villa Ave. N 1,949,237 E 6,151,102 SURFACE EL: 81.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ELEV		SΥ	RECO	SAMPI	SAI BLOW PRES		VEI	SON	% P. #200	25	PLA	IREN	OTHE
			4		10						 	50	
30	K		0"			SANDY LEAN CLAY (CL), stiff, no recovery at 50 ft							
													Noise and Vibration Tes
5 5	5-									•••••			
6													Noise and
0			F		150 psi								
	ľ		5 30"		150 psi	stiff, gray, moist, low to medium plasticity							
6 5	5-			lilil	150 psi	(pp=1.7/2.2/2.1 tsf, tv=0.65/0.7/0.75 tsf)		22 	72	•••••		2.0 P 1.4 T	
			6 30"		150 psi	very stiff, brown, low plasticity (pp=2.5/2.0/2.1 tsf, tv=0.4/0.5/0.6 tsf) (LEL=0.0, OVM=0.0, OXY=19.9)							Noise and
7 0	0-				300 psi	Ended drilling on 7/20/05 at 70 ft Began drilling on 7/21/05 at 70 ft						- 2.2 Р - 1.0 Т	Noise and Wibration Tes
			7 0"		(23)	CLAYEY SAND (SC), medium dense, no recovery in MC sampler at 72.5 ft							
7	5-					SANDY SILT (ML), very stiff, gray, moist, low plasticity							
	-		8 30"	li i	245 psi								
8	0-			iiii	245 psi	(pp=3.5/3.5/3.7 tsf, tv=0.65/0.62/0.67 tsf)	- 110-		72	•••••		· · 3.6 P · · 1.3 T	Noise and Vibration Tes
			9 24"		300 psi	SANDY LEAN CLAY (CL), hard, brown, moist, low to medium plasticity, trace fine gravel				•••••			
8 5	5-			1111	400 psi	(pp=3.7/3.5/4.0 tsf, tv=0.65/0.7/0.75 tsf) refusal after 24 inches			70			3.8 P 1.4 T	
			10 12"		(55)					•••••			
9 10	0-					WELL-GRADED SAND WITH GRAVEL (SW), very dense, brown, moist, subrounded gravel up to 1 inch (LEL=0.0, OVM=0.0, OXY=20.0)							Noise and Wibration Tes
-			11 0"			CLAYEY SAND/ CLAYEY GRAVEL (SC/GC), no recovery, interbedded zone of clay and sand/ fine							
9 15	יאריי ייין ייין					gravel (could not advance the sampler due to gravelly slough)							
			12 15"		(39)	LEAN CLAY WITH SAND (CL), hard, light brown, moist, medium plasticity		 25	 82				

BORING DEPTH: 150.5 ft DEPTH TO WATER: 14.4 ft., 7/21/05

START DATE: July 20, 2005 COMPLETION DATE: July 22, 2005 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Rope and Cathead

 RIG TYPE: Failing 1500
 RIG TYPE: Failing 1500
 DATE: July 20, 2005
 ETION DATE: July 22, 2005
 LOGGED BY: F. Li
 Terms and symbols defined on Plate A-1.
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for
 design purposes. For applicable groundwater information, places offer to placements and characterized at the design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-81

Silicon Valley Rapid Transit Project San Jose, California

Sheet 2 of 4

						LOCATION: Median of Stockton Ave., between Schiele						AR sf	Sheet 3 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	Ave. and Villa Ave. N 1,949,237 E 6,151,102 SURFACE EL: 81.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
Ш			RE S	SA	BL	MATERIAL DESCRIPTION	>	0	0.44			STR	
-20	-	////				WELL-GRADED SAND (SW), dense, brown, moist,							Noise and Vibration Test
	-		13 13"		(55)			• • • • • • • •					• • • • • • • • • • • • • • • • • • • •
	- 105-					LEAN CLAY (CL), hard, brown to gray, moist, medium plasticity, trace fine gravel							
25	-		14		(47)								
	-		14"			light brown (LEL=0.0, OVM=0.0, OXY=21.0) Ended drilling on 7/21/05 at 109 ft							Noise and Wibration Test
30	110-					Began drilling on 7/22/05 at 109 ft							Vibration Tes
	-		15 16"		(50)	brown, trace coarse grained sand							
	115-												
35	-		16 5"		(50/6")	POORLY GRADED SAND WITH GRAVEL (SP), very dense, brown, moist, subrounded gravel up to 1 inch			3				
	- 120-												Noise and Wibration Tes
40	-												
	- 125-		17 14"		(68)	SANDY SILT TO SILTY SAND (ML/SM), hard, gray, moist, low plasticity (LEL=0.0, OVM=0.0, OXY=20.9)		 16	45				
45	-					POORLY GRADED SAND WITH GRAVEL (SP), sand and gravel from cuttings							•••••
	- 130-		18 15"		(48)	SANDY LEAN CLAY (CL), hard, gray, moist,		··· 20···	···69 ··				•••••
50	-					medium plasticity LEAN CLAY (CL), very stiff, gray, moist, medium plasticity							
	- 135-		19 30"		300 psi	producty							
55	-			<u> </u>	400 psi	(pp=3.0/2.7/3.0 tsf, tv=0.9/0.9/0.95 tsf)						2.9 P 1.8 T	
	- - 140-		20 30"		300 psi					 			
60	-			HH	400 psi	light brown (pp=3.5/3.5/3.0 tsf, tv=0.7/0.8/0.9 tsf)			. 98			3.5 P ⋯1:6 T ⋯	
	- 145		21 30"		300 psi								••••••
65	-			<u> </u>	350 psi	low to medium plasticity (pp=3.5/3.0/3.5 tsf, tv=0.8/0.9/0.9 tsf) (LEL=0.0, OVM=0.0, OXY=20.8)						3.5 P 1.8 T	
	-		22		400 psi								•••••

BORING DEPTH: 150.5 ft DEPTH TO WATER: 14.4 ft., 7/21/05

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Rope and Cathead

START DATE: July 20, 2005 COMPLETION DATE: July 22, 2005 NOTES: 1. Terms and symbols defined on Plate A-1.

RIG TYPE: Failing 1500

DATE: July 20, 2005 ETION DATE: July 22, 2005 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-81

Project No.	213213	

							I	1		1		1	Sheet 4 of 4
ON, ft	, ft	Ы Ч	NO. Y (in)	TYPE	ER NUNT/ E, psi	LOCATION: Median of Stockton Ave., between Schiele Ave. and Villa Ave. N 1,949,237 E 6,151,102	, pcf	д Т, %	DNG NG	0%	(%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	ESTS
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 81.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	RAINED	OTHER TESTS
ш			s R	SA	ВЧ	MATERIAL DESCRIPTION					"	STR	Ö
	-	/	15"	41413	400 psi	CLAYEY SAND WITH GRAVEL (SC), dense,		• • • • • • • • •					
70 - -	-					brown, moist, fine to medium grained sand, subrounded gravel up to 1/2 inch							
	- 155-							• • • • • • • •		•••••			
-75	-												
	-												
	160-												
-80	-												••••••••••••••••••
	-												
	165-												
-85	-												
	-												
-90	170-												
00	-												••••••
	- 175-									•••••			••••••
-95													
	-												•••••
	- 180-												
100	-												••••••
	-												
	185-												
-105	-												
	-												••••••
110	190-												
110	-												
	- 195-												
-115	-												
	-												
	-												

BORING DEPTH: 150.5 ft DEPTH TO WATER: 14.4 ft., 7/21/05

START DATE: July 20, 2005 COMPLETION DATE: July 22, 2005 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Rope and Cathead

RIG TYPE: Failing 1500 DATE: July 20, 2005 ETION DATE: July 22, 2005 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-81

Project No.	213213

													Sheet 1 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 150 feet NW of Las Plumas Ave., 30 feet NE of UPRR tracks N 1,956,149 E 6,163,187 SURFACE EL: 85.9 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
85	-		1			SILT (ML), stiff, light brown, moist, low plasticity	+						
	-		1 10	-	(17)			• • • • • • • • •					
0	5-		2 24	-	180 psi	LEAN CLAY (CL), stiff, gray, moist, low plasticity (pp=1/1.5/1.25 tsf, tv=0.4,0.5,0.45 tsf)		•••••				 1.3 P	
	-					Began rotary wash, set casing to 8 1/2 ft				• • • • • • • •		· · 0.9 T · ·	
75	10-		3 32		150 psi	LEAN CLAY (CL), stiff, brown, moist, medium plasticity (pp=1.25/1.5/1.25 tsf, tv=0.6/0.65/0.6 tsf) (OVM=0 ppm, OXY=20.9%, CH4=2 ppm)						1.3 P	
	-											1.3 P 1.2 T	
0	15-		4 32	-	250 psi	yellowish brown (pp=1.75/1.5/1.75 tsf, tv=0.75/0.8/0.75 tsf)						 1.7 Р 1.5 т	
5	20-		5 28		180 psi	brown (pp=1.5/1.75/1.5 tsf, tv=0.65/0.7/0.65 tsf)							····Hydrometer te
	-						96	28 	98	42 	18	1.6 P 1.3 T	
0	25-		6 33		125 psi	medium (pp=0.5/0.75/0.5 tsf, tv=0.35/0.45/0.4 tsf)		•••••				0.6 P 0.9 T	
	- 30-				100			•••••		•••••			
5			33		100 psi	(pp=0.5/0.75/0.5 tsf, tv=0.35/0.4/0.35 tsf)						0.6 P 0.7 T	
	-							• • • • • • • • •				0.7 1	
0	35-		8 33		180 psi	stiff, dark brown (pp=1.5/1.5/1.0 tsf, tv=0.55/0.7/0.6 tsf)						 1.3 ₽ 1.2 ₸	
	- 40-		9		180 psi	LEAN CLAY WITH SAND (CL), stiff, light brown, moist to wet, low plasticity (pp=1.5/1.0/0.75 tsf,							
5	-		30]	tv=0.25/0.3/0.33 tsf) (OVM=0 ppm, OXY=20.9%, CH4=2 ppm)		26	72	35	18	1.1 P 0.6 T	Hydrometer te
	45-		10)	3 (16)	SILTY CLAY (CL-ML), stiff, grayish brown, moist	¦	•••••					
0	-		16	"				• • • • • • • •					••••••
	-		Ц			SANDY SILT (ML), stiff, light gray, moist, low							
קר		DEPT	- гн· (12 5	ft	Continued				. 5 in .	dia Dr	tary Wa	

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED RY: E Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-82

, ft			,	(III) YPE	NT/ psi	LOCATION: Approx. 150 feet NW of Las Plumas Ave., 30 feet NE of UPRR tracks N 1,956,149 E	त .	%	()		≻ -	HEAR ,, ksf	Sheet 2 of
ELEVATION,	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	6,163,187 SURFACE EL: 85.9 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, 9	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ELEV	D	MA S)	SAM	SAMP	SA BLOV PRES		NEI	≤ 20 20	#20		PLA	NDRA	OTHE
			11		(15)	MATERIAL DESCRIPTION				•••••		50	
35			16	- 88	(10)	plasticity		. 24					
0	55-		12		12								
0													
			Π			SILTY CLAY (CL-ML), very stiff, brown, moist, low plasticity							
5	60-		13		24	picouoly							
			Ц							•••••	•••••	•••••	
	65-					SILT (ML), very stiff, gray, moist							
0			14 36		200 psi					•••••			
				ili	1	(pp=3.5/4.0/3.75 tsf)		27	. 96		9	3.8 P	Hydrometer te
	- 70-		15	TT	200 psi	SILTY SAND (SM) LEAN CLAY (CL), very stiff, gray, moist, low							
5			15 33	" 		plasticity							
					1	(pp=3.75/3.5/3.25 tsf)						3.5 P	
0	75-												
0													
						SILTY SAND (SM), dark brown, wet, fine to medium grained				•••••			
	-08		: 16 16	: []]	225 psi	granieu				•••••			
	•			\mid	-								
	85-												
	90-		: 17 33	. 66	250 psi	LEAN CLAY WITH SAND (CL), very stiff, yellowish				•••••			
5			33			brown, moist, low plasticity (pp=2.5/2.25/2.0 tsf)							
					9	(OVM=0 ppm, OXY=20.9%, CH4=1 ppm)	110 	21 				2.3 P	
10	95-												
	-												
										•••••			

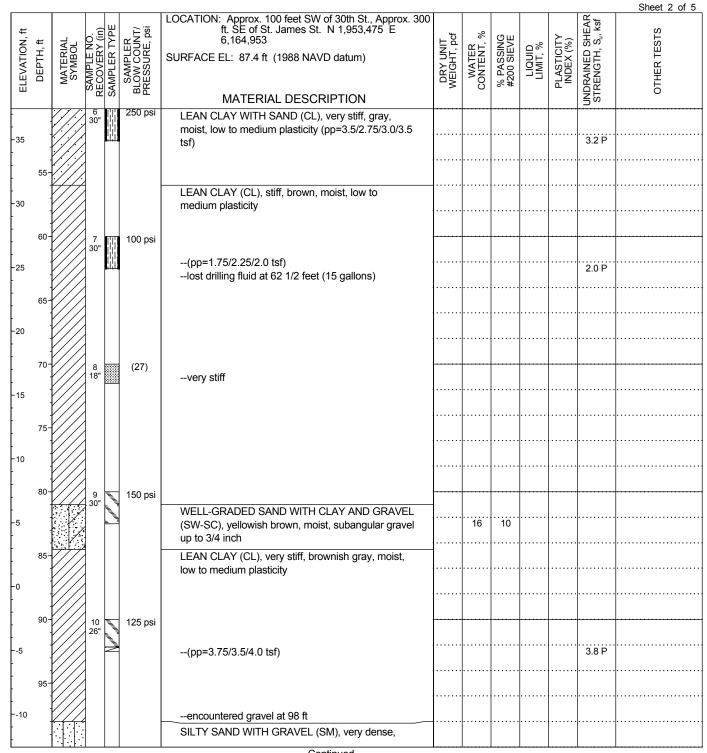
DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-82

Project No.	213213		

		-				r						Sheet 1 of
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 100 feet SW of 30th St., Approx. 300 ft. SE of St. James St. N 1,953,475 E 6,164,953 SURFACE EL: 87.4 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
	\	1			1/2 inches of ASPHALT CONCRETE		•••••	•••••	•••••	•••••		•••••
85		1		(11)	SILTY SAND WITH GRAVEL (SM), brown, dry to moist (FILL) (OXY=20.9%, CH4=0 ppm, PID=0 ppm)		•••••					
5					LEAN CLAY (CL), medium, brown, moist, low plasticity driller noticed silty materials at 6 ft Began rotary wash, set casing to 8 1/2 ft.		•••••					
10 75		2 26"		220 psi	gray, low plasticity, (pp=1.75/1.50/1.75 tsf, tv=0.8 tsf)		•••••		•••••			
15									•••••		1.7 P 1.6 T	
70 20		- - - - - - - - - - - - - - - - - - -	X	24	SILTY SAND WITH GRAVEL (SM), medium dense, brown, moist, coarse grained gravelly drilling and lost drilling fluid at 17 1/2 feet (20 gallons)			·····	······		· · · · · · · · · · · · · · · · · · ·	
25					lost drilling fluid at 23 feet (20 gallons)		•••••	•••••			••••••	
0					LEAN CLAY (CL), very stiff, brown, moist, low plasticity							
30		4 28"		190 psi					•••••			
55			<u>ijiji</u>		(pp=1.75/2.5/2.75 tsf, tv=0.63 tsf)		•••••	•••••	•••••		2.3 P 1.3 T	
50					driller noticed silty material from 36 to 38 1/2 ft		•••••					
40		5 27"		125 psi	FAT CLAY (CH), stiff, brown, moist, medium to high plasticity (pp=1.25/1.5/1.5 tsf, tv=0.75 tsf)		•••••		•••••			
15 45					lost drilling fluid at 44 feet (10 gallons)	90	33		58	31	1.4 P 1.5 T	
10							•••••		•••••		······	


DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip LL: Near Cement Grout DATE: July 14, 2007 ETION DATE: July 16, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

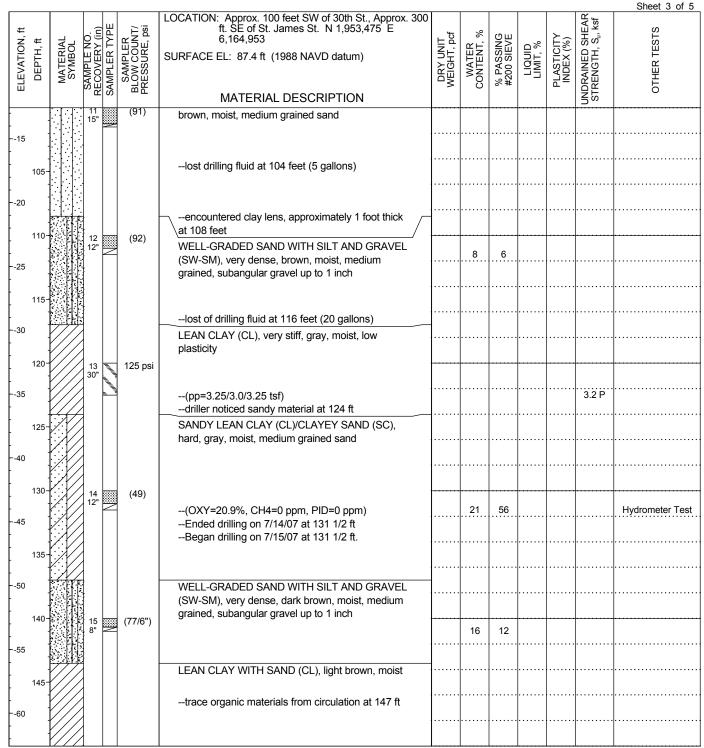
LOG OF BORING NO. BH-84

Project No. 213213

Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILED BY: Pitcher Drilling, W. Baker/L. Willard/J. Musich LOGGED BY: G. Tripathi CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

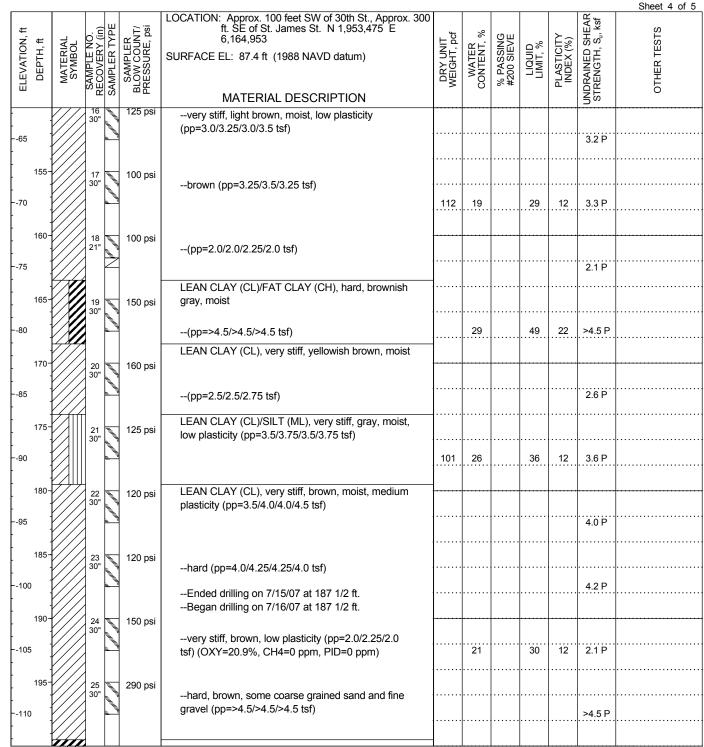


BORING DEPTH: 207.5 ft

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout START DATE: July 14, 2007 COMPLETION DATE: July 16, 2007

LOG OF BORING NO. BH-84


BORING DEPTH: 207.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 14, 2007 COMPLETION DATE: July 16, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, W. Baker/L. Willard/J. Musich LOGGED BY: G. Tripathi CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-84

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, W. Baker/L. Willard/J. Musich LOGGED BY: G. Tripathi CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 207.5 ft

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout START DATE: July 14, 2007 COMPLETION DATE: July 16, 2007

LOG OF BORING NO. BH-84

Project No.	213213	

								r					Sheet 5 of 5
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 100 feet SW of 30th St., Approx. 300 ft. SE of St. James St. N 1,953,475 E 6,164,953 SURFACE EL: 87.4 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
-			26 15"		(87)	FAT CLAY (CH), hard, brown, moist, medium to					+•••••		
-						high plasticity							
115 -													
-	205-		07	_	190 psi				• • • • • • • •	• • • • • • • •			
	-		27 31"	111111111	190 psi	very stiff, trace gravel (pp=3.5/3.25/3.5/3.5 tsf)							
120				1111 1111				22		57	32	3.4 P	
-	-												
. 2	210-										+		
125	-												
-125	-												
2	- 215-												
	-												
-130	-												
	-												
2	220-										+•••••		
135	-												
2	225-												
	-												
140	-												
	-												
2	230-												
145	-												
	1												
2	235-												
150	-												
	- 240-												
4													
155	-												
	-												
2	245-												
400	-												
160 -	-												
	-												

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip LL: Neat Cement Grout DATE: July 14, 2007 ETION DATE: July 16, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable aroundwater information places offer to picemeter and abace will defe

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

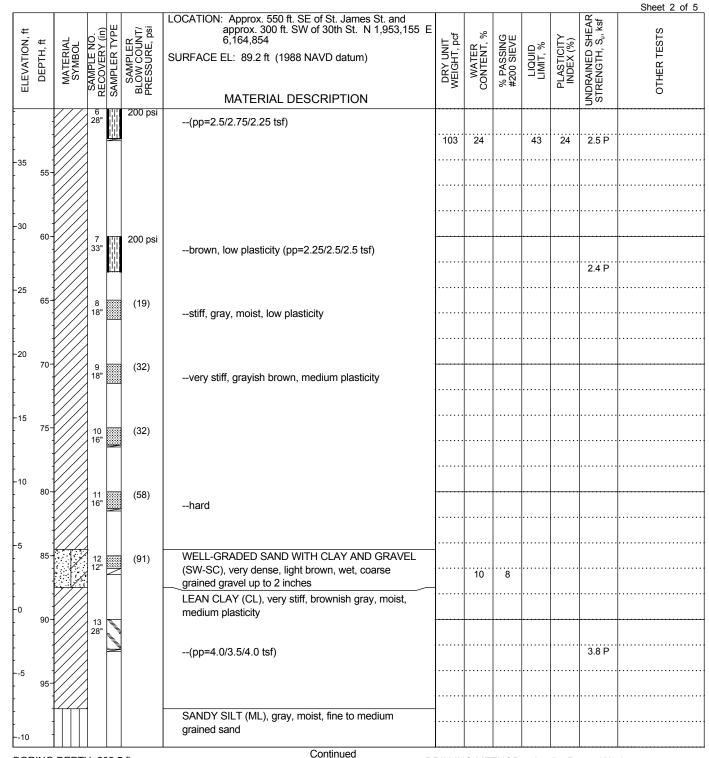
LOG OF BORING NO. BH-84

Silicon Valley Rapid Transit Project San Jose, California

Shoot E of E

										Sheet 1 of 5
ELEVATION, ft DEPTH, ft MATERIAL SYMBOL SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 550 ft. SE of St. James St. and approx. 300 ft. SW of 30th St. N 1,953,155 E 6,164,854 SURFACE EL: 89.2 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIMIT, % LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
85 5-		(12)	4 1/2 to 6 inches of ASPHALT CONCRETE POORLY GRADED GRAVEL WITH CLAY AND SAND (GP-GC), loose, gray, dry, coarse grained sand (FILL) LEAN CLAY (CL), medium, yellowish brown, moist,		•••••					
80 10-2 30"	IADAT	50 psi	low plasticity Began rotary wash, set casing to 8 1/2 ft.		•••••		······		· · · · · · · · · · · · · · · · · · ·	
75 15			(pp=0.5/0.75/1.0 tsf, tv=0.35/0.3/0.4 tsf)		••••••				0.8 P 0.7 T	
70 20-3 32"		100 psi	stiff, yellowish brown, moist, medium plasticity (pp=1.5/1.0/1.0 tsf, tv=0.35/0.4/0.4 tsf)				······		12 P	
65 25			(OVM=0 ppm, OXY=20.9%, CH4=0 ppm) Per driller, the hole had taken approximately 30		•••••				1.2 P 0.8 T	
30 30 4 32"		150 psi	more gallons than normal with one sack of drilling mud. Polymer was added at 30 ft. grayish brown (pp=1.5/1.25/1.0 tsf,		•••••		•••••			
35-	141		tv=0.35/0.35/0.4 tsf) FAT CLAY (CH), stiff, dark gray, moist, medium to		•••••		· · · · · · · · · · · · · · · · · · ·		1.3 P 0.7 T	
50 40- 40- 5 26"		180 psi	high plasticity						······	
15 45			(pp=1.75/2.0/1.5 tsf, tv=0.4/0.5/0.55 tsf)				•••••		1.8 P 1.0 T	
40			LEAN CLAY (CL), very stiff, gray, moist							

BORING DEPTH: 202.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 8, 2007 COMPLETION DATE: July 10, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang


Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-85

Silicon Valley Rapid Transit Project San Jose, California Shoot 1 of E

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-85

Project No.	213213	

	ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. F RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 550 ft. SE of St. James St. and approx. 300 ft. SW of 30th St. N 1,953,155 E 6,164,854 SURFACE EL: 89.2 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	Sheet 3 of 5 SL SH SH SH SH SH SH SH SH SH SH SH SH SH
100 15 100 15 100 15 100 15 100 15 100 -Ended drilling on 7/8/07 at 111 1/2 ft. -Began drilling on 7/9/07 at 109 ft (Hole caved in about 21/2 fter) -Additional drilling mud (1/4 sack) and 10 gallons of water was added. Ended drilling on 7/8/07 at 111 1/2 ft. -26 115 Began drilling on 7/8/07 at 110 ft (Hole caved in about 21/2 fter) Additional drilling mud (1/4 sack) and 10 gallons of water was added.			33"	11111111111111111111111111111111111111			104	 20	59				Hydrometer Test
10 15 (109) Began drilling on 7/9/07 at 109 ft (Hole caved in about 2 1/2 feet) -25 115 Began drilling mud (1/4 sack) and 10 gallons of water was added. -30 120 16 POORLY-GRADED SAND WITH CLAY AND GRAVEL (SP-SC), very dense, brown, wet, dense, coarse grained -36 120 16 (81) -37 120 16 (81) -38 129 (81) SANDY LEAN CLAY (CL), hard, gray, moist, medium plasticity -40 130 17 (53) -50 140 18 (74) -50 140 18 (74)	-20					brown, wet, coarse grained gravel up to 1 1/2 inches							
-30 120 16 GRAVEL (SP-SC), very dense, brown, wet, dense, coarse grained -35 125 11 8 -40 130 17 (S3) -41 130 17 (S3) -45 135 18* (T4) -50 140 18* (T4)	-25			N	(109)	Began drilling on 7/9/07 at 109 ft (Hole caved in about 2 1/2 feet) Additional drilling mud (1/4 sack) and 10 gallons of							
-35 125 -40 130 130 17 130 17 130 17 130 17 131 (53) SANDY LEAN CLAY (CL), hard, gray, moist, medium plasticity -50 140 18 (74)			16 15"		(81)	GRAVEL (SP-SC), very dense, brown, wet, dense,	· · · · · · · · · · · · · · · · · · ·		 o				
40 130 17 (53) medium plasticity 45 135 135 135 135 -50 140 18 (74) 18 -55 140 18 (74)								·····					
			17 18"		(53)				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
			18 18"		(74)								·····
	145-									· · · · · · · · · · · · · · · · · · ·			

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500

DATE: July 8, 2007 ETION DATE: July 10, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposed. design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-85

Silicon Valley Rapid Transit Project San Jose, California

Shoot 2 of E

					-					~	Sheet 4 of 5
ELEVATION, ft DEPTH, ft MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 550 ft. SE of St. James St. and approx. 300 ft. SW of 30th St. N 1,953,155 E 6,164,854 SURFACE EL: 89.2 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
	19 18"		(46)	brown, moist, low plasticity	+					<u> </u>	
65	20 15"		(76/9")	medium plasticity		23			9		
70	21 18"		(73)								
75 165-	22 33"	1111111111		FAT CLAY (CH), hard, brown, moist, medium to high plasticity (pp=>4.5/>4.5/>4.5 tsf) (OVM=0 ppm,	-						
80	23 4.5"			OXY=20.9%, CH4=0 ppm) LEAN CLAY (CL), yellowish brown (poor recovery, slough)	99	26		. 53	. 26	>4.5 P	
85 175-	24	/						•••••			
90		11111111111111111111111111111111111111		hard, low plasticity (pp=>4.5/>4.5/>4.5 tsf) Ended drilling on 7/9/07 at 177 1/2 ft. Began drilling on 7/10/07 at 177 1/2 ft.				·····		>4.5 P	
95	25 32"	11111111111111111111111111111111111111		very stiff, brown (pp=3.75/4.0/4.25 tsf)				•••••		4.0 P	
185-	26 28"	V1111111111111111111111111111111111111		FAT CLAY (CH), hard, brown, moist, medium to high plasticity (pp=4.25/4.25/3.75 tsf)				•••••		4.1 P	
100	27 26"	10101010-0010101010		SANDY LEAN CLAY (CL), hard, gray, moist, fine to medium grained sand (pp=>4.5/>4.5/>4.5 tsf)	113	17				>4.5 P	Hydrometer Tes
105	28 27"	11111111111		FAT CLAY (CH), hard, gray, moist, medium to high plasticity (pp=>4.5 tsf)				۷۲ 			
110				LEAN CLAY WITH SAND (CL), hard, yellowish						>4.5 P	

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

SVRT BORING LOG 011108 Z:/TUGENERAL/USERSUAIN_A/GINT/SVRT_PHASE 2_050208.GPJ TESTLIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:47 a

LOG OF BORING NO. BH-85

Project No.	213213	

												Sheet 5 of 5
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 550 ft. SE of St. James St. and approx. 300 ft. SW of 30th St. N 1,953,155 E 6,164,854 SURFACE EL: 89.2 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
		29 33"	11111111		brown, moist, fine to medium grained sand							
			111111 11111		(pp=>4.5 tsf)						· >4:5·P··	
115 205-	-											
	-											
- ·												
120	-											
210-	-											••••••
-												
	-											
125												• • • • • • • • • • • • • • • • • • • •
- 215-												
	-											••••••
130 220-												
. 220												
	-											
135 225-	-											
	-											
-												
- 140												
230-	-											•••••
-												
	-											
145												• • • • • • • • • • • • • • • • • • • •
- 235-	1											
	-											
	1											
150 240-	1										 	
[-											
	1											
- 155	1											
155 - 245-	-											
- ·	-											
]											
160	-											
L	I	1				I	l	l	l	l	l	L

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

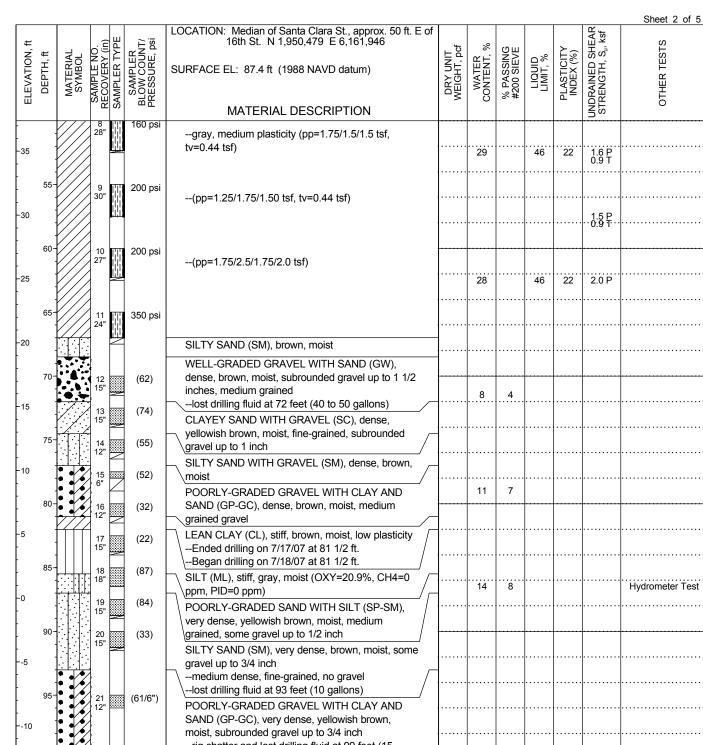
Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-85

Silicon Valley Rapid Transit Project San Jose, California Sheet 5 of 5

Project No.	213213	

						LOCATION: Median of Santa Clara St., approx. 50 ft. E of						К ¹	Sheet 1 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	AMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	16th St. N 1,950,479 E 6,161,946 SURFACE EL: 87.4 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ш			<u> </u>	S	ወፈ	MATERIAL DESCRIPTION						STI	0
						8 inches of ASPHALT CONCRETE over 8 inches of CONCRETE							•••••••••••••••••••••••••••••••••••••••
5	5-		1 18"		(11)	LEAN CLAY (CL), medium, brown, dry, low plasticity, trace fine-grained sand (OXY=20.9%, CH4=0 ppm, PID=0 ppm)							
0								•••••		•••••			•••••
	Į					Began rotary wash, set casing to 8 1/2 ft							••••••
	10-		2 19"		50 psi	SILTY SAND (SM), brown, moist, poorly-graded, fine grained sand				•••••			
5	-			\leq	100 psi	lost drilling fluid at 10 1/2 feet (20 gallons)				•••••			
	15-							•••••		•••••			
0						LEAN CLAY (CL), medium, brown, moist, low plasticity (pushing pressure was not recorded)				•••••			
	20-		3 30"										
5						(pp=0.5/0.75/0.5 tsf, tv=0.25 tsf)		•••••		•••••		0.6 P 0.5 T	••••••
	25-									•••••			
0	-					SILTY SAND (SM), dark brown, moist, fine grained		•••••		•••••			••••••
	30-		4 14"		100 psi								
5	 									•••••			••••••
	35-		5 30"		75 psi	LEAN CLAY (CL), soft, gray, moist, low plasticity (pp=0.25/0.5/0.5 tsf, tv=1.9 tsf)		•••••		•••••			
0			1		l							0.4 P 0.9 T	
	40-		6 30"		75 psi	SANDY SILT (ML), stiff, dark brown, moist (pp=1.5/0.75/1.0/1.5 tsf, tv=0.38 tsf)				•••••			
5	-						 					1.2 P 0.8 T	
	45-		7		125 psi	LEAN CLAY (CL), stiff, gray, moist (pp=1.25/1.0/1.25 tsf, tv=0.38 tsf)	 			•••••			
0							 					. 1.2 P . 0.8 T · ·	•••••••••••


BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 17, 2007 COMPLETION DATE: July 20, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

LL: Neat Cement Grout DATE: July 17, 2007 ETION DATE: July 20, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-87

Project No. 213213

BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 17, 2007 COMPLETION DATE: July 20, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

21

12

(61/6")

95

-10

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: F. Wang/G. Tripathi CHECKED BY: F. Wang

2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

Continued

LOG OF BORING NO. BH-87

POORLY-GRADED GRAVEL WITH CLAY AND

SAND (GP-GC), very dense, yellowish brown,

moist, subrounded gravel up to 3/4 inch --rig chatter and lost drilling fluid at 99 feet (15

													Sheet 3 of s
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 50 ft. E of 16th St. N 1,950,479 E 6,161,946 SURFACE EL: 87.4 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
					(53)							5°	
-15			11.25			gallons) SILTY SAND WITH GRAVEL (SM), dense, yellowish brown, moist LEAN CLAY (CL), very stiff, yellowish brown, moist,							
	105-		23 30"		240 psi	low plasticity							
-20				:1:11		(pp=2.5/3.0/3.25/3.0 tsf)				• • • • • • • • •		. 2.9 P	
-25	110-		24 30"		200 psi	(pp=2.5/2.75/2.5 tsf)						2.6 P	••••••
	115-		. 25		350 psi	SILTY SAND (SM), brownish gray, moist						2.0 F	
-30			25 30"		550 pai								
-35	120-		26 15"	N	(108)	lost drilling fluid at 119 feet (10 gallons) WELL-GRADED SAND WITH SILT AND GRAVEL (SW-SM), very dense, yellowish brown, moist, subangular gravel up to 1 inch, medium grained lost drilling fluid at 121 feet (10 gallons)	- 						
	125-		27 15"		(102)	coarse grained				• • • • • • • • • •			
-40						SILTY CLAY (CL-ML), hard, brown, moist, low plasticity				•••••			
-45	130-		28 30"		250 psi								
	135-	4			450	(pp=3.5/4.0/4.0/4.25 tsf) Ended drilling on 7/18/07 at 132 1/2 ft. Began drilling on 7/19/07 at 132 1/2 ft.				•••••		3.9 P	
-50			29 19"		450 psi	CLAYEY GRAVEL WITH SAND (GC), light gray, moist, gravel up to 3/4 inch		9	13	•••••			Hydrometer Tes
	140-		30 15"		(98)	SILTY SAND (SM), very dense, brown, moist, fine-grained sand, subrounded gravel up to 1 inch, lost drilling fluid at 141 ft. (15 gallons) (OXY=20.9%, CH4=0 ppm, PID=0 ppm)							
-55	145				(17)								
-60			31 18"		(47)	SILT (ML), hard, light brown, moist, low plasticity							

BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 17, 2007 COMPLETION DATE: July 20, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

LL: Neat Cement Grout DATE: July 17, 2007 ETION DATE: July 20, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

SVRT BORING LOG 011108 Z: TUGENERAL USERSUAIN_AIGINTSVRT_PHASE 2_050208.GPJ TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:48 a

LOG OF BORING NO. BH-87

Project No.	213213	

		. 2	Ш)T/ jsc	LOCATION: Median of Santa Clara St., approx. 50 ft. E of 16th St. N 1,950,479 E 6,161,946	÷	2				IEAR , ksf	လ
DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO	AMPLER TY	SAMPLER LOW COUN RESSURE, I	SURFACE EL: 87.4 ft (1988 NAVD datum)	DRY UNIT WEIGHT, po	WATER CONTENT, 9	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	RAINED SH RENGTH, S _u	OTHER TESTS
		, R	S/		MATERIAL DESCRIPTION						STF	0
-		32 30"		375 psi	very stiff, brown (pp=3.25/3.0/3.25/3.5 tsf)						220	
155-		33 12"		250 psi	SILTY SAND (SM), dense, yellowish brown, moist, fine-grained							
												Hydrometer Te
160-		34 12"		(REF/5")	SILTY SAND WITH GRAVEL (SM), very dense, yellowish brown, moist, medium-grained, subrounded gravel up to 2 inches							
165-		. 35		(REF/6")								
		13"			coarse-grained, subrounded gravel up to 1 inch							
					POORLY-GRADED GRAVEL WITH SILT AND							
-0		36 12"		(62/6")	moist, gravel up to 1 inch (OXY=20.9%, CH4=0 ppm, PID=0 ppm)							••••••
					Began drilling on 7/20/07 at 171 ft.							
175-		37 12"		(108/11")	fine-grained, some subrounded gravel							
		-			added cement (Type II-V)							
: : : 180-:				(56/6")	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), yellowish brown, moist,							
		. 12"		(30/0)	coarse-grained, subrounded and subangular gravel up to 1 inch		9	6				Hydrometer Te
] 		:			ELASTIC SILT (MH)/FAT CLAY (CH), very stiff,							
-100		39 16"		400 psi	brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf)							
			\vdash						56	. 25	3.4 P	
190-		40 0"		(50)	LEAN CLAY (CL), very stiff (No Recovery, Classification per driller)							••••••
ł												
195-]										
ł												
			Head Additional and a stress of the stress	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32 375 psi 55 32 60 32 60 33 60 34 12" 250 psi 66 34 12" (REF/5") 13" 36 13" 36 13" 36 13" 36 13" 36 13" 36 13" 36 13" 36 13" 36 13" 36 13" 36 38 37 38 38 39 39 39 400 psi 90 40 00 40	In the st. N 1,950,479 E 6,161,946 SURFACE EL: 87.4 ft (1988 NAVD datum) MATERIAL DESCRIPTION MATERIAL DESCRIPTION 320 330 321 250 psi 322 250 psi 323 250 psi 324 (REF/5") 325 34 326 34 327 34 328 (REF/5") 329 36 320 36 321 36 326 36 327 36 328 (62/6") 329 36 320 36 321 (62/6") 326 36 327 (62/6") 326 (62/6") 327 (62/6") 328 (62/6") 329 (62/6") 320 (62/6") 321 (108/11")	HHAA Integration Integratin and integration Integrati	Hugan Totol and an analysis Toth St. N 1,950,479 E 6,161,946 Surface Surface <td>Hundber Display <t< td=""><td>H H</td><td>H H</td><td>H H</td></t<></td>	Hundber Display Display <t< td=""><td>H H</td><td>H H</td><td>H H</td></t<>	H H	H H	H H

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip LL: Neat Cement Grout DATE: July 17, 2007 ETION DATE: July 20, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-87

 5/5/U8 U9:48 a
IESI LIBKARY-DOWN I OWN_PARIKH_01_02_08.GLB
ASUA

BORING DEPTH: 201.5 ft
DEPTH TO WATER: Not Measured
BACKFILL: Neat Cement Grout
START DATE: July 17, 2007
COMPLETION DATE: July 20, 2007
NOTES: 1. Terms and symbols defined or

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

 LL: Neat Cement Grout
 RIG TYPE: Failing 1500

 DATE: July 17, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: July 20, 2007
 LOGGED BY: F. Wang/G. Tripathi

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-87

Silicon Valley Rapid Transit Project San Jose, California

												Sheet 5 of 5
ON, ft H, ft	oL	NO. KY (in)	TYPE	.ER DUNT/ RE, psi	LOCATION: Median of Santa Clara St., approx. 50 ft. E of 16th St. N 1,950,479 E 6,161,946	, pcf	IT, %		% ۵	CITY (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	ESTS
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 87.4 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	RAINED	OTHER TESTS
		~ 또	Ś		MATERIAL DESCRIPTION						STI	0
		41 18"		(77)	hard. yellowish brown, moist							
115		[]						
-	-											
205-												
120]											
-	-											
210-	1											
125	-											
-	-											
215-	-											
130	-											
-	-											
220-	-						+					
135	-											
-	-											
225-	-											
140	-											
-	-											
230-	-											
- 145	-											
	-											
235-	-											
150	-											
	-											
240-	-											
155	-											
]											
245-	-											
160	-											
	1											
						1		l	I	I	I	1

Sheet 5 of 5

ELEVATION, ft	DEPTH, ft	MATERIAL	SYMBOL	SAMPLE NO. RECOVERY (in)	ERT	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 170 ft NW of Santa Clara St, 65 ft NE of N. 17th St (within SJ Water lot) N 1,950,798 E 6,162,147 SURFACE EL: 94.1 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %
	-			1 15"		(12)	SILT (ML), medium, brown, moist, low plasticity, trace fine grained gravel and sand				
90	5-			2 29"		800 psi	SANDY SILT (ML), brown, moist, low plasticity				•••••
85	- 10- -			3 20"		1500 psi	stiff, increasing sand at the bottom of the sample (pp=1.25/1.75/1.25 tsf)				••••••
-80	15-			· · 4 · 4"		23	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), medium dense, brown,				

-	-10	3 20"		1500 psi	stiff, increasing sand at the bottom of the sample (pp=1.25/1.75/1.25 tsf)	 				···1.4 P··	
-80 - -	15-	· 4 · 4"	Z	23	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), medium dense, brown, subangular gravel up to 1 inch (from the slough)	 • • • • • • • • • •					
-75	20-	5		1000 psi	LEAN CLAY (CL), very stiff, yellowish brown, moist, low plasticity (pp=2.25/1.75/2.0 tsf, tv=1.0 tsf)	 					
- -70 -	- 25- -	6 30"		300 psi	stiff, yellowish brown, wet (pp=1.5/1.25/1.25 tsf,	 				2.0 P 2.0 T	
- - -65 -	- - 30-		1111	-	tv=0.6 tsf) (OVM=0.001 ppm, OXY=20.9%, CH4=0 ppm) SILT (ML), yellowish brown, moist	 ••••••				1.3 P ⋯1:2 T ⋯	
- - -60	-	7 9"	GB			 	90	29	5		Hydrometer Test
- - -	35-	8 22" 9 16"	B B B		SILTY CLAY (CL-ML), brown, moist, low plasticity, subangular gravel up to 1 inch	 					
-55 - -	40-	10 17" 11 16"	BNB N		LEAN CLAY (CL), yellowish brown, moist, low plasticity	 25		34	16		
- -50 -	45-	12 20" 13 0"	GB /	-	gray SILTY SAND (SM), no recovery from Geo-Barrel (classification per drilling and soil cuttings)	 					
- -45	-	14 24" 15	GB GB		SILTY CLAY (CL-ML), dark brown, wet, low plasticity	 					

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 18, 2007 ETION DATE: June 18, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for NOTES: 1. Terms and symbols defined on Plate A-1. design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

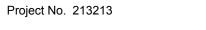
BORING DEPTH: 112.5 ft

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout

START DATE: June 18, 2007 COMPLETION DATE: June 18, 2007

LOG OF BORING NO. BH-88


Silicon Valley Rapid Transit Project San Jose, California

Sheet 1 of 3

OTHER TESTS

UNDRAINED SHEAR STRENGTH, S_u, ksf

PLASTICITY INDEX (%)

					-								Sheet 2 of 3
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 170 ft NW of Santa Clara St, 65 ft NE of N. 17th St (within SJ Water lot) N 1,950,798 E 6,162,147 SURFACE EL: 94.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
_				S	шц	MATERIAL DESCRIPTION						N IS IS	0
	-	[]]]	19" 16	B		LEAN CLAY (CL), gray, moist, medium plasticity							
	-		24"	GВ									
40			17 24"	GВ		SILT (ML), gray, moist							
	55-		18	GВ		LEAN CLAY (CL), gray, moist]						
	-		19	-									
			24"	GΒ						• • • • • • • •			
35	60-		20 30"										
	-			ЧЬ									
	1	ſſſ	21 30"	ſ		SILT (ML), gray, moist, low plasticity							• • • • • • • • • • • • • • • • • • • •
30	-		50	GΒ		stiff, gray							
	65-		22	Ż									
			35"	GВ		yellowish brown				• • • • • • • •			• • • • • • • • • • • • • • • • • • • •
]		23			Ended drilling on 6/18/07 at 68 ft Began drilling on 6/19/07 at 68 ft			100	40	13		Hydrometer tes
25	-		23 12" 24 14"	GB GB		\sim -dark brown (OVM=0 ppm, OXY=20.9%, CH4=0 $/$	-						
	70-			\square		\ppm)		• • • • • • • •	11	NP	NP		Hudromotor too
			25 17" 26	GВ		POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), brown]						Hydrometer tes
20	-		0"	/		WELL-GRADED SAND WITH SILT AND GRAVEL							
	75-		27	Ц		(SW-SM), brown, medium grained, subrounded gravel up to 1 inch							
			27 24"	GВ		no recovery from Geo-Barrel							
	-		28	Ż									
15			0"			no recovery from Geo-Barrel							
	80-		29 13"	\ ₿		subangular and subrounded gravel up to 1 inch			7				
			30 18"	GB GB		gravel up to 3 inches			'				
10]	•••	31	GB		POORLY-GRADED GRAVEL WITH SAND (GP),]						
	85-	• • •	32	ĠВ		gray, moist, angular gravel up to 2 inches							
	-		1	Ż		lost drilling fluid at 85.0 feet							
]		33 24"	GВ		LEAN CLAY WITH GRAVEL (CL), yellowish brown, low plasticity, trace fine gravels							
5			34										
	90-		1	GD		ppm, OXY=20.8%, CH4=0 ppm)		• • • • • • • •		• • • • • • • •			
]		35 7"	GB		√increasing sand //]						
	-		36	A	(80)	SANDY LEAN CLAY (CL), stiff, yellowish brown,							
0			18" 37			\moist, fine to medium grained sand/ → WELL-GRADED GRAVEL WITH SILT AND SAND /	 		5				Hydrometer tes
	95-		6" 38	GB GB		(GW-GM), gray, subangular gravel up to 2 inches							
	-		17"	GB		very dense, medium grained, trace medium							
_	1		9" 40	GВ		angular gravel							
-5	1	/	111	$\overline{}$	1	SILTY SAND WITH GRAVEL (SM), brown, moist,	1						

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 18, 2007 ETION DATE: June 18, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for COMPLETION DATE: June 18, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 112.5 ft

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout

START DATE: June 18, 2007

LOG OF BORING NO. BH-88

Silicon Valley Rapid Transit Project San Jose, California

Sheet 2 of 3

Project No.	213213	

							_					-	Sheet 3 of 3
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 170 ft NW of Santa Clara St, 65 of N. 17th St (within SJ Water lot) N 1,950,798 E 6,162,147 SURFACE EL: 94.1 ft (1988 NAVD datum) MATERIAL DESCRIPTION	ft NE	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
-	• ***	41	GB		\ medium grained, gravel up to 2 inches							<u> </u>	
- - 10 - 105 [.]		11" 42 7" 43 6"	E E		angular gravel up to 2 inches, lost drilling fluid at 97 feet CLAYEY GRAVEL WITH SAND (GC), brown, moist, lost drilling fluid at 100 feet								
-		44 9" 45 20"			WELL-GRADED SAND WITH SILT AND GRAVEL (SW-SM), grayish brown, lost drilling fluid at 102 1/2 feet	 							
15 - 110 [.]		46			└gravel up to 3 inches └lost drilling fluid at 104 1/2 feet								
-		18"	GВ		SILT (ML), yellowish brown								
-	<u> i le E</u>	4	К		SILTY SAND (SM), brown, wet, medium grained	-//-							•
20	-				SILTY GRAVEL (GM), brown, wet, trace sand	-/-							
- 115-	1				(OVM=1.2 ppm, OXY=16.7%, CH4=0 ppm)								
-	1												
-	-												
25	-												
- 120-]												
-	-												
-	-												
30 - 125 [.]													
-	-												
-	-												
- 35]												
- 130-	-												
-	1												
-]												
40	-												
- 135-	1												
-	_												
-	-												
45 - 140-	-												
- 140	-												
-	1												•••••••••••••••••••••••••••••••••••••••
50	1												
50 - 145 ⁻	4												
-	-												
-	1												
55	-												
		1					I	I	l	l	I	L	l

BORING DEPTH: 112.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 18, 2007 COMPLETION DATE: June 18, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 18, 2007 ETION DATE: June 18, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-88

Project No.	213213	

												Sheet 1 of
ELEVATION, ft DEPTH, ft MATEDIAL	SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: SW side of N 3rd Street. Approx. 40 ft NW of Santa Clara St N 1,948,303 E 6,157,960 SURFACE EL: 82.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ш		" R	S	ወር	MATERIAL DESCRIPTION						STI	0
					5 inches of ASPHALT CONCRETE (core)							
80		1 14"		(11)	SANDY LEAN CLAY (CL), very stiff, brown, moist, some sand (pp=4.0/3.5/3.5 tsf)		•••••					
5					SILT (ML), medium, brown, very moist, low plasticity	- 	•••••					
- 10-		2		100 psi	Began rotary wash, set casing to 8 1/2 ft							
/0 - -		2 27"		100 pai	(pp=0.5/0.5/0.5 tsf, tv=0.3/0.3/0.35 tsf)		•••••				0.5 P 0.6 T	
15					LEAN CLAY (CL), stiff, brown, wet	-						
20-		3 27"		50 psi					······	·····		
					(pp=1.5/1.0/1.5 tsf, tv=0.5/0.45/0.4 tsf) (OXY=21.2%, PID=0.0005 ppm)		32		37	16	1.3 P 0.9 T	
25- 5					color change from brown to gray at approximately 25 feet							
30-		4 27"	HH	50 psi					• • • • • • • •			
			ijIJ		SILT (ML), stiff, dark brown, moist, low plasticity (pp=1.5/1.5/1.25 tsf)		•••••		•••••		1.4 P	
35-							•••••	•••••	•••••	•••••	•••••	
5					SILTY SAND (SM), medium dense, yellowish brown, wet, fine to medium grained, large gravel at the bottom of the sampler							
40- 0		5 16"		(38)		106	23	47				Direct Shear
45-												
5					lost drilling fluid at 47 1/2 feet gravelly drilling	·····	•••••		•••••			
					WELL-GRADED GRAVEL WITH SILT AND SAND Continued	l	L	L	L	L	L	

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedantham

NOTES: 1. Terms and symbols defined on Plate A-1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout

START DATE: June 5, 2007 COMPLETION DATE: June 8, 2007

LOG OF BORING NO. BH-89

t				ш		LOCATION: SW side of N 3rd Street. Approx. 40 ft NW of Santa Clara St N 1,948,303 E 6,157,960						EAR ksf	Sheet 2 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPI	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 82.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
ш				ŝ		MATERIAL DESCRIPTION						STI	0
30	-		6 10"	X	53	(GW-GM), very dense, brown, wet, fine to coarse grained sand			9				
25	55-					SILTY CLAYEY SAND (SC-SM), gray (no sample was taken at 60 feet due to caving from 57 feet to 65 feet)		••••••		••••••			
0	60-												
5	65-		7 22"		180 psi	SILT (ML), very stiff, dark brown, moist (sample obtained from second attempt) (pp=3.25/3.25/3.5 tsf, tv=0.5/0.5/0.5 tsf)						3.3 P ••• 1:0 T ••	
D	70- - -		8 28"		225 psi	light brown/yellowish brown, wet (pp=3.5/3.75/3.5 tsf, tv=0.5/0.45/0.45 tsf)						3.6 P 0.9 T	
	75-												
	80-		9 10"		(100)	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), very dense, yellowish brown, wet, some subangular gravel up to 1 1/2 inches (OXY=21.2%, PID=0.0005 ppm)							Hydrometer Te
	85-												
5	90-		10 10"		(91)	gravel up to 1 inch							
0	95-					Ended drilling on 6/15/07 at 91 1/2 ft. Began drilling on 6/16/07 at 91 1/2 ft.							
15		·◆··↓↓ └┼●┤↓				SANDY SILT (ML), hard, gray, wet (OXY=20.9%,							
	1			1		S_{1} S_{1							

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedantham CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 201.5 ft

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout START DATE: June 5, 2007 COMPLETION DATE: June 8, 2007

SVRT BORING LOG 011108 Z: TUGENERAL USERSUAIN_AIGINTSVRT_PHASE 2_050208.GPJ TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:48 a

LOG OF BORING NO. BH-89

Project No.	213213		

т, т т	:	LŁ	lin)	ΥPE	R NT/ Psi	LOCATION: SW side of N 3rd Street. Approx. 40 ft NW of Santa Clara St N 1,948,303 E 6,157,960	pcf	% .	ЪЙ	- ~	¥.	SHEAR S _u , ksf	STS
ELEVATION, ft DEPTH, ft	1	MATERIAL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 82.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ш			l a	ŝ	шС	MATERIAL DESCRIPTION						ST	0
	-		11 10"		(59)	LEL=0%, PID=0 ppm)							
-20	-												
	-												
10	-55												
	-												
25													
	-												
110	0-		12	111111			•••••	+	•••••	•••••	+•••••		
30			21			(pp=>4.5/>4.5/>4.5 tsf, tv=0.45/0.45/0.40 tsf)							
	-											>4.5 P 0.7 T	
115	-												
35	-					some gravel							
	1					CLAYEY SAND WITH GRAVEL (SC), brown,							
120	0-1		13	1111		moist, some subrounded gravel up to 1 inch							
40	Ķ		22"	1111		(OXY=20.9%, LEL=0%, PID=0 ppm)							
40	Ý.			H									
10	?												
125		//.	.]										
45	?		1										
	Ż	/ /								• • • • • • • •		• • • • • • • • • • •	
130	i0-,-	/,	14		(62)								
	/	/ /	1"	Ц	()	dense, gray (mostly slough in sampler)							
50		//											
		//											
13	15-7.												
55	ŀ.	;. 				SANDY LEAN CLAY (CL), very stiff, yellowish	-						
	ľ					brown, wet				• • • • • • • •		• • • • • • • • • • •	
14(.0-	///	15	1				.					
	Ł		26"	1111111111111									
60	1		1	Ż		(pp=2.5/3.0/2.5 tsf, tv=0.25/0.30/0.25 tsf) (OXY=20.9%, LEL=0%, PID=0 ppm)						2.7 P 0.5 T	
	ł		1										
14	5-/		16 28"	1111111									
65		$ \top$	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SILT WITH SAND (ML), yellowish brown, wet, fine		20	70				Hydrometer Te
						grained sand		20	79		+		
	ŀ					SILTY SAND (SM), yellowish brown, fine to medium	1	L	l		l	l	l
ORIN	IG E	DEPT			ft ot Measu		RILLIN					otary Wa	sh

COMPLETION DATE: June 8, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

ETION DATE: June 8, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purpose. For example, the purpose of the provide statement of the provide sta design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-89

	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: SW side of N 3rd Street. Approx. 40 ft NW of Santa Clara St N 1,948,303 E 6,157,960 SURFACE EL: 82.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	Г, %	AG VE		TY ()	sHEAR S _u , ksf	TS
. 17	SAMF			ZY U IGH1	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
17 12'		BLO	MATERIAL DESCRIPTION	ME	200	% F #20		PLA	JNDRA STREN	ОТНІ
	1		grained sand				•••••		·····	
	\backslash				•••••					
			Ended drilling on 6/6/07 at 152 1/2 ft. Began drilling on 6/7/07 at 152 1/2 ft.		•••••					
18 16'		(83)	LEAN CLAY (CL), very stiff, light gray, wet, low plasticity		•••••					
19		(49)	SANDY LEAN CLAY (CL), hard, gray (OXY=20.9%, LEL=0%, PID=0 ppm)				•••••			
18'					. 19	. 67				Hydrometer Tes
		-	SANDY SILT (ML), hard, gray, wet (pp=>4.5/>4.5/>4.5 tsf, tv=0.45/0.40/0.40 tsf)							
16'										
21	_	-								
28	100		subrounded gravel up to 1/2 inch							
				108	21 	53	•••••			
22 16'		(67)	LEAN CLAY (CL), hard, gray, wet, low plasticity							••••••
Å			SANDY LEAN CLAY (CL), very stiff, light brown,		•••••		•••••			
23 16'		(44)	wet (OXY=20.9%, LEL=0%, PID=0 ppm)				•••••			
					•••••		•••••			
24	_				•••••		•••••			
∠ 2" .∕			yellowish brown, moist		•••••		• • • • • • • •			
		-	CLAYEY SAND (SC), gravel up to 3/4 inch in cuttings, lost drilling fluid at 186 feet		•••••		•••••			
25 14		(46)	LEAN CLAY (CL), very stiff, gray, wet, medium		25	98	49	24		Hydrometer Te
			Ended drilling on 6/7/07 at 191 1/2 ft.							
26 . 14		(62)	SILTY SAND (SM), dense, gray, wet							•••••
	16" 19 19 19 10 20 16" 21 22 2 22 16" 23 16" 24 2" 25 14" 26 4" 24 2" 25 14" 26 4" 24 2" 25 25 14" 26 24 2" 25 25 25 25 25 25 25 25 25 25 25 25 25	18 16" 19 18" 20 16" 21 28" 21 28" 21 28" 21 24 2" 25 14" 26 14"	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 16 (83) LEAN CLAY (CL), very stiff, light gray, wet, low plasticity 19 18 (49) SANDY LEAN CLAY (CL), hard, gray (OXY=20.9%, LEL=0%, PID=0 ppm) 20 16 ⁺ SANDY SILT (ML), hard, gray, wet (pp=>4.5/>4.5/>4.5 tsf, tv=0.45/0.40/0.40 tsf) 21 28 ⁺ subrounded gravel up to 1/2 inch 21 26 ⁺ (67) LEAN CLAY (CL), hard, gray, wet, low plasticity 16 ⁺ SANDY LEAN CLAY (CL), hard, gray, wet, low plasticity 16 ⁺ SANDY LEAN CLAY (CL), very stiff, light brown, wet (OXY=20.9%, LEL=0%, PID=0 ppm) 24 2 ⁺ yellowish brown, moist CLAYEY SAND (SC), gravel up to 3/4 inch in cuttings, lost drilling fluid at 186 feet 14 ⁺ (46) LEAN CLAY (CL), very stiff, gray, wet, medium plasticity Ended drilling on 67/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. 28 14 ⁺ (62) SILTY SAND (SM), dense, gray, wet	18 (83) LEAN CLAY (CL), very stiff, light gray, wet, low plasticity 19 (49) SANDY LEAN CLAY (CL), hard, gray (OXY=20.9%, LEL=0%, PID=0 ppm) 20 SANDY SILT (ML), hard, gray, wet (pp=>4.5/>4.5/>4.5/>4.5/>4.5/>4.5/>4.5/>4.5/	18 [83] LEAN CLAY (CL), very stiff, light gray, wet, low plasticity 19 [49] SANDY LEAN CLAY (CL), hard, gray (OXY=20.9%, LEL=0%, PID=0 ppm) 19 [49] SANDY SILT (ML), hard, gray, wet (pp=>4.5/>4.5/>4.5 tsf, tv=0.45/0.40/0.40 tsf) 20 subrounded gravel up to 1/2 inch 108 21 subrounded gravel up to 1/2 inch 108 22 (67) LEAN CLAY (CL), hard, gray, wet, low plasticity 16* (44) SANDY LEAN CLAY (CL), very stiff, light brown, wet (OXY=20.9%, LEL=0%, PID=0 ppm) 23 (44) yellowish brown, moist 24 yellowish brown, moist yellowish brown, moist 24 (46) LEAN CLAY (CL), very stiff, gray, wet, medium plasticity 24 (46) LEAN CLAY (CL), very stiff, gray, wet, medium plasticity 25 (46) LEAN CLAY (CL), very stiff, gray, wet, medium plasticity 26 (62) SILTY SAND (SM), dense, gray, wet	18 (83) LEAN CLAY (CL), very stiff, light gray, wet, low 19 (49) SANDY LEAN CLAY (CL), hard, gray (OXY=20.9%, LEL=0%, PID=0 ppm) 19 (49) LEI-0%, PID=0 ppm) 10* SANDY SILT (ML), hard, gray, wet	18 16* (83) LEAN CLAY (CL), very stiff, light gray, wet, low plasticity 19 18* (49) SANDY LEAN CLAY (CL), hard, gray (OXY=20.9%, LEL=0%, PID=0 ppm) 19 18* (49) SANDY SILT (ML), hard, gray, wet (pp=>4.5/>4.5/>4.5/>4.5 tsf, tv=0.45/0.40/0.40 tsf) 20 16* subrounded gravel up to 1/2 inch 19 108 21 28* subrounded gravel up to 1/2 inch 108 21 28* (67) LEAN CLAY (CL), hard, gray, wet, low plasticity 23 16* (44) SANDY LEAN CLAY (CL), very stiff, light brown, wet (OXY=20.9%, LEL=0%, PID=0 ppm) 24 2* -yellowish brown, moist CLAYEY SAND (SC), gravel up to 3/4 inch in cuttings, lost drilling fluid at 186 feet 25 98 24 14* (46) LEAN CLAY (CL), very stiff, gray, wet, medium plasticity Ended drilling on 67/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. 25 98	18 (63) LEAN CLAY (CL), very stiff, light gray, wet, low 19 (49) SANDY LEAN CLAY (CL), hard, gray (OXY=20.9%, LEL=0%, PID=0 ppm) 19 (49) SANDY SILT (ML), hard, gray, wet 20 SANDY SILT (ML), hard, gray, wet 19 21 -subrounded gravel up to 1/2 inch 108 22 (67) LEAN CLAY (CL), hard, gray, wet, low plasticity 23 -subrounded gravel up to 1/2 inch 108 24 -subrounded gravel up to 1/2 inch 108 23 (44) CLAY (CL), hard, gray, wet, low plasticity 24 -yellowish brown, moist -yellowish brown, moist CLAYEY SAND (SC), gravel up to 3/4 inch in cutting, lost drilling fluid at 186 feet 25 14* (62) SILTY SAND (SM), dense, gray, wet 25 26 (62) SILTY SAND (SM), dense, gray, wet	18 LEAN CLAY (CL), very stiff, light gray, wet, low 19 (49) 19 (49) 19 (49) 19 (49) 19 (57) 20 SANDY SILT (ML), hard, gray, wet (pp=>4.5/>4.5/>4.5/4.5 tsf, tv=0.45/0.40/0.40 tsf) 21 subrounded gravel up to 1/2 inch 22 (67) 10 21 53 22 (67) 11 EAN CLAY (CL), hard, gray, wet, low plasticity 23 subrounded gravel up to 1/2 inch 24 subrounded gravel up to 1/2 inch 25 (44) 24 yellowish brown, moist CLAYEY SAND (SC), gravel up to 3/4 inch in cuttings, lost drilling fluid at 186 feet 14* (46) 125 98 49 24 Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191 1/2 ft. -Began drilling on 6/8/07 at 191

BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 5, 2007 COMPLETION DATE: June 8, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-89

Silicon Valley Rapid Transit Project San Jose, California Sheet 1 of 5

Project No.	213213	

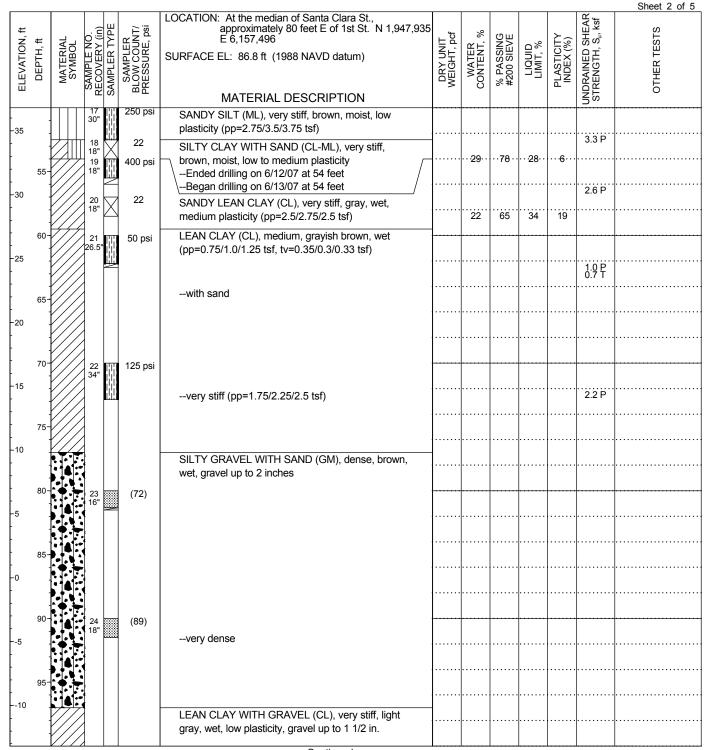
t			ш	i.	LOCATION: SW side of N 3rd Street. Approx. 40 ft NW of Santa Clara St N 1,948,303 E 6,157,960						Ksf	(0
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 82.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ш			Ś		MATERIAL DESCRIPTION						STE	0
-		27 16"		(64)	dense							
120 -												
- 205-	-						•••••				•••••	• • • • • • • • • • • • • • • • • • • •
- 25 -							•••••				•••••	
-	-						• • • • • • • •					
210-	-											
30 -							•••••					
-							•••••					
215-							•••••					
35 ⁻	-						•••••					
220-	-											
- 40 -	-											
-	-											
225-	-											
45 -												
- 230-												
-												
50 -	-						• • • • • • • •					••••••
- 235-	-						• • • • • • • •					
- 55 -	-						•••••					
-							•••••					••••••
240-												
60 -												
-												
-245												
65 ⁻												
-	-											

BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 5, 2007 COMPLETION DATE: June 8, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-89

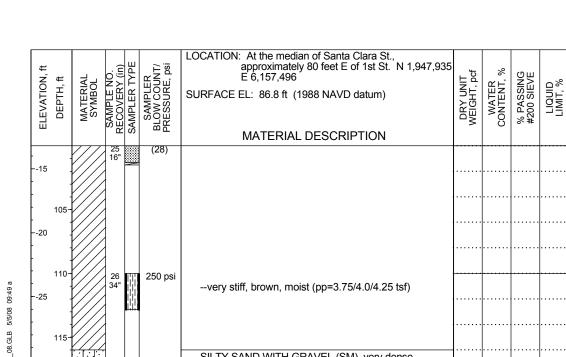
Project No.	213213	

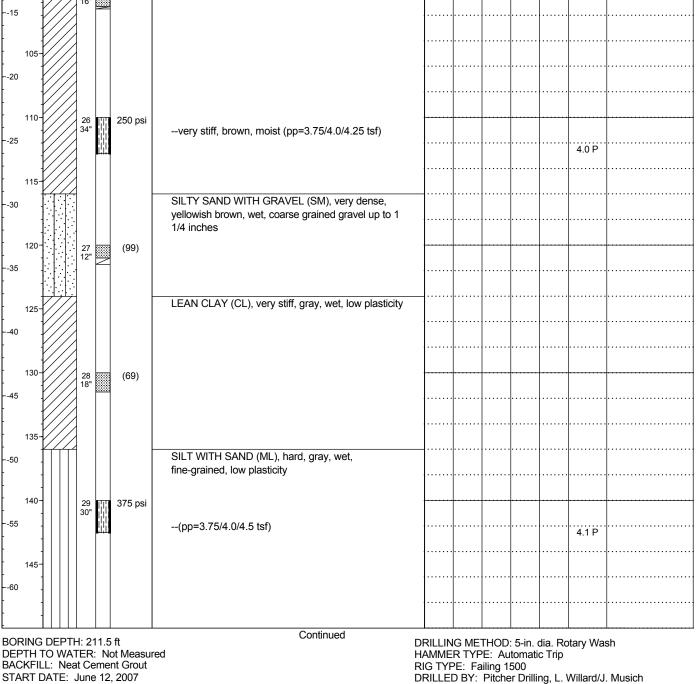

,Ħ			ĵi	ΡE	NT/ psi	LOCATION: At the median of Santa Clara St., approximately 80 feet E of 1st St. N 1,947,935 E 6,157,496	đ,	%	()111		≻-	HEAR ., ksf	Sheet 1 of ഗ
ELEVATION,	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 86.8 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
ш			۳æ	Ś	요문	MATERIAL DESCRIPTION	_					STF	0
		.	ł			6 inches of ASPHALT CONCRETE	••••			•••••	•••••	++	
5	-					old concrete and wood pieces (FILL)							
	- 5-		1 15"		(14)	SANDY LEAN CLAY (CL), stiff, yellowish brown, moist, low plasticity							
0	-		2 15"		(15)	(OXY=20.9%, CH4=2 ppm, OVM=0 ppm)							
5	- 10 - 10		3 15"		(8)	medium							
	-		1			SANDY SILT (ML), medium, brown, moist							
0	15- - -		4 25"		300 psi	(pp=0.75/0.5/0.75 tsf, tv=0.15/0.15 tsf)						0.7 P 0.3 T	
	- - 20-		5	111	50 psi	LEAN CLAY (CL), medium, gray, moist, medium plasticity (pp=0.5/0.75/0.5 tsf, tv=0.25/0.23/0.25 tsf)		•••••					·····
5	-		20									0.6 P 0.5 T	
	-		6 16"		8	FAT CLAY (CH), medium, dark gray, moist, medium plasticity							
0	25-		7 24"		200 psi	LEAN CLAY (CL), stiff, light grayish brown, moist (pp=1.5/1.5/1.5 tsf, tv=0.35/0.4/0.35 tsf)							
	-		8 17"		18	very stiff, brown		 23	89	 36	14	1.5 P ••• 0.7 T •••	
5	- 30		9 28.5 10		150 psi 13	SILTY SAND (SM), yellowish brown, moist, fine-grained							
	-		16"	\bowtie	15	SANDY SILT (ML), stiff, brown, moist		···28··	70	··NP··	··NP··		
0	35- - -		11 9"		125 psi	SILTY SAND (SM), brown, moist, fine to medium grained							
	- - 40		12 18" 13		4	LEAN CLAY (CL), soft, dark gray, moist, low plasticity		 28	81	30	8	······	
5			18" 18" 14 30"		0 100 psi	FAT CLAY (CH), very soft, dark gray, moist, high plasticity, some organics							
	-		30"			SANDY SILT (ML), gray, moist							
0	45- - -		15 18"		8	LEAN CLAY WITH SAND (CL), medium, gray, moist, some organics		22 24	70	26	8		
	-		16 18"	\square	12	stiff, brown							

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-90




BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-90

COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham

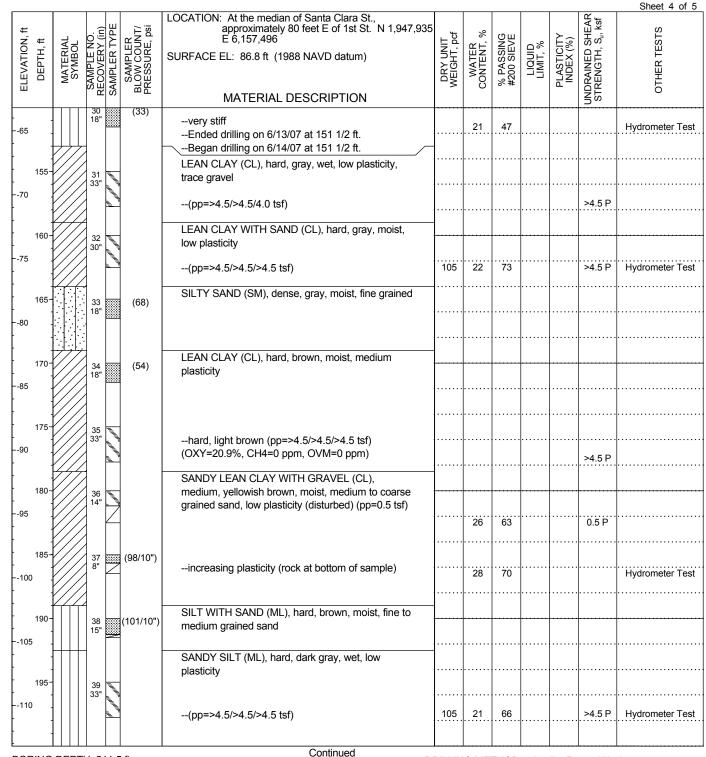
 Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-90

Silicon Valley Rapid Transit Project San Jose, California

Sheet 3 of 5

OTHER TESTS


UNDRAINED SHEAR STRENGTH, S_u, ksf

PLASTICITY INDEX (%)

09:49 a

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08

SVRT BORING LOG 011108 Z:/TUGENERAL/USERS/JAIN_A/GINT/SVRT_PHASE 2_050208.GPJ

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-90

230-

235

240

245

-145

-150

-155

-160

ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)		SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: At the median of Santa Clara St., approximately 80 feet E of 1st St. N 1,947,935 E 6,157,496 SURFACE EL: 86.8 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	
115 - -		40 27"	11111111111111111111111111111111111111		hard, gray, medium grained sand (pp=4.0/4.25/>4.5 tsf) (OXY=20.9%, CH4=1 ppm, OVM=0 ppm)						
205-		41 18"		(59)	LEAN CLAY (CL), hard, gray, wet, medium plasticity						
- 210- - -125 -		42 18"		(87)	SILT (ML), hard, brown, wet, low plasticity	110	19				
- - 215- -											,
130 -											
220- - 135 -											
- 225-											

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

 LL: Neat Cement Grout
 RIG TYPE: Failing 1500

 DATE: June 12, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: June 15, 2007
 LOGGED BY: R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

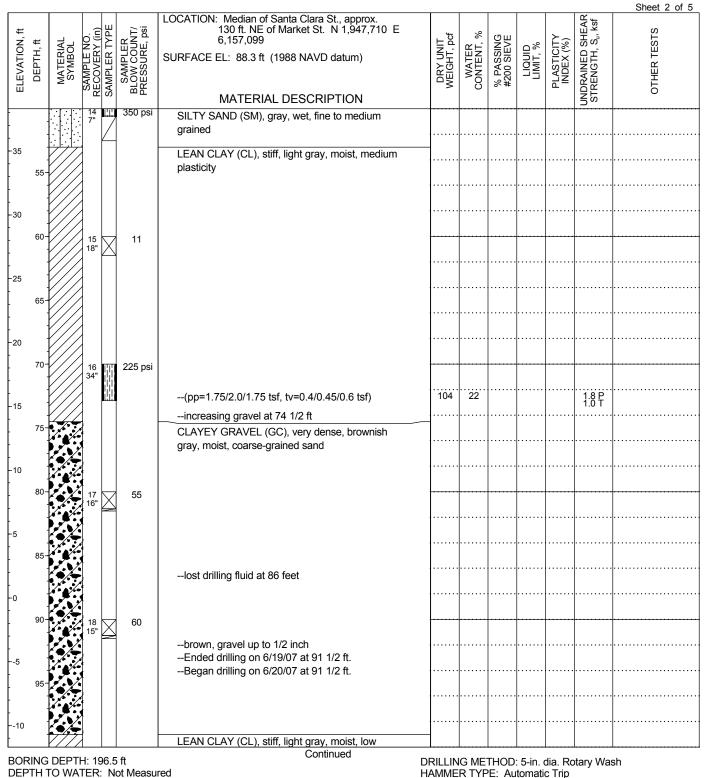
LOG OF BORING NO. BH-90

Silicon Valley Rapid Transit Project San Jose, California

Sheet 5 of 5

OTHER TESTS

											Sheet 1 of
ELEVATION, ft DEPTH, ft MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLEK IYPE SAMPLER	BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 130 ft. NE of Market St. N 1,947,710 E 6,157,099 SURFACE EL: 88.3 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, Su, ksf	OTHER TESTS
			-	8 inches of ASPHALT CONCRETE over 6 inches of CONCRETE							
85	1 16"		(12)	LEAN CLAY WITH GRAVEL (CL), medium, brown, moist, low plasticity, trace broken asphalt concrete pieces (FILL)		•		•••••			
				SILTY SAND (SM), dark brown, moist, fine grained							
80	2	TT 1	150 psi	Began rotary wash, set casing to 8 1/2 ft.		••••••		•••••			
75	: 33" : :			(OVM=0 ppm, OXY=20.9%, CH4=1 ppm)		••••••					
15-			-	LEAN CLAY WITH SAND (CL), medium, black, moist, low to medium plasticity	 	• • • • • • • • • • • • • •		•••••			
70											
20-	3 32"										
65 25-	4 32"	111 111 2	200 psi	(pp=0.5/0.75/0.5 tsf, tv=0.35/0.35/0.3 tsf) (downward pressure was not recorded) stiff, light brownish gray (pp=2.0/1.5/2.0 tsf, tv=0.45/0.55/0.55 tsf)		38		45	20	0.6 P 0.3 T	
60	5 t	Щ Х	23	SILTY SAND (SM), medium dense, grayish brown,				NP	NP.	1.8 P •• 1.0 T ••	
30	6			moist, fine to medium grained sand wet, medium to coarse grained sand		24	37	NP	NP		
	12.5" 7 16"	Ĭ	23	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), medium dense, greenish black,	1	24 17	35 9	NP NP	NP NP		
55 35	8 9"		20	moist, fine to medium grained sand wet, coarse grained sand							
50	9 12" 10 29"		100 psi	SILTY SAND (SM), brown, wet, fine to medium grained, trace organic material (Sample No. 9 was advanced only 12 inches by 4		••••••		•••••			
40-	·		23	blows with SPT sampler. See bottom of the boring / for more detail.)			82	33	12		
45	12 29"			LEAN CLAY (CL), very stiff, gray, wet, medium plasticity, some medium-grained sand							
45 45	13 18"	Ц Х	16	stiff, (pp=1.25/1.5/1.75 tsf, tv=0.3/0.1/0.45 tsf) very stiff, moist, trace, organic materials						···1.5 P·· 0.6 T	Hydrometer Tes
40											
	1			Continued	1		l	l	l	I	l


BORING DEPTH: 196.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-91

Silicon Valley Rapid Transit Project San Jose, California Shoot 1 of E

BACKFILL: Neat Cement Grout START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007 DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-91

Project No.	213213

										Sheet 3 of 5
ELEVATION, ft DEPTH, ft MATERIAL SYMBOL SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 130 ft. NE of Market St. N 1,947,710 E 6,157,099 SURFACE EL: 88.3 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
SA SA SA	SAN	PRE	MATERIAL DESCRIPTION	[⊔] ≥	8	%#		물론	STRE	ΪĹΟ
- 19	X	21	plasticity		•••••		•••••	•••••	·	
15 105-			minor gravel lens encountered from 105 feet to 106 feet depth							
20			SILTY CLAY (CL-ML), very stiff, yellowish brown, moist, low plasticity							
110-20	11111111									
25			(pp=2.0/3.5/3.5 tsf, tv=0.35 tsf)	101	24				3.0 P 0.7 T	
115-			SILTY GRAVEL WITH SAND (GM), very dense, brown, wet, medium to coarse grained sand		•••••		•••••			
-30										
120- • 21 10" -	X	71								
35										
			LEAN CLAY (CL), hard, yellowish brown, moist, low plasticity							
-40			pressol							••••••
130- 22 32"		400 psi								*****
-45	iii		(pp=4.0/3.5/4.5 tsf)		• • • • • • • •				···4.0 P··	
135 23 16"		(46)	light brown		•••••		•••••			
50										
140-24		400 psi					•••••			
55			CLAYEY SAND WITH GRAVEL (SC), brown, wet, coarse-grained sand		15	39				Hydrometer Test
145		(68/6")	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), very dense, brown, wet, gravel up to 1 inch		12	8				
-60							•••••			
F • • • • • • • •			Continued		•••••			• • • • • • • • •	•••••	••••••

BORING DEPTH: 196.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wano

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-91

Silicon Valley Rapid Transit Project San Jose, California Sheet 3 of 5

	_							1		1		1	Sheet 4 of
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO.	SAMPI FR TYPF		SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 130 ft. NE of Market St. N 1,947,710 E 6,157,099 SURFACE EL: 88.3 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
		· 20	; ;	8	(74/6")			+	+•••••		+•••••	+ 	•••••••
-65						Ended drilling on 6/20/07 at 151 1/2 ft. Began drilling on 6/21/07 at 151 1/2 ft.							
155	5	21		N::::	(113)	SILTY SAND (SM), very dense, reddish brown, moist, fine to medium grained		19	15				Hydrometer Tes
-70		÷											• • • • • • • • • • • • • • • • • • • •
160		28 5'	3	7		LEAN CLAY WITH SAND (CL), yellowish brown, moist							•••••••••••••••••••••••••••••••••••••••
75			Ł	-		lost drilling fluid at 163 1/2 feet							•
165	5-	29	?	N:::	(62/6")	POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), very dense, brown, wet, coarse grained							
80													
170		30 10).	8	(65/6")	gravel up to 1 inch							•
85 175		3 [.] 12			(116)	lost drilling fluid at 173 feet very dense, gravel up to 1 1/2 inches							
90						LEAN CLAY (CL), very stiff, light brownish gray, moist, low plasticity		11	9				
180		32	2. 		400 psi								••••••
95			2	-		Ended drilling on 6/21/07 at 182 1/2 ft. Began drilling on 6/22/07 at 182 1/2 ft.		28	99				Hydrometer Tes
185	5-	3:			(43)	greenish gray							
100													
190		34			(68/4")	POORLY GRADED GRAVEL WITH CLAY AND SAND (GP-GC), very dense, gray, moist, gravel up to 2 inches							
105 195		3!	5		(93/6")								
110						Note: Sample No. 9 was advanced with SPT sampler for 12 inches. The sampler was then retrieved and Shelby Sampler was used according		9	7				
						Continued	I	l	I	l	I		

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1. CHECKED BY: F. Wang 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 196.5 ft

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout

START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007

LOG OF BORING NO. BH-91

Project No.	213213	

													Sheet 5 of 5
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 130 ft. NE of Market St. N 1,947,710 E 6,157,099 SURFACE EL: 88.3 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
				0	- 4	MATERIAL DESCRIPTION						Ч.	
	-					to the sampling schedule per Kleinfelder.							
	-												
115	-												
. :	205-												
	-												
120	-							• • • • • • • •					
. :	210-									•••••			
	-												
125	-												
. :	215-												
	-												
130	-												
	220-												
	-												
135													
	-												
· ·	225-												
	-												
140	-												
. :	230-							•••••					
-	-												
145													
. :	235-												
	-												
150	-												
. :	- 240												
]												
155	-												
	- 245-												
- ' -													
	-												
160	-												

BORING DEPTH: 196.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-91

Project No.	213213

						LOCATION: Approx. 370 ft. S of Santa Clara St. and approx. 100 ft. W of Montgomery St. N						AR	Sheet 1 o
ELEVATION, ft	Ĥ		.i	YPE	R INT/ Psi	approx. 100 ft. W of Montgomery St. N 1,945,972 E 6,154,178	pct⊣	%	ĞМ		≿⊚	SHE. S., K	OTHER TESTS
ē	ΤΉ,	BOI	ШЧЧ	R T	JSR JSR	SURFACE EL: 81.1 ft (1988 NAVD datum)	ΞĻ.		SSIP	UD″,	l ⊡⊗	ΞÜ	IE
A.	DEPTH, ft	MATERIAL SYMBOL	MP	PLE	AMF W (SSU		DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	NG	ĒR
Ш		≥"	SAMPLE NO. RECOVERY (in	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi		۵ŝ	8	%#		ב≤	UNDRAINED SHEAR STRENGTH, S _u , ksf	0 TO
		<u>~ ~</u>				MATERIAL DESCRIPTION						50	
30	-	XXX	3			6 inches of ASPHALT CONCRETE							
	-	>>>>	1		(15)	LEAN CLAY WITH GRAVEL (CL), stiff, dark brown, moist, low plasticity (FILL)		•••••		• • • • • • • •			
	-												
	5-	\mathbb{X}	Ž			SILT (ML), very stiff, brown, moist, low plasticity	_						
5	-					SIET (ME), Very Still, Drown, moist, low plasticity		•••••		• • • • • • • •			
	_												
	-					Began rotary wash, set casing to 8 1/2 ft							
_	10-		2 33"	ΠÏ	200 psi						+		
0	-			- iiii									
	-			1:1:1		(pp=2.0/2.5/2.0 tsf, tv=0.4/0.45/0.375 tsf) (OVM=0 ppm, OXY=21%, CH4=2 ppm)						2.1 P 0.9 T	
	45					(OVIM=0 ppm, OX1=21%, OLI4=2 ppm)		• • • • • • • •		• • • • • • • •			• • • • • • • • • • • • • • • • • • • •
5	15-												••••••
•	-												
	-							• • • • • • • •					
	20-				125 psi	LEAN CLAY (CL), stiff, brown, moist, low plasticity							
0	-		3 32"	ilili	120 001	(pp=2.0/1.75/2.0 tsf, tv=0.35/0.4/0.45 tsf)							
	-		1	Шi				•••••		• • • • • • • •		1.9 P 0.8 T	
	-		1									0.0 I	•••••
	25-												
5								• • • • • • • •		• • • • • • • •			
	-												
	-		1										
0	30-		4		225 psi	yellowish brown, low plasticity (pp=1.75/2.0/1.75							• • • • • • • • • • • • • • • • • • • •
0	-			ilili		tsf, tv=0.4/0.38/0.35 tsf)		•••••					
	-			■ ; ;]		· · · · · ·						1.8 P 0.8 T	
	- 35-		1					• • • • • • • •		• • • • • • • •			
5	-		1					• • • • • • • •					••••••
	-		1										
								•••••					
	40-		5		(58)	WELL-GRADED GRAVEL WITH SILT AND SAND							
0	-		12"	\mathbb{Z}	/	(GM), dense, brown, wet, coarse grained gravel							
		T											••••••
	-												
	45-		4			SILTY CLAY (CL-ML), very stiff, gray, moist, low	-						
5						plasticity							••••••
	-												
	-	r/////	1										

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-93

		1				·		1					Sheet 2 of 5
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. DECOVEDV (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 370 ft. S of Santa Clara St. and approx. 100 ft. W of Montgomery St. N 1,945,972 E 6,154,178 SURFACE EL: 81.1 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
-30			6 33"		300 psi								******
-						very stiff, increasing sand (pp=2.0/2.25/1.75 tsf, tv=0.4/0.45/0.4 tsf)	105	21 		28	5	2.0 P 0.8 T	
-25 -	55-							•••••		•••••			
	60-		_		225 psi								
-20			7 33"		220 031	yellowish brown (pp=2.25/2.0/2.25 tsf)							
-				ilili								2.2 P	
-	65-							• • • • • • • •					
-15										•••••			
-						WELL-GRADED SAND WITH GRAVEL (SW),				•••••			
-	70-		8		(68)	dense, brown, moist, coarse grained gravel up to 2 inches							
-10			10"	\geq		Inches							
-													
-	75-	///				LEAN CLAY (CL), very stiff, dark gray, moist, trace							
-5						fine grained sand, low plasticity		• • • • • • • •		•••••			
-	•												
-	80-		9 33"	ЦЦ.	225 psi					•••••			
-0			33"			(22-2) 25/2 0/2 25 tot) (0) (M=0 222						2.2 P	
-						(pp=2.25/2.0/2.25 tsf) (OVM=0 ppm, OXY=21.5%, CH4=1 ppm)						2.2 F	
-	85-												
5 -													
-										•••••			
-	90-		10		(42)					•••••			
10 -										•••••			
-	•					POORLY-GRADED SAND WITH SILT (SP-SM),							
- 15	95-					reddish brown, moist, medium grained sand							
-										•••••			
L		r I. I.	1	1	1	Continued	_I				l	I	L

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-93

ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 370 ft. S of Santa Clara St. and approx. 100 ft. W of Montgomery St. N 1,945,972 E 6,154,178 SURFACE EL: 81.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	Sheet 3 of SLS SLS SLS SLS SLS SLS SLS SLS SLS SL
DEI	LAM SY1		SAMPL		MATERIAL DESCRIPTION	DRY	CON	% P/		PLAS	UNDRAIN	ОТНЕ
-20		. 11 . 16"		(76)	very dense			.11				Hydrometer Tes
105 [.] 25					SILTY CLAY (CL-ML)		•••••					
110 [.] 30		12 15"		(103)	SILTY SAND WITH GRAVEL (SM), very dense, light brown, moist, coarse grained sand		•••••					
115- 35							•••••					
120-		13		250 psi	LEAN CLAY (CL), very stiff, dark gray, moist, low plasticity		•••••	·····	•••••			
-40		52			(pp=2.25/2.5/2.25 tsf)	102	24				2.3 P	
125 [.] 45					SILTY SAND WITH GRAVEL (SM), dense, gray,		•••••					
130- 50		14		(53)	moist LEAN CLAY (CL), hard, grayish brown, moist, low							
135- 55					plasticity		•••••					
140 [.]		15		(56)			•••••					
60		18"		(00)				•••••				
145 [.] 65												
					Continued							

DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

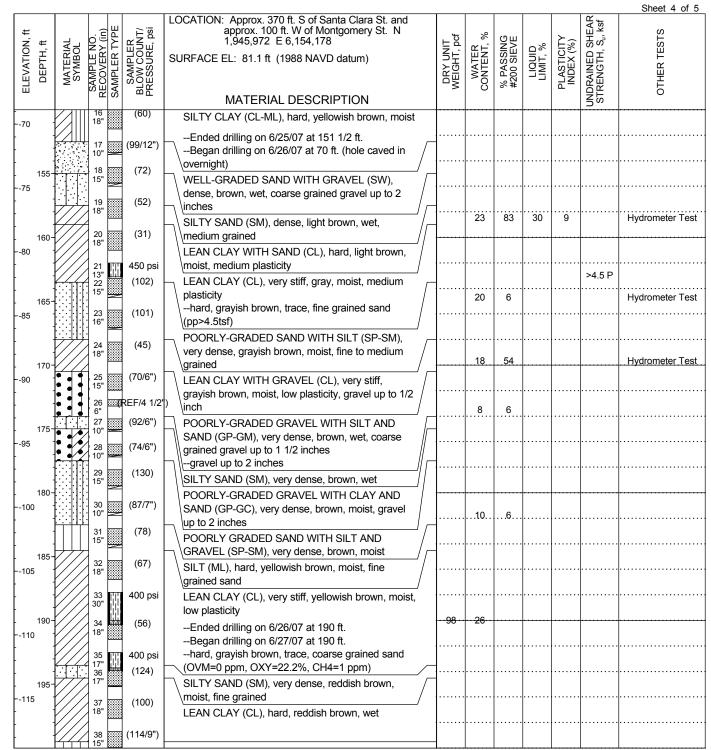
HAMMER TYPE: Automatic Trip LL: Neat Cement Grout DATE: June 25, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-93

Silicon Valley Rapid Transit Project San Jose, California

Shoot 2 of E


09:50 8

5/5/08

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB

Z:/TUGENERAL\USERS\JAIN_A\GINT\SVRT_PHASE 2_050208.GPJ

SVRT BORING LOG 011108

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007 Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 NOTES: 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-93

			ш	si -	LOCATION: Approx. 370 ft. S of Santa Clara St. and approx. 100 ft. W of Montgomery St. N						EAR ksf	Sheet 5 of
Υ, π , π	OLIAL	NO. NO.	ΤYΡ	NUN MUN MUN	1,945,972 E 6,154,178	, pcf	Ц.%		%ם	ZIT (%)	, SHE	EST 8
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 81.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ш		22	S	요문	MATERIAL DESCRIPTION					-	STE	0
120					SILT WITH SAND (ML), hard, grayish brown, wet, medium to coarse grained sand and subangular to subrounded gravel		27	75	35 	9	·····	Hydrometer Tes
- 205-												
125					interbedded clay/sand to 207 feet							
					POORLY-GRADED GRAVEL (GP), gravel lens from 207 feet to 209 feet							
210-		39 18"		(87)	LEAN CLAY (CL), hard, reddish brown, moist,							
130 ⁻					medium plasticity, trace sand	_ 						
	-											
215- 135												
	-											
220-	-											
140 -	-											
-												
225- 145												
	-											
230-												
150 ·												
235-	-											
55 .	-											
	-											
240- 160 -	-						 					
-	-											
- 245-	-											
65 ⁻	-											

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-93

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:50 a

SVRT BORING LOG 011108 Z:\TUGENERAL\USERS\UAIN_A\GINT\SVRT_PHASE 2_050208.GPJ

						LOCATION: Approx. 350 ft SE of Lenzen Ave. Approx. 75						AR sf	Sheet 1 of
ELEVATION, ft	H, ft	RIAL 30L	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	ft ŚŴ of Stockton Ave. N 1,947,990 Ė 6,152,019 SURFACE EL: 83.1 ft (1988 NAVD datum)	JNIT T, pcf	ER NT, %	SING	۲۵۲ %	ICITY (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
LEVAT	DEPTH, ft	MATERIAL SYMBOL		AMPLE	SAMP LOW C RESSU	SON AGE EL. 03.1 II (1900 NAVD Galdini)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	RAINE	THER
ш			<u> </u>	Ś		MATERIAL DESCRIPTION						STI	0
		7/1				4 1/4 inches of ASPHALT CONCRETE							
80	-		1 16"		(7)	LEAN CLAY (CL), medium, yellowish brown, moist, medium plasticity							
	5-		2 30"	l¦l¦i	225 psi	stiff, light brown, low plasticity (pp=1.75/1.75/1.75							
	Ì		30"			tsf, tv=0.35/0.35/0.35 tsf) (OXY=20.9%, CH4=0							
75	-			41414		ppm, OVM=0 ppm)Began rotary wash, set casing to 8 1/2 ft						1.8 ₽ 0.7 T	
	10-		3		100 psi	SILTY CLAY (CL-ML), stiff, brown, moist, low							
		////	3 30"	iiii	100 psi	plasticity (pp=1.75/1.75/1.75 tsf, tv=0.35 tsf)							
70	ļ			li li								1.8 P 0.8 T	
70	ļ	////				LEAN CLAY (CL), medium, dark brown, moist						0.8 1	
	15-		4	614	100 psi	(pp=0.5/0.75/0.5 tsf)							
	ľ		29"	li li						• • • • • • • •			•••••
65	ł											0.6 P	
	f					ORGANIC SILT (MH)/FAT CLAY (CH), medium,							
	20-		5 32"		125 psi	grayish brown, moist, medium plasticity							
	-			i i i	150 201	(pp=0.5/0.75/1.0 tsf, tv=0.4 tsf)		40			25	0.8 P	
60	ļ		6 30"		150 psi	LEAN CLAY (CL), medium, brown, moist, low to						0.8 P 0.8 T	
	25-		7		125 psi	medium plasticity (pp=1.0/0.75/0.75 tsf, tv=0.5 tsf)						0.8 P 1.0 T	
	ł		29"	iii		stiff (pp=1.25/1.5/1.0 tsf, tv=0.4 tsf)						1.0 1	
55	ł		8 29"		125 psi							1.3 P •• 0.8 T •••	
00	ł		29"	111		medium, low plasticity (pp=0.5/0.75/0.5 tsf, tv=0.35 tsf)						0.01	
	30-		9 25"	i i i	375 psi	(v=0.00 (Si)	••••			•••••		0.6 Р 0.7 Т	
	Ì					SILTY SAND (SM), grayish brown, moist, medium							
50	ł		10 15"		(3)	\frown to coarse grained, lost drilling fluid at 31 feet (10	104	23	39				
	35-				(07)	\gallons)							•••••
	-		11 12"		(67)	SANDY SILT WITH GRAVEL (ML), very soft, dark / brown, moist, fine grained sand, lost drilling fluid at /							
	ł		12		(79)	↓ \33 feet (10 gallons)							
45	-		15"	3	(10)	WELL-GRADED GRAVEL WITH SAND (GW),		8	5				
	40-	777	13		(13)	dense, gray, wet, coarse grained gravel up to 2							
	ł		0"	Ц	. ,								
40	ł		14		(16)	POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), very dense, gray, wet, coarse							
	ł	///	15 18"		150 psi	grained gravel						·····	
	45-	1///	16 15"		(22)	SILTY CLAY (CL-ML), stiff, gray, moist, low to						1.9 P 0.9 T	
]	[]]]	1			medium plasticity (disturbed sample obtained on		30		38	15		
35	ł	[]]]	17 16"		(24)	second attempt) low plasticity (pp=1.75/2.0/2.0 tsf, tv=0.45 tsf)	•••••					·····	
	1	////	1										

Continued

BORING DEPTH: 101.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 23, 2007 COMPLETION DATE: July 24, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

 LL: Neat Cement Grout
 RIG TYPE: Failing 1500

 DATE: July 23, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: July 24, 2007
 LOGGED BY: G. Tripathi/R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-95

Image: Start Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: Start Stockton Ave. N 1,947,990 E Image: St				1			LOCATION: Approx. 350 ft SE of Lenzen Ave. Approx. 75	Sheet 2 of
18 (23) LEAN CLAY (CL), stiff, brown, moist 100 26 35 12 19 (28)	ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL		SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	Ebook Hole Area Applied: 73 Figure Applied: 73 ft SW of Stockton Ave. N 1,947,990 E 6,152,019 SURFACE EL: 83.1 ft (1988 NAVD datum) SURFACE EL: 83.1 ft (1988 NAVD datum)	STRENGTH, S., ksi
16* 10* 26 35 12 19 19 (28) 35 12 50 17* (28) -stiff. light brown, wet, lost of drilling fluid at 51 feet 100 28 35 12 50 17* (28) -stiff. light brown, wet, lost of drilling fluid at 51 feet			///	18		(23)		·····
55 20 17 20 17 bottom of the sampler increasing gravel, lost fluid at 56 feet (15 gallons) 5 12 12 (82) 60 22 (60) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), very dense, dark gray, wet, coarse grained sand 9 6 60 22 (60) WELL-GRADED GRAVEL WITH SAND (GW), dense, dark brown, moist, subangular and subrounded gravel up to 11/2 inches, some fine grained sand 9 -13 65 24 100 psi SILTY GRAVEL (GM), medium dense, yellowish brown, wet, gravel up to 11/2 inches, encountered day pocket Ended drilling at 62 ft on 7/23/07 8 6 70 75 28 (60) SILTY SAND (SM), dark gray, wet (OXY=20.9%, CH4=0 ppm, OVM=0 ppm) 8 6 75 28 (60) 99 100 psi SILTY SAND (GM), dark gray, moist, gravel up to 1 1 76 28 (60) 100 psi erg qravel up to 11/2 inches gray, wet, gravel up to 314 inch, more sand at botom of sample lost drilling fluid at 74 feet 7 5 76 31 (50) SILTY CLAY (CL-ML), gray, wet, low plasticity WELL-GRADED GRAVEL Feet 7 5 86 150 psi SILTY CL	30	-		16"			very stiff 100 26 35 12	
5 GRAVEL (SP-SM), very dense, dark gray, wet, coarse grained sand 9 6 60 (60) WELL-GRADED GRAVEL WITH SAND (GW), dense, dark brown, moist, subangular and subrounded gravel up to 1 1/2 inches, some fine grained sand 9 6 65 24 100 psi SilTY GRAVEL (GM), medium dense, yellowish brown, wet, gravel up to 1 1/2 inches, encountered clay pocket 9 -13 70 25 (67) 15° (67) -Ended drilling at 64 ft on 7/23/07 8 6 70 26 (96) SilTY SAND (SM), dark gray, wet (OXY=20.9%, CH4=0 ppm, OVM=0 ppm) -Ended drilling at 62 ft on 7/24/07 8 6 75 28 (60) -very dense, grave up to 1 1/2 inches -very dense, grave up to 1 1/2 inches 75 28 (60) -very dense, grave up to 1 1/2 inches -very dense, grave up to 1 1/2 inches 75 28 (60) -very dense, gravel up to 1 1/2 inches -gray, wet, gravel up to 3/4 inch, more sand at bottom of sample -oray dense, gray, moist 80 30 (35) WELL-GRADED GRAVEL WITH SAND (GW), dense, gray, moist SilTY CLAY (CL-ML), gray, wet, low plasticity 85 32 150 psi ISUTY CLAY (CL-ML), gray, wet, low plasticity WELL-GRADED		- 55 -		20 17"			bottom of the sampler increasing gravel, lost fluid at 56 feet (15 gallons)	
00 22 23 (60) WELL-GRADED GRAVEL WITH SAND (GW), dense, dark brown, moist, subangular and subrounded gravel up to 1 1/2 inches, some fine grained sand 9 13 65 24 100 psi SILTY GRAVEL (GM), medium dense, yellowish brown, wet, gravel up to 1 1/2 inches, encountered clay pocket 9 13 70 26 (60) (67) -Ended drilling at 62 ft on 7/24/07 8 6 70 26 (96) SILTY SAND (SM), dark gray, wet (OXY=20.9%, CH4=0 ppm, OVM=0 ppm) 8 6 75 28 (60) -Very dense, gravel up to 1 1/2 inches -gray, wet, gravel up to 1 1/2 inches gray, wet, gravel up to 1 1/2 inches 90 15' (60) -Very dense, gravel up to 1 1/2 inches -gray, wet, gravel up to 1 1/2 inches 914* (99) (50) SILTY CLAY (CL-ML), gray, wet, low plasticity 7 5 80 30 (35) WELL-GRADED GRAVEL WITH SAND (GW), dense, gray, moist 7 5 81 50 50 11' (50) SILTY CLAY (CL-ML), gray, wet, low plasticity 7 5 82 30 11 (50) 150 psi SILTY CLAY (CL, very stiff, light brown, moist, 150 psi	25	-				(82)	_ GRAVEL (SP-SM), very dense, dark gray, wet,	
0 ²¹ / ₁₄ (21) subrounded gravel up to 1 1/2 inches, some fine 9 ·13 ·100 psi SILTY GRAVEL (GM), medium dense, yellowish 65 ·24 100 psi SILTY GRAVEL (GM), medium dense, yellowish 5 ·25 (67) ·26 ·27 70 ·26 (96) SILTY SAND (SM), dark gray, wet (OXY=20.9%, ·27 71 ·27 (98) POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), dense, gray, moist, gravel up to 1 75 ·28 (60) ·-very dense, gravel up to 1 1/2 inches ·-very dense, gravel up to 1 1/2 inches gray, wet, gravel up to 3/4 inch, more sand at bottom of sample ·-very dense, gray, moist, gravel up to 1 1/2 inches 90 ·15 [*] (35) (35) ··very dense, gravel up to 1 1/2 inches 91 ·15 [*] (35) ··very dense, gravel up to 3/4 inch, more sand at bottom of sample ··very dense, gray, moist 80 ·15 [*] ·15 [*] ·15 [*] ·15 [*] 90 ·15 [*] ·15 [*] ·15 [*] ·15 [*] 15 [*]		60- -		22 15"		(60)	WELL-GRADED GRAVEL WITH SAND (GW),	
177 100 psi SiLTY GIAVEL (GW), fieldum dense, yenowish brown, wet, gravel up to 1 1/2 inches, encountered clay pocket 5 (67) Ended drilling at 64 ft on 7/23/07 8 Began drilling at 62 ft on 7/24/07 8 6 70 26 (96) SiLTY SAND (SM), dark gray, wet (OXY=20.9%, CH4=0 ppm, OVM=0 ppm) 75 (98) POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), dense, gray, moist, gravel up to 1 75 28 (60) very dense, gravel up to 1 1/2 inches -gray, wet, gravel up to 1 1/2 inches -gray, wet, gravel up to 3/4 inch, more sand at bottom of sample 7 15" (35) WELL-GRADED GRAVEL WITH SAND (GW), dense, gray, moist SILTY CLAY (CL-ML), gray, wet, low plasticity 85 30 (50) SILTY CLAY (CL-ML), gray, moist ILEAN CLAY (CL), very stiff, light brown, moist,	20	-		23 10"		(21)	subrounded gravel up to 1 1/2 inches, some fine	
5 (01) Ended drilling at 64 ft on 7/23/07 8 6 70 26 (96) SILTY SAND (SM), dark gray, wet (OXY=20.9%, CH4=0 ppm, OVM=0 ppm) 8 6 75 (98) POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), dense, gray, moist, gravel up to 1 1 very dense, gravel up to 1 1 75 (28) (60) very dense, gravel up to 1 1/2 inches very dense, gravel up to 3/4 inch, more sand at bottom of sample lost drilling fluid at 74 feet 7 5 80 30 (35) (50) SILTY CLAY (CL-ML), gray, wet, low plasticity WELL-GRADED GRAVEL WITH SILT AND GRAVEL (SW-SM), very dense, gray, moist 150 psi 85 32 150 psi 150 psi LEAN CLAY (CL), very stiff, light brown, moist, very stiff, light brown, moist,		65- -		24 17"	1111111111		brown, wet, gravel up to 1 1/2 inches, encountered	
70 26 13° (96) SILTY SAND (SM), dark gray, wet (OXY=20.9%, CH4=0 ppm, OVM=0 ppm) 75 (98) POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), dense, gray, moist, gravel up to 1 75 28 15° (60) very dense, gravel up to 1 1/2 inches gray, wet, gravel up to 3/4 inch, more sand at bottom of sample lost drilling fluid at 74 feet 7 80 30 15° (35) WELL-GRADED GRAVEL WITH SAND (GW), dense, gray, moist 7 81 (50) SILTY CLAY (CL-ML), gray, wet, low plasticity WELL-GRADED SAND WITH SILT AND GRAVEL (SW-SM), very dense, gray, moist 7 85 32 30° 150 psi 150 psi LEAN CLAY (CL), very stiff, light brown, moist,	5	-		15"			Ended drilling at 64 ft on 7/23/07	
75 15" SAND (GP-GM), dense, gray, moist, gravel up to 1 75 28 (60) 15" (60) 15" (60) 15" (60) 15" (60) 15" (60) 15" (60) 15" (60) 15" (60) 160 -very dense, gravel up to 1/2 inches gray, wet, gravel up to 3/4 inch, more sand at bottom of sample lost drilling fluid at 74 feet 80 (35) 30 (35) (35) WELL-GRADED GRAVEL WITH SAND (GW), dense, gray, moist 81 (50) 31 (50) 32 150 psi 30" 150 psi 150 psi UEAN CLAY (CL), very stiff, light brown, moist,		-07		26 13"				
15* (so) 29 (99) 14* (99) 30 (35) 15* (35) 30 (50) 15* (50) 31 (50) 32 (50) 32 150 psi 30* 150 psi 150 psi LEAN CLAY (CL), very stiff, light brown, moist,	0	-		15"			SAND (GP-GM), dense, gray, moist, gravel up to 1	
80 14" (99) 80 30 (35) 15" (35) 15" (50) 85 32 30" 150 psi 150 psi 150 psi		75		15"			-very dense, gravel up to 1 1/2 inches	
31 (50) 31 (50) 31 (50) 32 14" 32 11 30" 150 psi 150 psi USULTY CLAY (CL-ML), gray, wet, low plasticity WELL-GRADED SAND WITH SILT AND GRAVEL (SW-SM), very dense, gray, moist LEAN CLAY (CL), very stiff, light brown, moist,		-		14"			bottom of sample	
85 32 III 150 psi WELL-GRADED SAND WITH SILT AND GRAVEL (SW-SM), very dense, gray, moist 85 III III IIII IIII IIIII 100 IIII IIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		-00		15"			dense, gray, moist	
30" 11 ISO PSI (LEAN CLAY (CL), very stiff, light brown, moist,	1	- 85-		14"			WELL-GRADED SAND WITH SILT AND GRAVEL	
		-		32 30"		150 psi	LEAN CLAY (CL), very stiff, light brown, moist,	9 P
90- 33 TT 100 psi SILT (ML), light brown, wet	5	- - 90-		33 30"		100 psi	WELL-GRADED GRAVEL WITH SAND (GW), dense, gray, wet	0 T
O SILTY CLAY (CL-ML), very stiff, gray, moist, low plasticity (pp=3.75/4.0/4.0 tsf, tv=0.5 tsf) (pp=2.75/2.25/2.75 tsf, tv=0.63 tsf) 2.6 P 1.3 T	10						SILTY CLAY (CL-ML), very stiff, gray, moist, low plasticity (pp=3.75/4.0/4.0 tsf, tv=0.5 tsf)	6 P 3 T
⁹⁵ 34 11 350 psi LEAN CLAY (CL), very stiff, gray, moist, medium ⁹⁵ Jul plasticity (pp=2.25/2.0 tsf, ty=0.75 tsf)		95- - -		34 30"		350 psi	LEAN CLAY (CL), very stiff, gray, moist, medium plasticity (pp=2.25/2.25/2.0 tsf, ty=0.75 tsf)	2 P
5 25 34 15 2.2 P	15	-						5

BORING DEPTH: 101.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 23, 2007 COMPLETION DATE: July 24, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

SVRT BORING LOG 011108 2::TUGENERALIUSERSUAN_AKGINTSVRT_PHASE 2_050208.GPJ TEST LIBRARY-DOWNTOWN_PARIKIL_01_02_08.GLB 5/5/08 09:50 a

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

LL: Neat Cement Grout DATE: July 23, 2007 ETION DATE: July 24, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-95

Image: second													Sheet 3 of 3
37 (43) light brown (OXY=20.9%, CH4=0 ppm, OVM=0 105. 23 105 105 105 105 105 105 -25 100 105 110 105 23 -30 110 105 115 100 1110 -30 115 110 -31 115 110 -35 1120 1110 125 1130 1130 -40 125 130 135 140 145	ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	JNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
-20 -00 -00 -00 -00 -00 -25 -00 -00 -00 -00 -00 -30 -00 -00 -00 -00 -30 -00 -00 -00 -00 -30 -00 -00 -00 -00 -40 -00 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00 -40 -00 -00 -00	[////	35 18"		(43)		+			+		
103- 25 110- 30 31 32 115- 116- 118- 32 120- 33 120- 34 120- 35 120- 35 120- 35 120- 35 120- 36 120- 37 .38 .39 .30 .310 .320 .330 .330 .340 .340 .340 .340 .340 .341 .341 .341 .341 .341 .341 .341 .341 .341 .341 .341 .341 .341 .341	[-					105						• • • • • • • • • • • • • • • • • • • •
-25 -20 -30 -30 -30 -31 -32 -33 -40 -40 -40 -50 -50 -50 -50 -50 -50 -50 -60 -40 -40 -40 -40 -40 -40 -40 -4	20 -	-											
-110- -30 -31 -115- -35 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 130- -30- -30- -40 -40 -40 -40 -40 -40 -40	-	105-											
-110- -30 -31 -115- -35 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 120- -20 130- -30- -30- -40 -40 -40 -40 -40 -40 -40	-	_											
	25 -	-					1	•			• • • • • • •		• • • • • • • • • • • • • • • • • • • •
115 -35 120 -40 125 -45 130 -50 135 -51 140 -60 140 145	-	110-						+					•••••
115 -35 120 -40 125 -45 130 -50 135 -51 140 -60 140 145	F	-											•••••••••••••••••••••••••••••••••••••••
	30 -	-											
120- -40 125- -45 130- -50 135- -55 140- -60 140- -60 140-	ŀ	115-											
120- -40 125- -45 130- -50 135- -55 140- -60 140- -60 140-	-	-											
-40 125 -45 130 -50 135 -45 140 -60 145	35 -	-											
-45 -45 130- -50 135- 135- -445 136- 137- 138- 138- 138- 138- 138- 138- 138- 138- 138- 138- 149- 140- 145-	-	120-						+					
-45 -45 130- -50 135- 135- -445 136- 137- 138- 138- 138- 138- 138- 138- 138- 138- 138- 138- 149- 140- 145-	-	-						•••••••					••••••
	40 -	-											••••••
130- 50 135- 55 60 140- 60 145-	-	125-											
130- 50 135- 55 60 140- 60 145-	-	-											
	45 -	-											
	-	130-						+					*****
	-	-											
	50 -	-											
	_	135-											
	-	-											
	55 -	-											
- 145- - 145-	l	140-						+					• • • • • • • • • • • • • • • • • • • •
- 145- - 145-	-	-						· ·····					
	60	-											
	ļ	145-											••••••
	-	-											
	-05	-											

BORING DEPTH: 101.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 23, 2007 COMPLETION DATE: July 24, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

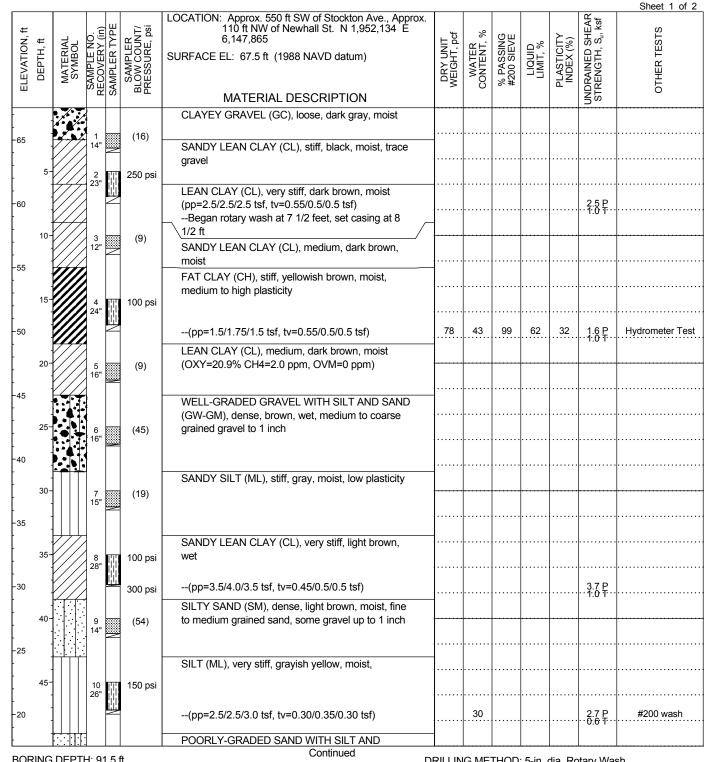
 LL: Neat Cement Grout
 RIG TYPE: Failing 1500

 DATE: July 23, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: July 24, 2007
 LOGGED BY: G. Tripathi/R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for


design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-95

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:50 (

SVRT BORING LOG 011108 Z:/TUGENERAL/USERS/JAIN_A/GINT/SVRT_PHASE 2_050208.GPJ

BORING DEPTH: 91.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 11, 2007 COMPLETION DATE: June 11, 2007

NOTES: 1. Terms and symbols defined on Plate A-1.

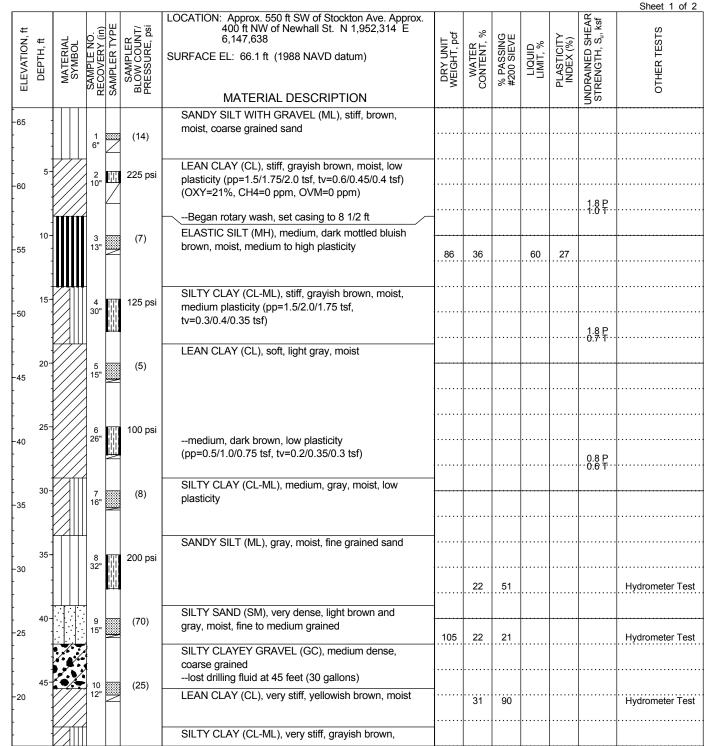
DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedamtham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-97

ON, ft	l, ft	JL	NO. Y (in)	ТҮРЕ	ER DUNT/ RE, psi	LOCATION: Approx. 550 ft SW of Stockton Ave., Approx. 110 ft NW of Newhall St. N 1,952,134 E 6,147,865	, pcf	.н П,%	0 N⊡	%۵)ITY (%)) SHEAR , S _u , ksf	ESTS
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	RECOVERY (ii	SAMPLER	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 67.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHI STRENGTH, S _u ,	OTHER TESTS
			<u> </u>	S	ᄪᅀ	MATERIAL DESCRIPTION						ST	0
			· 11 · 13"		(86)	GRAVEL (SP-SM), very dense, grayish brown,		4.0	_				
5						moist, coarse grained sand, gravel up to 3/4 inch		. 10		•••••			• • • • • • • • • • • • • • • • • • • •
					-	WELL-GRADED GRAVEL WITH SILT AND SAND							
	55-		12		(52/4 1/2")	(GW-GM), very dense, gray, moist to wet, gravel up							
			Э			to 1 inch							• • • • • • • • • • • • • • • • • • • •
)			\$					• • • • • • • •		• • • • • • • •			• • • • • • • • • • • • • • • • • • • •
	60-					SILTY SAND WITH GRAVEL (SM), very dense, brown, wet, medium to coarse grained sand							
	00		13 10"		(50/4 1/2")	brown, wei, medium to coarse grained sand							
								• • • • • • •		• • • • • • • •			• • • • • • • • • • • • • • • • • • • •
						WELL-GRADED SAND WITH SILT (SW-SM), very		•••••					••••••
	65-		14 12"		(79)	dense, gray, moist, subangular gravel in the slough							
				\square		up to 2 1/2 inches							
			1			CLAYEY GRAVEL WITH SAND (GC), very dense,		• • • • • • • •					• • • • • • • • • • • • • • • • • • • •
	70-		15		(66/6")	gray, moist, coarse grained gravel up to 1 inch							
			10"	3 1 1	(00/0)			14	24				
;			1					•••••		• • • • • • • •		• • • • • • • • • • • •	
		$\langle / / \rangle$				SANDY LEAN CLAY (CL), stiff, yellowish brown, wet, fine grained sand, low plasticity		•••••					
	75-		16		350 psi	(pp=1.5/1.25/1.75 tsf, tv=0.65/0.95/0.95 tsf)							
•				\vee								···1·.5·P··· 1.7 T	
0						WELL-GRADED GRAVEL WITH SILT AND SAND]	•••••		•••••			• • • • • • • • • • • • • • • • • • • •
	80-		17		(83)	(GW-GM), very dense, brown, moist, coarse grained gravel 1/2 inch to 2 inches							*****
			12"	\mathbb{N}	(00)								
5								•••••		•••••		• • • • • • • • • • • •	
						WELL-GRADED GRAVEL (GW), very dense, gray,	1						
	85-		18		(63/6")	wet, coarse grained gravel from 1/2 inch to 2 inches							
~		••						6	1				
U								• • • • • • • •		• • • • • • • •			
	90-	••	10		(21)								
			11"		(21)	CLAYEY GRAVEL (GC), medium dense, gray,	1						
5						moist (OXY=20.9%, CH4=0 ppm, OVM=0 ppm)		• • • • • • •				•••••	• • • • • • • • • • • • • • • • • • • •
		-											
	95-	1											
•		-											
80		4	1										

BORING DEPTH: 91.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 11, 2007 COMPLETION DATE: June 11, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.


DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedamtham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-97

BORING DEPTH: 61.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 3, 2007 COMPLETION DATE: July 3, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-98

Project No.	213213	

													Sheet 2 of 2
ELEVATION, ft DEPTH, ft	1	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 550 ft SW of Stockton Ave. Approx. 400 ft NW of Newhall St. N 1,952,314 E 6,147,638 SURFACE EL: 66.1 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
- -15		711	11 32"		200 psi	moist, low plasticity							*******
-						(pp=2.5/2.0/2.25 tsf)		• • • • • • • •		• • • • • • • •		2.3 P	
- - 5!	-		12		(25)	SILT (ML), very stiff, light brown, moist, low plasticity]						
-10 -			12 17"		()			34		39	9		
- - 61 5 -			13 15"		(102)	WELL-GRADED GRAVEL WITH SILT AND SAND (GW-GM), very dense, brown, moist, coarse grained gravel up to 1 1/2 inches		· · · · · · · · · · · · · · · · · · ·					
	-												
- 6: 0	-55												
•	-												
- - 70	0-												
5 -	-												
- - - 7!	-												
10 													
	-												
- 80 15	-00												
	-							• • • • • • • • •		• • • • • • • • •			
- 8	-									•••••	•••••		
20 -	-												
- 90 25 -													
- 9! 30	-15												
	-												
	-												

BORING DEPTH: 61.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 3, 2007 COMPLETION DATE: July 3, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-98

Silicon Valley Rapid Transit Project San Jose, California Shoot 2 of 2

Ħ			c	PE	T/ isc	LOCATION: Approx. 600 ft SW of Stockton Ave. Approx. 500 ft NW of Newhall St. N 1,952,365 E	÷	%	(D)			HEAR , ksf	Sheet 1 of ഗ
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	MPLER TYI	SAMPLER BLOW COUNT/ PRESSURE, psi	6,147,458 SURFACE EL: 66.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, 9	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
Ш			S R	SA	표佐	MATERIAL DESCRIPTION	2	0	0.14			STR	Ö
65			1 16"		(22)	FAT CLAY WITH SAND (CH), stiff, black, dry to moist, medium to high plasticity, trace fine grained sand (OXY=21.8%, PID=0 ppm)		•••••		•••••			
60	5-		2 32"		150 psi	LEAN CLAY (CL), stiff, grayish black, moist, medium plasticity (pp=1.5/1.5/0.5 tsf, tv=0.5/0.7/0.7 tsf)		•••••		•••••		 13P	
	-					Began rotary wash, set casing at 8 1/2 ft		•••••		•••••		. 1.3 ₽ ··1.3 T···	
55	10-		3 12"		(9)	medium, dark gray		•••••		•••••			
50	- 15-		4 28"		125 psi	SILT (ML), stiff, gray, moist to wet, low plasticity,		•••••		••••••			
50	-					trace fine grained sand (pp=1.5/1.25/1.0 tsf, tv=0.2/0.3/0.35 tsf)				•••••		. 1.3 ₽ . 0.6 Ŧ · ·	
45	20-		5 18"		(8)	FAT CLAY (CH), medium, dark gray and black, moist, high plasticity color changed to brown at 23 feet		•••••		•••••			
	25-		6 29"		125 psi	LEAN CLAY (CL), medium to stiff, yellowish brown, wet, low plasticity	-	•••••					
40	-			ΗH		(pp=0.75/1.2/1.0 tsf, tv=0.5/0.35/0.65 tsf)						1.0 P •• 1.0 T ••	
35	- 30-		7 18"		(0)	SANDY LEAN CLAY (CL), very soft, light gray, moist to wet	-	27	61	27			
	-					LEAN CLAY (CL), stiff, yellowish brown, moist							
30	35-		8 29"		75 psi	(pp=1.7/2.2/2.0 tsf, tv=0.5/0.45/0.5 tsf)		•••••		•••••		2.0 P 1.0 T	
25	-40-		9 18"		(8)	medium, light gray, low to medium plasticity							
	- 45-		10 28"	HH	190 psi			•••••		•••••			
20	-		28"			SILTY SAND (SM), gray, wet, fine to medium grained	107	20	27	•••••			Hydrometer Tes

BORING DEPTH: 81.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 29, 2007 COMPLETION DATE: June 29, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

LL: Neat Cement Grout DATE: June 29, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

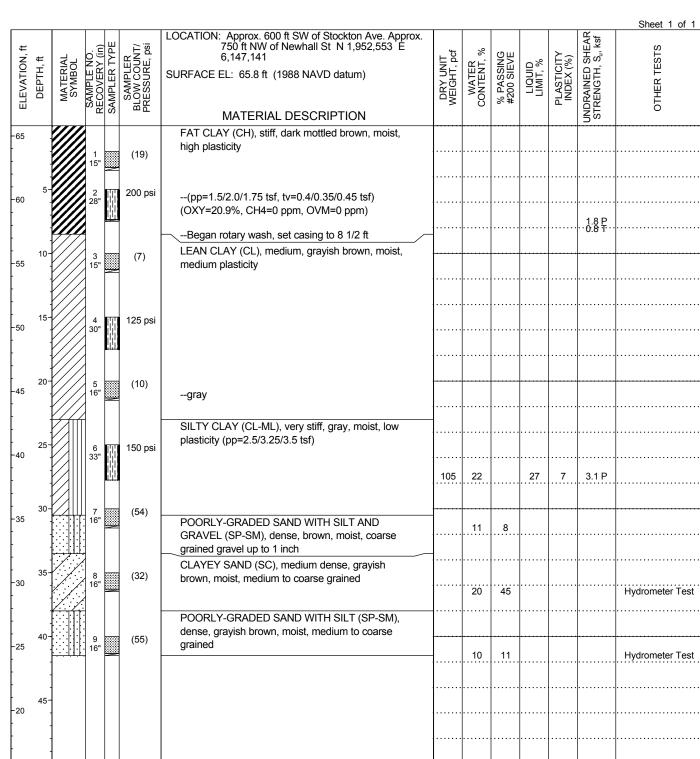
LOG OF BORING NO. BH-99

Project No. 213213	

				ш		LOCATION: Approx. 600 ft SW of Stockton Ave. Approx. 500 ft NW of Newhall St. N 1,952,365 E						EAR ksf	Sheet 2 of
ON, ft	Ŧ,	ЪР	NO. VO.	TΥΡ	П П В П П П П П П П П П П П П П П П П П	6,147,458	, pcf	Ч. Н. К.	ВШ NG	% ۵	×1(%)	SHE , S, I	ESTS
ELEVATION,	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (ir	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 66.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ELEY	DE	AM SY	SAM	AMP	SA SLOV		MEI	SOS ≤	% F #20		PLA	REN	DTHE
_				S		MATERIAL DESCRIPTION						N ST	
15			11		(21)	LEAN CLAY (CL), stiff, gray, wet						0.8 P	
							•••••						
	55-				100	SANDY LEAN CLAY (CL), very stiff, yellowish brown, moist, trace gravels							
10	55		12 31"		100 psi	brown, moist, trace gravels							
				<u>iili</u>		(pp=2.5/2.65/2.0 tsf, tv=0.7/0.65/0.7 tsf)		20	72			2.4 P ···1:4 T···	
			1										
5	60-		13 12"		(58/6")	WELL-GRADED GRAVEL WITH SAND (GW), very							
J						dense, grayish brown, wet, subrounded gravel up to 1 1/2 inches							
						POORLY-GRADED SAND WITH SILT AND							
	65-		14 16"		(112)	GRAVEL (SP-SM), very dense, grayish brown, wet, subangular gravel up to 1 1/2 inches			5				Hydrometer Te
)						subangular graver up to 1 1/2 inches							
	70-		15 16"		(67)	dense, subangular gravel up to 1 inch							
5													•••••
						WELL-GRADED SAND WITH SILT AND GRAVEL							
	75-		16 18"		(70)	(SW-SM), dense, brownish gray, wet, subangular gravel up to 1 inch							
10				8355		lost drilling fluid at 76 feet		10	7				
												• • • • • • • • • • •	
	80-		17 18"		(114)								
15		1 <u>000</u> 11166 -				very dense							
	85-	-											
20		-					•••••						
		-											
	90-	-											
25		-											
		-											
	95-	1					•••••						
30		-											
		-											
		1											

BORING DEPTH: 81.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 29, 2007 COMPLETION DATE: June 29, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip LL: Neat Cement Grout DATE: June 29, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for


design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-99

SVRT BORING LOG 011108 Z:/TUGENERAL/USERS/JAIN_A/GINT/SVRT_PHASE 2_050208.GPJ

Project No. 213213

BORING DEPTH: 41.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 3, 2007 COMPLETION DATE: July 3, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-100

Project No.	213213	

ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)		SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 700 feet NW of Las Plumas Ave., 10 feet NE of UPRR tracks N 1,956,655 E 6,162,937 SURFACE EL: 90.8 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
Ξ			ЗП	SA	BL PR	MATERIAL DESCRIPTION	>	0	o~ #		<u>с</u>	STR	5
90	•		1		(30)	Cored through 8 inches of ballast (OXY=20.9%, CH4=110 ppm, PID=0 ppm) CLAYEY SAND WITH GRAVEL (SC), medium dense, brown, moist, some angular gravel up to 1		•••••					
35	5-		2 12"		(9)	Vinch POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), loose, gray, moist, some angular gravel up to 1 1/2 to 2 inches		8	5				
30	10-		3 27"		150 psi	SILT (ML), medium, brown, moist, trace sand (pp=0.5/0.5/0.75 tsf, tv=0.2 tsf) Began rotary wash, set casing to 8 1/2 ft		•••••				0.6 P 0.4 T	
75	15-		4 28"		200 psi	LEAN CLAY (CL), very stiff, brown, moist (pp=2.0/2.25/2.25 tsf, tv=0.8 tsf)		•••••		•••••		 	
70	20-		5 26"		200 psi	FAT CLAY (CH), medium, brown, moist, medium to high plasticity (pp=0.5/0.5/0.5 tsf) (OXY=20.9%, CH4=15 ppm, PID=0 ppm) (disturbed sample from second attempt)		41			25	···1:6 Ŧ··· 0.5 P	
5	25-		6 23"		50 psi	LEAN CLAY (CL), stiff, brown, wet, low plasticity (pp=1.5/2.0/2.0 tsf, tv=0.7 tsf)						1.8 P 1.4 T	
0	30-		7 25"		180 psi	gray (pp=2.0/2.0/1.5 tsf, tv=0.5 tsf)		•••••				 1.8 P 1.0 T	
5	35-		8 28"		190 psi	very stiff, yellowish gray (pp=2.25/2.25/2.25 tsf, tv=0.8 tsf)						 2.3 ₽ 1.6 T	
0	40-		9 28"		180 psi	stiff, brown (pp=2.0/1.5/1.5 tsf, tv=0.65 tsf) (OXY=20.9%, CH4=15 ppm, PID=0 ppm)						1.7 P 1.3 T	
15	45-		10 22"		190 psi	(pp=2.0/2.0/2.0 tsf, tv=0.75 tsf)		•••••		•••••		 	
		K44	4			SANDY SILT (ML), very stiff, brown, moist,							

BORING DEPTH: 52.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 4, 2007 COMPLETION DATE: June 4, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedamtham

Terms and symbols defined on Plate A-1.
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-101

		I					I					1	Sheet 2 of 2
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 700 feet NW of Las Plumas Ave., 10 feet NE of UPRR tracks N 1,956,655 E 6,162,937 SURFACE EL: 90.8 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
-40			11 27"	ιų.	200 psi	increasing sand at the bottom (pp=3.0/3.5/3.5 tsf,		• • • • • • • •			+		
-	-					tv=0.45 tsf)		•••••					
ľ	-											3.3 P 0.9 T	
-	- 55-												
-35	-							• • • • • • • •					
-	-												
l	-												
-30	60- -												
ļ	-							• • • • • • • •					
-	-												
-25	65-												
-	-												
-	-							• • • • • • •					
-	70-												
-20 -	-												
ſ	-												
-	- 75-							•••••		• • • • • • • •			
-15	-							• • • • • • •					
-	-												
-	-												
-10	-88												
ţ	-							• • • • • • • •					
-	-												
- 5	85-												
-	-												
ļ	-							• • • • • • • •					
-	90-												
-0	-												
ł	-												
ŀ	- 95-							• • • • • • • •					
5	-												
-	-												
ł	-												
r			1	1	L		L			L			

BORING DEPTH: 52.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 4, 2007 COMPLETION DATE: June 4, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedamtham

 Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-101

Silicon Valley Rapid Transit Project San Jose, California

1											Sheet 1 of 2
_ ل <u>ر</u>	.0.	YPE	R INT/ psi	LOCATION: At the median of Stockton Ave. approx. 170 ft. NW of Taylor St. N 1,949,762 E 6,150,659		%	Ṓ́́М		≿₀	SHEAR S _u , ksf	STS
MATERIA SYMBOL	AMPLE N COVERY	MPLER T	SAMPLEI LOW COU RESSURE	SURFACE EL: 80.4 ft (1988 NAVD datum)	DRY UNI VEIGHT, F	WATER	% PASSIN #200 SIEV	LIQUID LIMIT, %	PLASTICI INDEX (%	RAINED S RENGTH, 3	OTHER TESTS
	S R	SA	BH	MATERIAL DESCRIPTION	_		0 11			STR	Ö
				POORLY-GRADED SAND WITH SILT AND							
	1 18"		(28)	GRAVEL (SP-SM), medium dense, brown to gray, moist, gravel up to 1 inch, medium grained sand (FILL)		•••••		•••••			
	2 18"	\boxtimes	19	Begin rotary wash, set casing to 3 1/2 ft		•••••					
				lost drilling fluid at 7 1/2 feet							
	3 18"	\boxtimes	27	WELL-GRADED GRAVEL WITH SILT AND SAND (GW-GM), medium dense, brown, moist, gravel up to 1/2 inch, fine grained sand							
						•••••					
	4 18"	\boxtimes	30	increasing clay content		•••••					
				LEAN CLAY (CL), medium, gray, moist, low to		•••••					
	5 29"		50 psi	(pp=0.5/0.75/0.75 tsf, tv=0.25 tsf)							••••••
		<u>i i i i</u>		Extended casing to 18 1/2 ft.		•••••				0.7 P 0.5 T	
	6		500 psi			• • • • • • • •					
	24"			less sand (pp=0.75/0.75/1.0 tsf, tv=0.25 tsf)							Lludromotor Toot
										0.8 P	Hydrometer Test
	7 34"										
				dark brown and gray, low plasticity		•••••					
	29"	GВ		increasing sand							
	9	×									
	24"	GВ		SANDY SILT (ML), gray, moist, low plasticity, some sand							
	10	K									
	34"	GВ		LEAN CLAY (CL), gray, moist, low plasticity				•••••	•••••		
	11	Ħ									
$\langle / / \rangle$		GВ									
V//	12	\parallel									
		1 1 1									
<u> </u>	4 33" H	GВ		SILTY SAND (SM), fine sand							
	MATERIAL	MATERIA MATERIA MATERIA SYMBOL SYM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NW of Taylor St. N 1,949,762 E 6,150,659 SURFACE EL: 80.4 ft (1988 NAVD datum) NUM of Taylor St. N 1,949,762 E 6,150,659 SURFACE EL: 80.4 ft (1988 NAVD datum) NUM of Taylor St. N 1,949,762 E 6,150,659 SURFACE EL: 80.4 ft (1988 NAVD datum) NUM of Taylor St. N 1,949,762 E 6,150,659 SURFACE EL: 80.4 ft (1988 NAVD datum) NUM of Taylor St. N 1,949,762 E 6,150,659 SURFACE EL: 80.4 ft (1988 NAVD datum) Number of the second state of the se	1 10 11 10 10 11 10 10 11 10 10 11 10 10 10 10 10 10 10 11 10	NW of Taylor St. N 1,949,762 E 6,150,659 set in the s	NW of Taylor St. N 1,949,762 E 6,150,659 Index products of the second secon	Image: Section of the section of th	Image: State of the state	Image: State of the state

BORING DEPTH: 80.0 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 22, 2007 COMPLETION DATE: June 25, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 22, 2007 ETION DATE: June 25, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-102

Project	No. 2	213213		
, ft). PE	17/ psi	LOCATION: At the median of Stockton Ave. approx. 170 ft. NW of Taylor St. N 1,949,762 E 6,150,659
VATION EPTH, ft	ATERIAL YMBOL	PLE NC DVERY (MPLER M COUN SSURE,	SURFACE EL: 80.4 ft (1988 NAVD datum)

							-						Sheet 2 of 2
N, ft	Ħ	۲ ۲	NO. Y (in)	TYPE	ER UNT/ psi	LOCATION: At the median of Stockton Ave. approx. 170 ft NW of Taylor St. N 1,949,762 E 6,150,659		т, %	ВШ	0%	¥∐%	SHEAR S _u , ksf	STS
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (ir	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 80.4 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
			Ϋ́Ε̈́	SAI	BL PR	MATERIAL DESCRIPTION	<	ŏ	**			UNDF	OT
-30 -	-		15" 14 0"		(14)	(GW-GM) lost drilling fluid at 50 1/2 feet							
-			15 14" 16 18"		(11)	LEAN CLAY (CL) (OXY=20.9%, CH4=0 ppm, PID=0 ppm) medium, brown, low plasticity				•••••			
-25 -	55- - -		17 17 18" 18	3B		SILTY SAND WITH GRAVEL (SM), brown, wetlost drilling fluid at 57 feet				•••••			
-	-		0" 19	4	(82)	WELL GRADED GRAVEL WITH SILT AND SAND	1	• • • • • • • • • •					
-20 -	60-		15" 20 13"		(59)	(GW-GM), very dense, brown, wet, gravel up to 2 inches (OVM=0 ppm, OXY=20.9%, CH4=0 ppm)			4				
-	-		21 10" 22	ž	(36) (26)	Ended drilling on 6/22/07 at 61 1/2 ft. Began drilling on 6/25/07 at 60 1/2 ft.		•••••					
- -15	65-		14" 23 15"	Š,	(33)	dense, lost drilling fluid at 62 feetmedium dense, gravel up to 1 1/2 inches							
-	-		24 0"	7		SILT (ML), very stiff, grayish brown, wet, low plasticity, no recovery from Geo-barrel sampler			72	•••••			Hydrometer Test
-10	- 70-		25 18" 26 23" (<u> </u>	(26)	SILTY CLAY (CL-ML), very stiff, brown, moist, low plasticity							
-	-		23" (27 19" (ЗВ ЗВ						•••••			
-5	- 75-		28 16"		(69)	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), very dense, gravel up to 1 inch]			•••••			
-	-		29 17" 30	\ \ \ \	(83) (72)	lost drilling fluid at 75 feet WELL-GRADED GRAVEL WITH SILT AND SAND		••••••					
-	- - 80-		16" 31 15"	<u>\\${\}</u>	(61)	(GW-GM), very dense, brown, moist, subrounded gravel up to 1 inch			9	•••••			
-0 -	- 00					\dense							
-	-												
5	85-												
	-												
- 10	- 90-									•••••			
-	-												
-	-												
15 -	95-												
-	-												
							l						

BORING DEPTH: 80.0 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 22, 2007 COMPLETION DATE: June 25, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 22, 2007 ETION DATE: June 25, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-102

Silicon Valley Rapid Transit Project San Jose, California

Sheet 2 of 2

Project No.	213213		

					1	1	-	1				1	Sheet 1 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	LE NO.	RECOVERY (IN) SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Stockton Ave., approx. 330 ft. NW of Taylor St. N 1,949,890 E 6,150,551 SURFACE EL: 79.8 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	NTER TENT, %	% PASSING #200 SIEVE	LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ELEVA	DEF	MAT SYN	SAMPLE NO.	SAMPL	SAM BLOW PRESS	MATERIAL DESCRIPTION	DRY WEIG	WATER CONTENT,	% PA #200		PLAS	INDRAIN STRENG	OTHER
		///	+			LEAN CLAY (CL), medium, dark brown, moist, low							
			1		(11)	plasticity (OVM=0 ppm, OXY=20.9%, CH4=0 ppm)							
		44	4			began rotary wash, set casing to 3 1/2 ft.							
75	5-		2 16		8	SILTY CLAY (CL-ML), medium, brown, moist, low plasticity							
		KζЩ	Ц			SANDY SILT (ML), medium, brown, moist,							
70	10-		3		6	fine-grained sand					·····		
			16	ľĽ									
												•••••••••••••••••••••••••••••••••••••••	
65	15-		÷		7 4	SILT (ML), soft, brown to gray, moist, low to							
			16	" 2	4	medium plasticity							
60	20-		5	191	50 psi								
			5 30	" iji		stiff, dark gray, moist, (pp=1.0/1.5/1.5 tsf, tv=0.5 tsf)							
				liti	L .							1.3 P 1.0 T	
55			7			LEAN CLAY (CL), stiff, brown, moist, medium							
55	25-	///	26	<u>.</u>	400 psi	plasticity, (pp=1.25/1.5/1.0 tsf, tv=0.5 tsf)							
			7	ų								13P	
												1.3 P 1.0 T	
50	30-		7		2	FAT CLAY (CH), dark gray, moist, medium to high plasticity							
			14	<u>"</u> [4					90	59			··· Hydrometer ·Te
			24 24	" G	3		_		1.90.				- Hydrometer re
			9	H	_	LEAN CLAY (CL), yellowish gray, moist, fine-grained sand							
45	35-		24	M	3								
			24		3	brown, medium plasticity							
			1.	1 " Ge	2								
40	40-	•••	4 1:	₂⊭	7	POORLY-GRADED GRAVEL (GP), no recovery							
			0	зĘ	7	lost drilling fluid at 42 feet							
	•			١Ľ	7								
35	45-			V	7 (75)	lost drilling fluid at 43 feet							
			- 10 14		(50)	very dense, dark mottled brown, fine to medium grained sand			·····			•••••••	
			1	. /	Ē	WELL GRADED GRAVEL WITH SILT AND SAND			5				
			18	\exists	(87)	(GW-GM), dense, brown, moist, lost drilling fluid at Continued	<u> </u>						l

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 20, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for NOTES: 1. Terms and symbols defined on Plate A-1. design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 90.5 ft

DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout

START DATE: June 20, 2007 COMPLETION DATE: June 27, 2007

LOG OF BORING NO. BH-103

						LOCATION: Median of Stockton Ave., approx. 330 ft. NW							٨R sf	
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	of Taylor St. N 1,949,890 É 6,150,551 SURFACE EL: 79.8 ft (1988 NAVD datum)		WATER	DNTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
Ш	_	2	REC	SAN	BL(:	ŭ	%#		급=	NDR	DI
			8"			MATERIAL DESCRIPTION							50	
			19 10"	\leq	(39)	46 1/2 feet lost drilling fluid at 48 feet (OVM=0 ppm,								
	-		20 18"	5	(14)	OXY=20.9%, CH4=0 ppm)	• • • • •	••••••	····	••••	• • • • • • • •			
		KKK	21 15"	ĞВ		\neg very dense, mottled brown, subangular and			.					
25	55-		22	ЗН5	(42)	subrounded gravel up to 2 inches				65	NP	NP		
	-	•••	16" 23	\leq	(74)	medium dense		••••••	••••	•••••			• • • • • • • • • • •	
			23 15" 24	ŚNŚ	(66)	Began drilling on 6/21/07 at 52 ft.			.					
			14"	SNS \$		LEAN CLAY (CL), stiff, light gray, low plasticity, fine								
20	60-		25 10"	\searrow	(87/11")	grained sand at bottom		••••••	•••				• • • • • • • • • • •	
			26	$\langle \rangle$	(62)	SANDY SILT (ML), gray, medium grained, lost			.					
	-		27	\square	(55)	drilling fluid at 54 feet				3				
15		••••	28 12"	\leq	(85)	WELL-GRADED GRAVEL WITH SAND (GW), dense, browm, moist, medium grained, sand and	••••	•••••••	••••					
10	65-		29 0"	R		gravel up to 1/2 inch			.					
	-		0"	Ц		POORLY-GRADED SAND WITH GRAVEL (SP),								
			30	\square		very dense, medium grained, gravel up to 3/4 inch	• • • • •	••••••	••••	• • • • • •				
10	70-		0"	Н		WELL-GRADED SAND WITH GRAVEL (SW), very								
			31 18"	\sum	(29)	dense, grayish brown, moist, medium grained, gravel up to 3/4 inch								
	-		32	Ť		lost drilling fluid at 60 feet			····	•55 ••				···Hydrometer·Te
			35"	GВ		dense, lost drilling fluid at 61 1/2 feet			.					
5	75-		33	\square	(23)	dense, gravel up to 1 1/2 inches, lost drilling fluid								
	-		18"	\simeq	()	at 63 feet			••••					
			34	GB		SANDY SILT (ML)				13				
			6" 35	K	(50/5")	medium, grayish brown, fine-grained sand								
0	80-		11"	Ď	(98)	SILTY SAND (SM), medium dense, gravish brown, / / / / / / / / / / / / / / / / / / /			····					••••••
	-		16"	~		moist, gravel up to 1 1/2 inches								
		• • •	37		(73)	very dense (OVM=0 ppm, OXY=20.9%, CH4=0								
_			15"			VELL-GRADED SAND WITH GRAVEL (SW), very				••4•••				
-5	85-		38 9"		(28)	dense, brown, gravel up to 1 1/2 inches, medium								
		$\langle / / \rangle$	39		1500 psi	grained sand								
	-	\mathbf{H}	22"	Шj		Ended drilling on 6/21/07 at 80 1/2 ft			.	•••••			>4.5 P	
-10			40 13"		(72)	-Began drilling on 6/27/07 at 80 1/2 ft				52	NP	NP		
-10	90-			\geq		POORLY GRADED GRAVEL WITH SAND (GP),								
						medium dense			.					
	-					LEAN CLAY WITH SAND (CL), hard, brown								
-15	95-	1				(pp=>4.5 tsf)			.					•••••
-	90-					SANDY SILT (ML), hard, brown, moist, some sand,			.					
	-	-				low plasticity								
		1	1			hard, low plasticity		· · · · · ·	••••	• • • • • •		• • • • • • •	•••••	

BORING DEPTH: 90.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 20, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 20, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-103

Silicon Valley Rapid Transit Project San Jose, California

													Sheet 1 of 2
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	LE NO. FRY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: NE side of Santa Clara Street, approx. 30 feet SE of 1st Street N 1,947,855 E 6,157,321 SURFACE EL: 86.9 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	TER ENT, %	% PASSING #200 SIEVE	LIMIT, %	PLASTICITY INDEX (%)	ED SHEAR TH, S _u , ksf	OTHER TESTS
ELEVA	DEP	MAT SYN	SAMPLE NO. RECOVERY (in	SAMPLI	SAM BLOW PRESS	MATERIAL DESCRIPTION	DRY WEIG	WATER CONTENT,	% PA #200		PLAS	UNDRAINED S STRENGTH,	OTHER
_			6			11 inches of ASPHALT CONCRETE				•••••		· –	
-85			1		(13)	SANDY LEAN CLAY (CL), stiff, brown, moist, low plasticity		•••••	••••				
	5-		2 19"		400 psi	SILT WITH GRAVEL (ML), brown, moist, low plasticity				•••••		••••••	
-80				K									
- -	10-		3 10"		(32)	WELL-GRADED SAND WITH SILT AND GRAVEL (SW-SM), medium dense, brown, wet, coarse grained up to 3/4 inch		8					
75						LEAN CLAY (CL), medium, dark gray, moist, medium plasticity				· · · · · · · · · · · ·		••••••	
	15-		4 30"	61	150 psi							020	
-70						(pp=0.5/0.25/0.25 tsf, tv=0.4/0.45/0.35 tsf)						···0.3 P···· 0.8 T	
	20-		5 30"		100 psi	trace fine grained sand (pp=1.0/1.0/0.5 tsf, tv=0.3/0.35/0.4 tsf)						0.8 P	
-65	-		6		8			•••••				0.8 P 0.7 T	
	-		14"	2		SILTY SAND (SM), loose, black, moist, fine-grained			50	··NP··	··N₽··		
	25-		7		50 psi								
60			8	副	14		84	35	34	NP	NP		
			18"	Д		medium dense, wet							
-55	30-		9 30"		100 psi					•••••			
	35-		10		0	LEAN CLAY (CL), medium, gray, moist, low to medium plasticity (pp=0.75/.075/0.75 tsf, tv=0.45/0.5/0.5 tsf)	 	32	45	29 	10	0.8 P 1.0 T	
-50	- 35		11 34" 12		40 psi 10	CLAYEY SAND (SC), very loose, gray, wet, fine-grained		•••••				0.6 P ••0.8 T•••	
				X	10	LEAN CLAY (CL), medium, mottled brown, moist,		65	48		24	···0.8 Ŧ···	
	40-		13 9"	\boxtimes	27	(pp=0.5/0.75/0.5 tsf, tv=0.35/0.4/0.4 tsf)				•••••			
-45	-		л В			SILTY SAND (SM)/SANDY ORGANIC SILT (OH), medium dense, gray with reddish brown, moist, trace rotten root and organic material		13	10				
-40	45-		14 18"		0	WELL-GRADED SAND WITH SILT AND GRAVEL (SW-SM), medium dense, dark gray, wet, coarse-grained				•••••		••••••	
						SILTY CLAY (CL-ML), very soft, light brown, wet, low plasticity							
						Continued							

Continued

BORING DEPTH: 51.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 23, 2007 COMPLETION DATE: June 23, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-105

Silicon Valley Rapid Transit Project San Jose, California Sheet 1 of 2

00:52	
5/5/08	
08.GLB	
8	
7	
NTOWN PARIKH 01 02 08.GLB 5/	
DOWNTO	
×'.	
TEST LIBRARY	
GB	
SE 2 050208.GPJ	
TSVRT PHASE 2	
SVRT	
NGINT	
₹	
AL/USERS/J	
ĹШ	
Z:TU	
80	
G 0111	
T BORING LOG	
ORIN	
m H	

ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in) SAMDI ED TVDE	SAMPLER BLOW COLINT/	PRESSURE, psi	LOCATION: NE side of Santa Clara Street, approx. 30 feet SE of 1st Street N 1,947,855 E 6,157,321 SURFACE EL: 86.9 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
			15 15"	-	4			•••••				~~	
-35	-	ΖЛШ	15"	2		soft, light brown		•••••					
	-							•••••					
	55-												
-30	-												
	-						•••••	• • • • • • • •		• • • • • • • •		•••••	
	60-							•••••					
-25	-						•••••	•••••					
	-												
	65-							•••••					
-20	-												
	-												
	70-												
-15	-							•••••					
	-							•••••					
	75-							•••••					
-10	-												
	-												
	-08 -												
-5	-							•••••			•••••		
	- 85-							•••••					
	- 00							•••••					
-0	-							•••••					
	- 90-												
5	-												
5	-						•••••	•••••					
	- 95-						•••••	•••••					
10							•••••	•••••					
-10	-							•••••					
	-												

BORING DEPTH: 51.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 23, 2007 COMPLETION DATE: June 23, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500

DATE: June 23, 2007 ETION DATE: June 23, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-105

Silicon Valley Rapid Transit Project San Jose, California

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:52 a

SVRT BORING LOG 011108 Z:\TUGENERAL\USERS\UAIN_A\GINT\SVRT_PHASE 2_050208.GPJ

							•						Sheet 1 of
N, ft	ft	LL	(in)	ΓYPE	.R JNT/ E, psi	LOCATION: SW side of Stockton Ave., approx. 150 ft NW of Asbury St. N 1,950,038 E 6,150,410	⊓ pcf	%	ЪЧ	- %	¥.	SHEAR S _u , ksf	STS
elevation, fi	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO RECOVERY (i	SAMPLER TYPI	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 78.3 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
ELE		≥%	SA	SAN	S BLO PRE	MATERIAL DESCRIPTION	S⊓	8	%#		님드	STRE	1TO
		<u> </u>	1			─ 6 inches of ASPHALT CONCRETE (OVM=0 ppm, /		• • • • • • • •					
		ÌM	1		(16)	\OXY=20.8%, CH4=0 ppm)		•••••					
75			9"	Z	()	SANDY LEAN CLAY (CL), brown, dry (FILL)							
	5-		2 30"		1000 psi	FAT CLAY (CH), stiff, dark brown, dry to moist, high plasticity		•••••	•••••				
	_		30			Began rotary wash, set casing to 3 1/2 ft.							
70	-			1111		SANDY SILT (ML), very stiff, light brown, dry, trace fine grained sand, non-plastic		•••••		•••••			
	10		1			LEAN CLAY (CL), stiff, light brown, moist, low							
	10-		3 30"		100 psi	plasticity							
65	-					(pp=1.5/1.75/1.5 tsf, tv=0.25/0.50/0.125 tsf)		•••••		•••••		1.5 P 0.6 T	
	15	Ύ				SANDY SILT (ML), very stiff, light brown, moist,		• • • • • • •		• • • • • • • •		• • • • • • • • • • • •	
	15-		4 24"		400 psi	non-plastic (pp=3.0/3.5/3.5 tsf)		• • • • • • • •					
	-			Ľ								3.3 P	
60	1							• • • • • • • •	•••••	• • • • • • • •			
	20-		5 27"		400 psi	LEAN CLAY (CL), very stiff, black, moist, medium plasticity							
55	-					brown, (pp=2.0/1.5/2.0 tsf, tv=0.75 tsf)		•••••		31	14	2.1 P 1.5 T	
	25-		6	1111	400 psi			•••••	•••••	• • • • • • • •			
	ł		6 30"					• • • • • • •		• • • • • • • •		• • • • • • • • • • • •	
50				111		stiff (pp=1.5/2.0/1.5 tsf, tv=1.1 tsf)		•••••		•••••		. 1.7 ₽ . 2.3 T · ·	
	30-		7			black, trace fat clay pocket at depth 30 feet						••••••	
	ļ		36"	GВ		trace organic material, lost drilling fluid at 33 feet							
5	ļ		8	Щ									
	25		34"	GВ		gray, low plasticity		• • • • • • • •				•••••	
	35-		9	\parallel									
	ł		9 19"	GВ									
10	ł		1	Ц				•••••	••••	•••••		••••••	
	40-		10 30"	GВ		brown, moist to wet							
	ł		11			POORLY-GRADED GRAVEL WITH SAND (GP),							
35]	••••	10"			medium dense, brown, wet, angular gravel up to 2			4				
	-	• • • •	10"	GB	(50)	inches							
	45-		13 10" 14 0"	<u>N</u> B	(50)	medium grained sand more medium grained sand		•••••					
30		•••••	15	K	(64)	WELL-GRADED GRAVEL WITH SAND (GW), very							
	ł	• • • • •	12	\nearrow	(62)	dense, brown, wet, gravel up to 3/4 inch			5				

Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 26, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for NOTES: 1. Terms and symbols defined on Plate A-1. design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 90.0 ft

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout

START DATE: June 26, 2007 COMPLETION DATE: June 27, 2007

LOG OF BORING NO. BH-106

Silicon Valley Rapid Transit Project San Jose, California

Project No.	213213	

						Sheet 2 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: SW side of Stockton Ave., approx. 150 ft NW of Asbury St. N 1,950,038 E 6,150,410 SURFACE EL: 78.3 ft (1988 NAVD datum) MATERIAL DESCRIPTION
			14"	N	(39)	-lost drilling fluid at 49 feet
25	- - - 55-		17 6" 18 12" 19 10" 20	RN 3 N SN3	(39) (47) (26) (48)	very dense, gravel up to 1 inch dense, dark brown brown, moist lost drilling fluid at 54 feet
	-		6" 21	K	(21)	increasing fines
20	- 60-		15" 22 5"			SILT (ML), very stiff, dark gray, wet, low plasticity trace SILTY CLAY lense from 57 1/2 to 58 feet gray
	-		23	\vdash		
15	-		0" 24	L	(21)	No recovery from Geo-barrel
	65-		17"	С GB	(21)	dark gray
	-		25 6"		(30)	WELL GRADED GRAVEL WITH SILT AND
10	-		26 18"	\sum		SAND(GW-GM), dark gray, wet SANDY SILT (ML), very stiff, brown, wet, gravel up 51 NP NP Hydrometer Tes
	- 70-		27 18" 28 18")	(39)	to 1/2 inch (OVM=0 ppm, OXY=20.9%, CH4=0 ppm) Ended drilling on 6/26/07 at 68 1/2 ft.
5	-		29 13"	N XV	(30)	Ended drilling on 6/27/07 at 63 1/2 ft. due to cave
	75-		30 30"	GB		moist, trace gravel (OVM=0 ppm, OXY=20.9%, // CH4=0 ppm)
0	-					SANDY LEAN CLAY WITH GRAVEL(CL), very stiff,
	- 80-		31 0" 32 19"		(21)	SILTY CLAY WITH SAND (CL-ML), very stiff,
	-			\sim		SILT (ML), brown, moist
-5	-		33 20"	GВ		LEAN CLAY (CL), brown, moist, trace organic materials (No recovery)
	85-		34	GB		SILT (ML), very stiff, gray, moist
	-		12"	$\overline{\mathcal{I}}$		-light brown, some angular gravel up to 1 inch, /
-10	-		35			\trace silty clay lense \
	-					LEAN CLAY (CL), gray, wet, low plasticity
	90-		1			SANDY SILT WITH GRAVEL (ML), yellowish
-15	-					brown, moist, round gravel up to 1 1/2 inches.
	-					
	95-					
	-					
			1	1 1		1

BORING DEPTH: 90.0 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 26, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 26, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

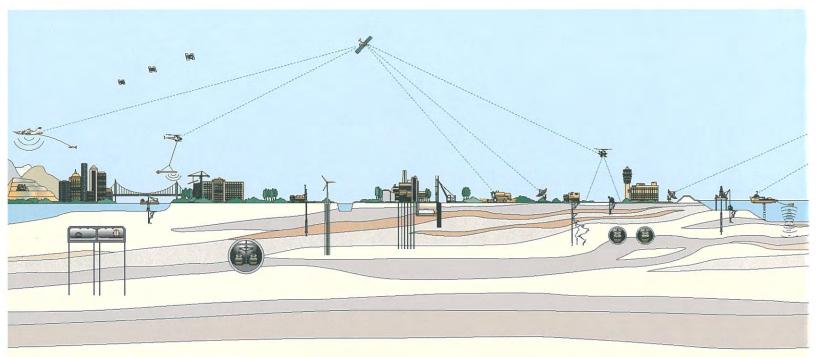
LOG OF BORING NO. BH-106

Silicon Valley Rapid Transit Project San Jose, California

Shoot 2 of 2

Appendix 2: Cone Penetration Test (CPT) Results

FUGRO WEST, INC.


APPENDIX 2 CONE PENETRATION TEST (CPT) RESULTS GEOTECHNICAL EXPLORATION PROGRAM CENTRAL AREA GUIDEWAY

SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA

Prepared for: HMM/Bechtel

JANUARY 2008

Fugro Project No. 1637.001

REPORT DOCKET

APPROVAL

This document is approved by the following:

Name	Title	Signature	Issue Date
Michael Paquette, P.E.	Project Engineer	Mulul Fogotte	1/21/08
Edwin Woo, P.E., G.E.	Principal Engineer	Edwi P. Woo	1/21/08

REVISION HISTORY

Revision	Date	Change	Approval
0	November 12, 2007	Draft Report: Appendix 8 Cone Penetration Test (CPT) Results. Incorporating Phase 2 (2007) CPTs	MP
1	January 21, 2008	Appendix 2 Cone Penetration Test (CPT) Results. Incorporating Phase 2 (2007) CPTs	MP

January 21, 2008 Project No. 1637.001

HMM/Bechtel 3103 North First Street San Jose, California 95134

Attention: Mr. Thomas Hunt, P.E.

Subject: Appendix 2 – Cone Penetration Test (CPT) Results, Central Area Guideway of SVRT Project, San Jose, California

Dear Mr. Hunt:

Fugro is pleased to submit this copy of "Appendix 2 – Cone Penetration Test (CPT) Results," describing the CPT test equipment, procedures and results for the Central Area Guideway of the SVRT Project in San Jose, California.

We appreciate this opportunity to be of continued service to HMM/Bechtel. Please contact Michael Paquette at (510) 267-4441 if you have any questions regarding the information presented in this appendix.

Sincerely,

FUGRO WEST, INC.

Michael Paquette, P.E. Project Engineer

Edwi P. Woo

Edwin P. Woo, P.E., G.E. Principal Engineer

MP/EW:ej

Copies Submitted: (PDF) Addressee

CONTENTS

_		
D.	~ /	20
- 1	-1(ie:

Table

REP	ORT DO	OCKET	1
1.0	1.1 P 1.2 G	DDUCTION Project Description Geotechnical Exploration Program Overview	1 1
2.0	CPT TI	CPT Program Overview	3
	2 2 2 2	CPT Equipment 2.1.1 CPT Rig 2.1.1 CPT Rig 2.1.2 2.1.2 Piezocone 2.1.3 2.1.3 Cone Rods and Casing 2.1.4 2.1.4 Data Acquisition System 2.1.5 2.1.5 Support Equipment 2.1.4	3 3 3 4
	2.2 F	Field Procedures	4
2.0		CPT Completion and Abandonment	
3.0	3.1 lr 3.2 E 3.3 E 3.4 E	SOUNDING RESULTS AND DISCUSSION	5 6 7 8
4.0	LIMITA	ATIONS	8
5.0	REFEF	RENCES	9

TABLES

LOGS OF CPTS

Key to CPT Logs				
CPT Logs	CPT	158 to	СРТ	179

I

1.0 INTRODUCTION

This appendix describes the equipment, procedures and results of cone penetration tests (CPTs) conducted by Fugro West, Inc. (Fugro) for the proposed Central Area Guideway of the Silicon Valley Rapid Transit (SVRT) Project. The CPTs were conducted at locations along the Central Area Guideway alignment, as shown on Figure 3-1 of the main report.

1.1 **PROJECT DESCRIPTION**

The Santa Clara Valley Transportation Authority (VTA) intends to construct the SVRT Project in San Jose, California. This will be a 26.2-km (16.3-mile) extension of the Bay Area Rapid Transit (BART) heavy rail rapid transit system from the planned terminus at the end of the Warms Springs Extension in Fremont, to San Jose. The proposed alignment currently includes several new stations and vehicle storage and maintenance facilities. The alignment is composed of two major segments:

- 1) The "Northern Area" that will be approximately 11.5 miles of at-grade, elevated and cut-and-cover track from Warm Springs to San Jose; and
- 2) The "Central Area Guideway", a 5.1-mile-long tunnel, consisting of twin bored tunnels and cut-and-cover structures through downtown San Jose.

As currently planned, the Central Area Guideway includes at-grade and open cut track, cut-and-cover stations, and a cut-and-cover track crossover structure. The cut-and-cover stations and the crossover structures have a cumulative length of approximately 4,970 feet. The remaining 4.14 miles of the alignment will be twin 19.5-foot-diameter tunnels.

This investigation and report cover the 5.1-mile-long Central Area Guideway only.

1.2 GEOTECHNICAL EXPLORATION PROGRAM OVERVIEW

The joint venture of Hatch Mott MacDonald T & T, Inc., and Bechtel Infrastructure Corporation (HMM/Bechtel) is providing engineering design services for the Central Area Guideway of the SVRT Project to the VTA. HMM/Bechtel has subcontracted with a number of companies to conduct the geotechnical field exploration program for the project. HMM/Bechtel's primary subcontractors for the geotechnical exploration program include: Fugro, Parikh Consultants (Parikh) and Pitcher Drilling Company (Pitcher).

The three companies, Fugro, Parikh, and Pitcher, conducted the majority of the geotechnical field exploration program for the Central Area Guideway of the SVRT Project from October 2004 to March 2005. This supplementary geotechnical field investigation was performed between March 2007 and August 2007. The intent of the field investigation program was to obtain geotechnical data that would aid in the design and construction of the proposed tunnel and cut-and-cover structures.

In general, the geotechnical field investigations explored subsurface conditions along the proposed Central Area Guideway. The explorations were within the vicinity of the proposed Eastern and Western Portals, at the two proposed ventilation structures, and at the proposed stations, including Alum Rock Station, Downtown San Jose Station and Diridon/Arena Station. The geotechnical exploration program included:

- 2004 / 2005 Investigation
 - o 76 Rotary Wash Borings (by others); and
 - 146 CPTs (by Fugro).
- 2007 Investigation
 - o 18 Rotary Wash Borings (by others); and
 - o 22 CPTs (by Fugro).

Figure 3-1 in the main report provides a map of the exploration locations. These locations were selected by HMM/Bechtel based on the following considerations: 1) the requirements of the tunnel designer, 2) the location of existing geotechnical data, 3) reducing impacts on private property, and 4) the avoidance of existing underground and overhead utilities. The locations of the 2007 explorations were chosen to fill in gaps in the data along the tunnel alignment. A subcontractor to HMM/Bechtel surveyed the CPT locations. HMM/Bechtel provided the surveyed coordinates to Fugro.

1.3 CPT PROGRAM OVERVIEW

Fugro West, Inc. and Fugro Consultants, Inc. (formerly Fugro Geosciences, Inc.) conducted the CPTs using a Fugro truck-mounted 25-ton cone apparatus. The CPTs were performed in general accordance with ASTM D5778. The continuous CPT soundings were typically advanced to refusal, which ranged from approximately 34 to 116 feet in depth. In addition to continuous CPT soundings, Fugro also performed downhole seismic shear wave velocity measurements. Downhole seismic shear (S) wave velocity measurements were successfully conducted at 12 CPT locations during the 2007 investigation to obtain profiles of shear wave velocity versus depth. Detailed information regarding the downhole seismic CPTs, including field procedures, data interpretation and results are discussed in Appendix 3 – Seismic Cone Testing.

Detailed procedures and equipment specifications on the CPT operations are discussed in the following sections. Table 1 summarizes the 2007 CPT field testing program and indicates the test location, date of completion, termination depth and additional tests performed for each CPT.

2.0 CPT TEST EQUIPMENT AND PROCEDURES

2.1 CPT EQUIPMENT

Equipment used in conducting CPTs includes:

- A self-contained 25-ton CPT rig. The rig contains the hydraulic pushing system, a power supply unit and other tools, equipment and necessary materials;
- A piezocone (CPTu) capable of measuring tip resistance, sleeve resistance, probe inclination and dynamic pore pressure;
- Cone rods pre-strung with electrical 10-pin copper cable and casing;
- A data acquisition system including an Analog-Digital (A/D) Conversion System and a data logging laptop computer; and
- A support truck and trailer containing a grout pump and mixer, steam cleaning equipment, and a pressure washer.

2.1.1 CPT Rig

The CPTs were performed using a Fugro 25-ton capacity truck-mounted rig with a selfcontained power supply unit. The rig was equipped with hydraulic jacking systems to lift and level the pushing platform. The "dead weight" of the rig provided the reaction weight necessary to advance the CPT into the ground.

2.1.2 Piezocone

The conventional instrumented piezocone assembly used for this project included a cone tip with a 60-degree apex and a base area of 15 square centimeters (cm^2), a sleeve segment with a surface area of 200 cm², an area ratio of 0.59 to 0.61, and a pore pressure transducer near the base (shoulder) of the cone tip (designated the u2 location).

2.1.3 Cone Rods and Casing

Fugro's CPT cone rods are manufactured from high tensile strength steel and have a cross sectional area adequate to sustain, without buckling, the thrust required to advance the penetrometer tip. Prior to testing, a 10-pin electrical cable is pre-strung through the cone rods, and is connected by a crossover cable to the data acquisition system. Push rods are 1-meter long, and are secured together to bear against one another at the joints to form a rigid jointed string.

The push rods were protected from bending by a steel casing (2 1/8-inch outside diameter and 1 7/8-inch inside diameter), when needed. The casing was used to ensure that the maximum possible depth of testing was reached. The steel casing was generally placed in the upper clayey strata and was extended to depths of 5 to 27 feet, when used.

2.1.4 Data Acquisition System

The data acquisition system used in conducting the CPTs consisted of an electronic signal conditioner, a three-pen analog strip chart recorder, a portable laptop computer, and a printer.

The data acquisition system converts the analog signal from the cone penetrometer to a digital signal. The signal is monitored, recorded and presented in near-real time on the laptop computer. As stipulated in ASTM D-5778-95, a three-pen strip chart recorder monitors and displays in real time the analog signals directly from the cone penetrometer. This provides an accurate recording of the collected data, regardless of the analog to digital conversion. Upon completion of testing, the strip chart record of the analog readings is compared to the digital readings recorded on the laptop computer. This comparison of analog to digital signals provides a quality control system that ensures accurate and highly reliable data including the initial and final calibration zeros.

2.1.5 Support Equipment

The support equipment consisted of a pickup truck and trailer containing the following necessities:

- Grout pump and mixer, to properly abandon the CPT holes after completion;
- Pressure wash system, for cleaning work area when appropriate and maintaining clean equipment throughout exploration program;
- Steam cleaning system, for environmental protocol (as needed); and
- Tools and supplies, for daily operations.

2.2 FIELD PROCEDURES

Prior to the start of testing, the truck was jacked up and leveled on four pads to provide a stable reaction for the cone thrust. During the test, the instrumented cone was hydraulically pushed into the ground at a rate of about 2 centimeters per second (cm/s), and readings of cone tip resistance, sleeve friction, and pore pressure were digitally recorded every second. As the cone advanced, additional cone rods were added such that a "string" of rods continuously advanced through the soil. As the test progressed, the CPT operator monitored the cone resistance and the deviation from vertical alignment.

Information collected during a push was stored digitally as ASCII formatted data on magnetic disks readable by MS-DOS or Windows-based programs that read text files. The data files include project description, location, operator, data format information, and other pertinent information about the sounding.

Following each push, the data collected are presented in a graphical format. The preliminary field logs include:

- Cone tip resistance in tons per square foot (tsf) versus depth in feet;
- Friction sleeve resistance in tsf versus depth in feet;
- Friction ratio in percentage versus depth in feet; and
- Pore pressure in tsf versus depth in feet.

As stipulated in ASTM D-5778-95, the vertical axis on the plots is designated for depth, and the horizontal axis displays the magnitude of the test values recorded. Final plotting scales are determined after all the tests are completed, and takes into consideration maximum test values and depths recorded for the project.

2.3 CPT COMPLETION AND ABANDONMENT

Upon completion of the CPTs, the CPT rig was moved off the location. The holes were backfilled with cement-bentonite grout by the tremie method, starting from the bottom of the hole and filling upward using the grout pump and mixer. When grout approached the surface, the tremie pipe was removed, and the sounding holes were topped off with rapid setting "quickcrete". Grout mix and grouting procedures were completed in accordance with Santa Clara Valley Water District regulations. The work area was then cleaned per City of San Jose requirements and left in about the same or better condition than prior to testing.

3.0 CPT SOUNDING RESULTS AND DISCUSSION

3.1 INTRODUCTION

The CPT logs are attached to this appendix. The CPT logs provide graphical plots versus depth showing:

- Measured cone tip resistance, in tsf;
- Measured sleeve friction, in tsf;
- Friction ratio, in percentage, including color coding denoting the Soil Behavior Type according to Robertson (1990) (see CPT correlation chart);
- Measured pore pressure at the u2 location, in tsf;
- Estimated soil undrained shear strength, in ksf. The sounding logs show the range of undrained shear strengths calculated from CPT cone tip resistance (corrected for unequal end area effects) based on cone bearing capacity factors (N_k) of 12 and 15.

Please note that some of the data presented on the CPT logs are interpreted and based on assumptions that need to be verified with the data from the boring program. The interpreted data presented on the CPT logs include the soil behavior type and the estimated soil undrained shear strength. The estimated soil behavior type and undrained shear strength are influenced by the soil unit weight (and resulting total stress condition). Undrained shear strength is also influence by the N_k value. These items are discussed in detail below.

3.2 ESTIMATION OF TOTAL IN SITU STRESS FROM CPT DATA

As discussed above, a reasonable estimate of the in situ total stress is required to evaluate the soil behavior type and undrained shear strength using CPT data. To reasonably estimate total stress, a site-specific CPT correlation with unit weight was developed during the 35 percent study. The basic approach to developing the site-specific correlation was to compare measured unit weight from all correlation borings (borings that were located directly adjacent to a CPT) with the CPT zone as determined from the Robertson et al. (1986) soil behavior chart. The unit weight data from the borings were then sorted by zone and averaged to determine a reasonable estimate of unit weight for each zone on the chart. For CPT zones where no laboratory data were available, the zone was assigned a unit weight based on modified estimates of the unit weight correlations provided in Lunne et al. (1997). The following table provides a summary of the site-specific unit weight correlations for each zone of the Robertson et al. (1986) CPT tip resistance-based chart.

Zone Number	Material Description	Site-Specific Unit Weight Correlation (Ibs/ft ³)
1	Sensitive fine grained	115
2	Organic material	85
3	Clay	122
4	Silty clay to clay	124
5	Clayey silt to silty clay	124
6	Sandy silt to clayey silt	126
7	Silty sand to sandy silt	127
8	Sand to silty sand	127
9	Sand	130
10	Gravelly sand to sand	135
11	Very stiff fine grained	127
12	Sand to clayey sand	127

Table A8-2. Summary of Site-Specific Unit Weight/CPT Correlations from 35 Percent Study – Fugro (2005)

Note: Zone number and material description are based on Robertson et al. (1986) proposed soil behavior classification system (tip resistance and friction ratio).

The unit weight correlations above were used to develop a unit weight profile for each CPT from which the total stress profile was developed. To verify the above unit weight correlation and confirm that these values resulted in reasonable estimates of total stress, profiles of unit weight and total stress were developed as part of the 35 percent study, and summarized in Fugro (2005).

3.3 EVALUATION OF SOIL BEHAVIOR TYPE (SBT)

The Soil Behavior Type (SBT) shown on the CPT logs was evaluated using the Robertson (1990) correlation. The Robertson (1990) correlation requires two corrections be applied to the recorded cone data. The first correction is for pore pressures behind the cone and the second correction is for overburden.

The first correction is calculated using the following expression:

$$q_t = q_c + u(1 - a)$$

Where: q_t = Corrected cone resistance, tsf

 q_c = Measured cone resistance, tsf

u = Measured pore pressure, tsf

a = Cone area ratio, dimensionless

The second correction calculates a normalized cone penetration resistance and a normalized friction ratio. The normalized cone penetration resistance is calculated using the following expression:

$$Q_t = \frac{q_t - \sigma_{vo}}{\sigma'_{vo}}$$

Where: Q_t = Normalized cone penetration resistance, dimensionless

 q_t = Corrected cone resistance, tsf

 σ_{vo} = Estimated in situ total vertical stress, tsf

 σ'_{vo} = Estimated in situ effective vertical stress, tsf

The normalized friction ratio is calculated using the following expression:

$$F_r = \left(\frac{f_s}{q_t - \sigma_{vo}}\right) \times 100\%$$

Where $F_r =$ Normalized friction ratio, percent

f_s = Measured sleeve friction, tsf

q_t = Corrected cone resistance, tsf

 σ_{vo} = Estimated in situ total vertical stress, tsf

The normalized tip resistance and friction ratio are plotted on the Robertson (1990) chart, as shown on the attached Key to CPT Logs, to estimate the Soil Behavior Type.

7

3.4 EVALUATION OF UNDRAINED SHEAR STRENGTH FROM CPT DATA

Undrained shear strength has been estimated from the CPT measurements using the following expression:

$$S_u = \frac{q_t - \sigma_{vo}}{N_v}$$

Where: $S_u =$ Undrained shear strength, ksf

qt = Cone tip resistance, ksf

 σ_{vo} = Estimated in situ total vertical stress, ksf

 N_k = Empirical cone bearing factor, dimensionless

In order to estimate the soil's undrained shear strength using the above relationship, the cone bearing factor (N_k) and in situ total stress (σ_{vo}) need to be determined. The following discussion summarizes the approaches used to reasonably estimate these quantities.

3.4.1 Evaluation of Cone Bearing Factor (N_k)

A range of interpreted undrained shear strength (Su) from CPT tip resistances for empirical cone bearing factor (N_k) ranging from 12 to 15, are plotted on the CPT logs. The range of selected N_k values was based on a comparison of Su estimated from the CPT tip resistance and the Su determined from vane shear testing in the borings. This comparison was completed as part of the 35 percent study, as summarized in Fugro (2005).

4.0 LIMITATIONS

Our services consist of subsurface field explorations and data evaluations that are made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.

The data provided in this appendix are based on the subsurface explorations conducted for this study. These explorations indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. Variations may exist and conditions not observed or described in this report could be encountered during construction. Our results are based on our standard practices and specific data obtained.

This appendix has been prepared for the exclusive use of HMM/Bechtel and their consultants for specific application to the SVRT project as described herein. In the event that there are any changes in the ownership, nature, design, or location of the proposed project, or if any future additions are planned, the results contained in this appendix should not be considered valid unless: 1) the project changes are reviewed by Fugro, and 2) results presented

in this appendix are modified or verified in writing. Reliance on this report by others must be at their risk unless we are consulted on the use or limitations. We cannot be responsible for the impacts of any changes in geotechnical standards, practices, or regulations subsequent to performance of services without our further consultation. We can neither vouch for the accuracy of information supplied by others, nor accept consequences for unconsulted use of segregated portions of this report.

5.0 REFERENCES

- Fugro West, Inc. (2005), "Appendix 8 Cone Penetration Test (CPT) Results, Geotechnical Exploration Program, Tunnel Segment of Silicon Valley Rapid Transit (SVRT) Project, San Jose, California" Prepared for HMM/Bechtel, Fugro Project No. 1637.001
- Lunne, Robertson & Powell (1997), Cone Penetration Testing in Geotechnical Practice, Blackie Academic & Professional, London, UK.
- Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. (1986), "Use of Piezocone Data," Proceedings of the ASCE Specialty Conference In Situ 1986: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, pp.1263-80.
- Robertson, P.K., (1990), "Soil Classification using the Cone Penetration Test," *Canadian Geotechnical Journal*, 27

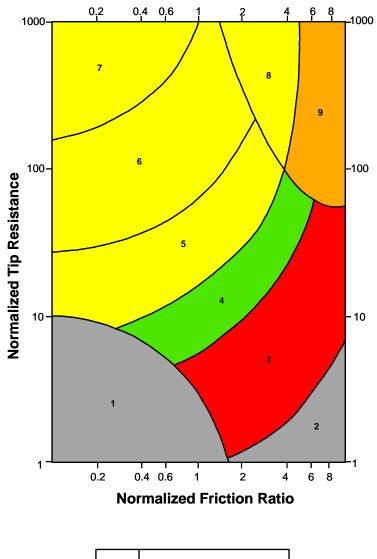
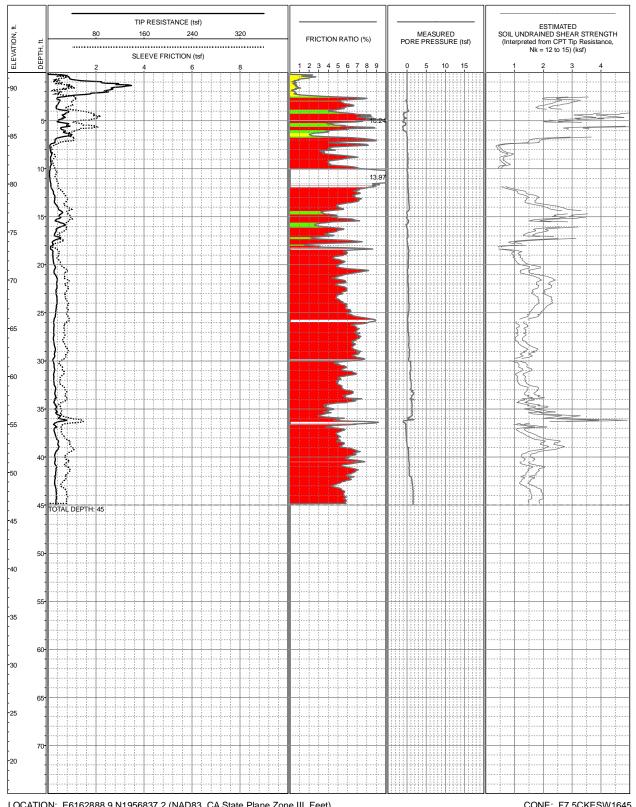

CPT No.	Station	Offset Co		oordinates		In Other Treat	Insitu Test	CPT	Casing	Final	Commente	
		(ft)	R/L	Northing	Easting	Elev.	In-Situ Test	Depths (ft)	Completed	Depth (ft)	Depth (ft)	Comments
CPT - 158	562+47	30	L	1956837	6162889	91.6	Seismic	Every 3 ft.	4/3/2007		45.0	
CPT - 159	563+48	29	L	1956741	6162916	91.1			4/4/2007		45.4	
CPT - 160	565+39	37	L	1956567	6162986	89.4			4/4/2007		45.4	
CPT - 161	568+89	26	L	1956251	6163128	87.3	Seismic	Every 3 ft.	4/3/2007		105.0	
CPT - 162	600+72	140	L	1953716	6164945	87.1	Seismic	Every 3 ft.	8/13/2007		73.2	
CPT - 163	636+50	66	L	1950985	6163027	93.4			3/31/2007		95.1	
CPT - 164	639+64	50	L	1950828	6162753	94.9			3/28/2007		86.0	
CPT - 165	642+21	41	L	1950703	6162527	96.1	Seismic	Every 3 ft.	8/16/2007		77.4	
CPT - 166	649+12	48	L	1950358	6161926	85.6			3/29/2007		89.2	
CPT - 167	701+09	11	R	1947883	6157354	86.7	Seismic	Every 5 ft.	4/1/2007		90.7	
CPT - 168	734+51	100	L	1946017	6154586	87.8	Seismic	Every 3 ft.	4/5/2007		149.9	
CPT - 169	706+79	145	L	1947464	6156937	89.0	Seismic	Every 3 ft.	8/17/2007		85.4	
CPT - 170	793+77	48	R	1949598	6150886	76.5			3/30/2007	5 ft.	43.7	
CPT - 171	794+96	42	R	1949684	6150804	75.1	Seismic	Every 3 ft.	3/30/2007		74.8	
CPT - 172	607+63	66	R	1953024	6164741	88.0	Seismic	Every 3 ft.	8/16/2007		113.4	
CPT - 173	828+06	91	L	1951765	6148281	69.9	Seismic	Every 3 ft.	3/29/2007		38.4	CPT redone due to early refusal.
CPT - 173A	828+02	92	L	1951762	6148283	69.8			3/31/2007		33.8	
CPT - 173B	B Not Surveyed								3/31/2007		81.5	Piezo Cone used after refusal of Seismic Cone
CPT - 174	834+47	21	L	1952160	6147771	67.4	Seismic	Every 3 ft.	3/31/2007		55.6	
CPT - 174A	174A Not Surveyed								3/31/2007	27 ft.	69.4	Piezo Cone used after refusal of Seismic Cone
CPT - 175	835+68	20	L	1952223	6147669	67.3			3/28/2007		80.5	
CPT - 176	837+51	16	L	1952322	6147514	66.8			3/28/2007		45.5	
CPT - 177	838+86	19	L	1952391	6147398	66.4			3/30/2007		45.5	
CPT - 178	841+50	15	L	1952479	6147259	66.1			3/29/2007		45.5	
CPT - 179	740+58	109	L	1945918	6153987	91.5	Seismic	Every 3 ft.	8/14/2007		115.5	

Table A2-1

SUMMARY OF CONE PENETRATION TEST (CPT) PROGRAM Central Area Guideway of Silicon Valley Rapid Transit (SVRT) Project San Jose, California

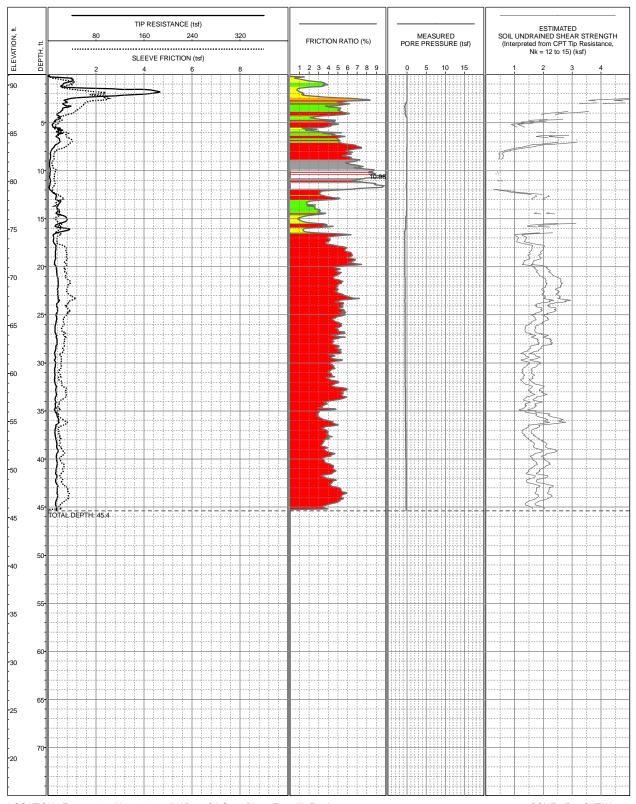
LOGS OF CPTs


nd *

*overconsolidated or cemented

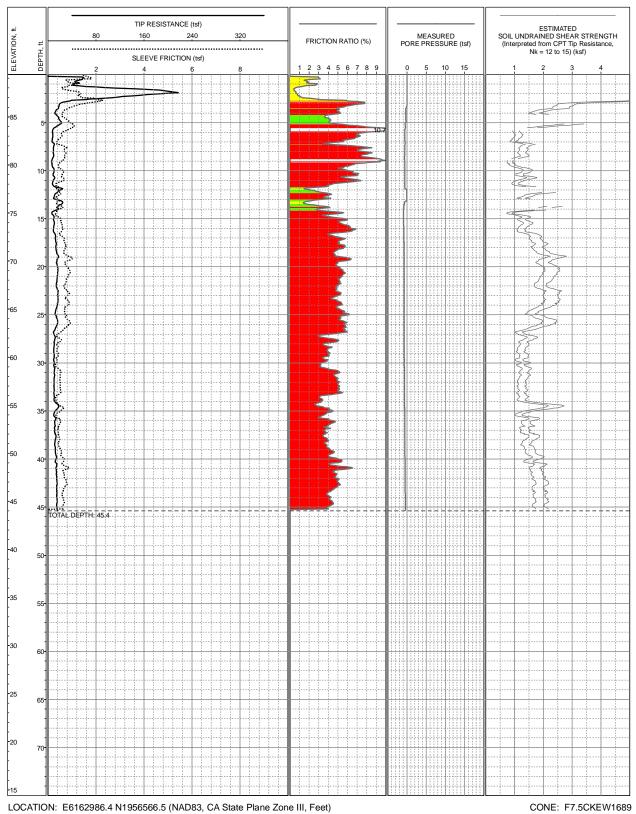
CPT CORRELATION CHART (Modified from Robertson, 1990)

KEY TO CPT LOGS Central Area Guideway of SVRT Project San Jose, California



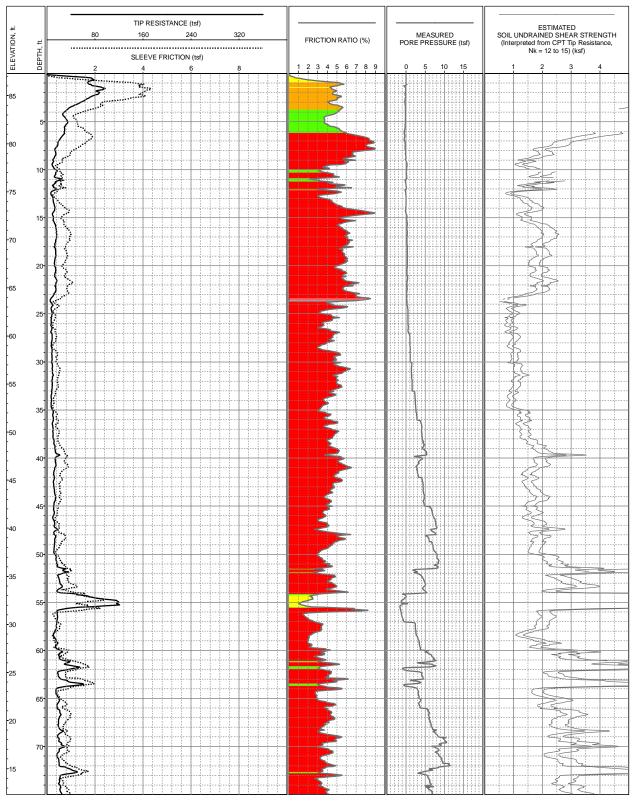
LOCATION: E6162888.9 N1956837.2 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 91.6ft (NAVD88) COMPLETION DEPTH: 45ft TEST DATE: 4/3/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-158 Central Area Guideway of SVRT Project San Jose, California



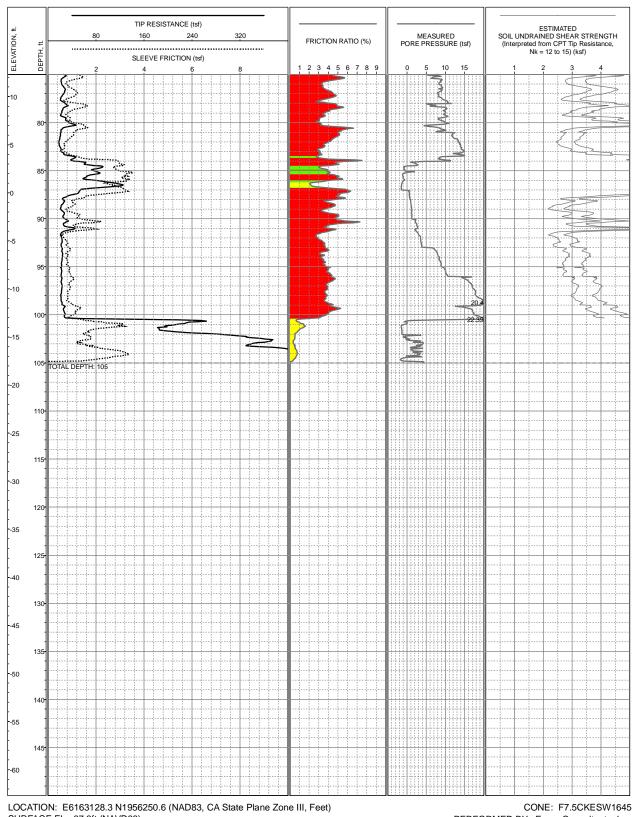
LOCATION: E6162916.2 N1956740.9 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 91.1ft (NAVD88) COMPLETION DEPTH: 45.4ft TEST DATE: 4/4/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-159 Central Area Guideway of SVRT Project San Jose, California



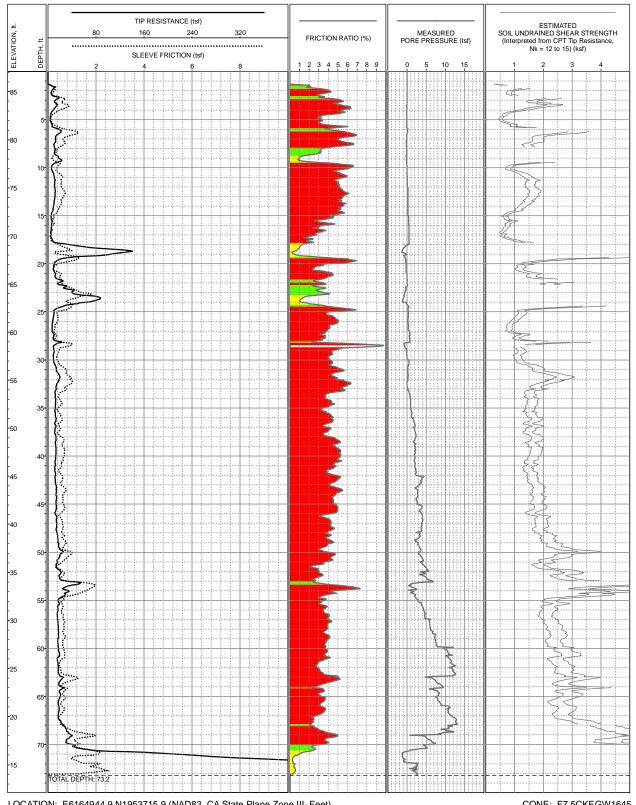
LOCATION: E6162986.4 N1956566.5 (NAD83, CA State Plane Zone III, F SURFACE EL: 89.4ft (NAVD88) COMPLETION DEPTH: 45.4ft TEST DATE: 4/4/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-160 Central Area Guideway of SVRT Project San Jose, California



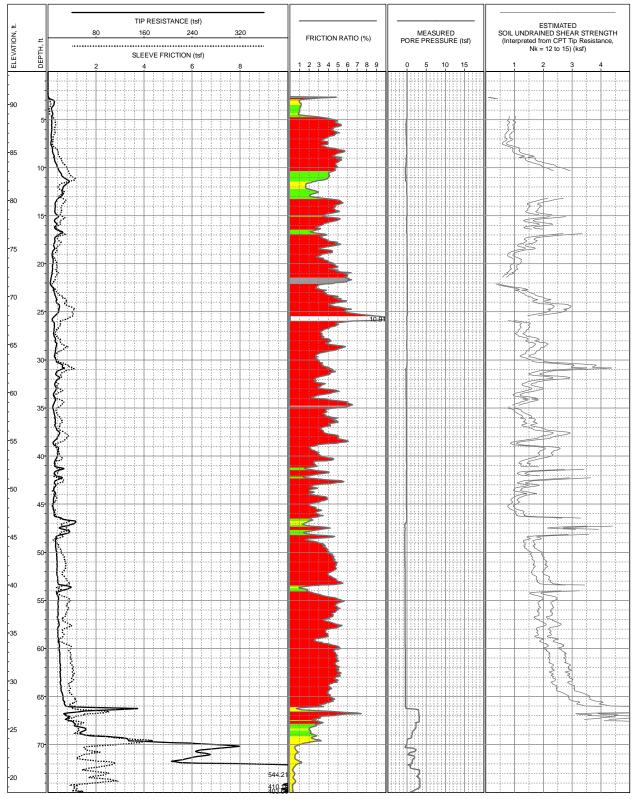
LOCATION: E6163128.3 N1956250.6 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 87.3ft (NAVD88) COMPLETION DEPTH: 105ft TEST DATE: 4/3/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-161 Central Area Guideway of SVRT Project San Jose, California



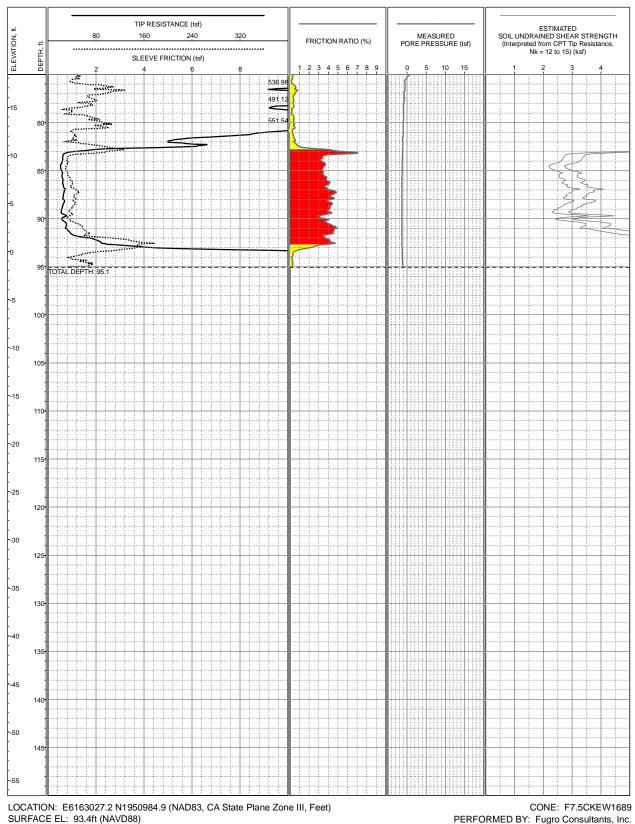
SURFACE EL: 87.3ft (NAVD88) COMPLETION DEPTH: 105ft TEST DATE: 4/3/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-161 Central Area Guideway of SVRT Project San Jose, California



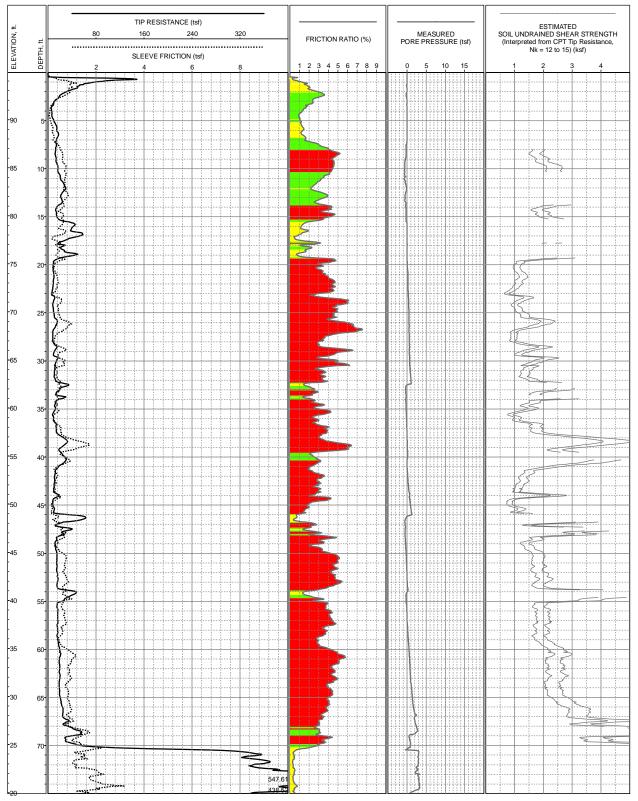
LOCATION: E6164944.9 N1953715.9 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 87.1ft (NAVD88) COMPLETION DEPTH: 73.2ft TEST DATE: 8/13/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

LOG OF CPT-162 Central Area Guideway of SVRT Project San Jose, California



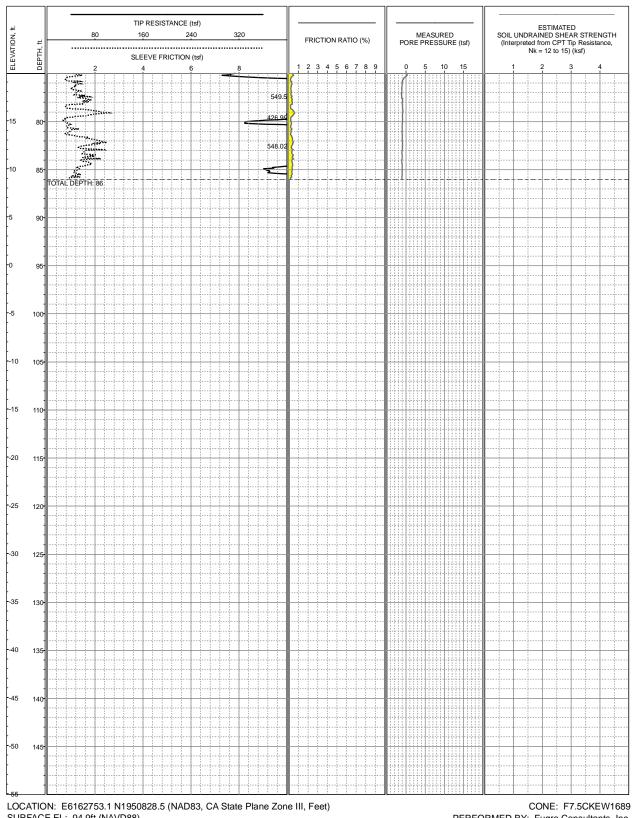
LOCATION: E6163027.2 N1950984.9 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 93.4ft (NAVD88) COMPLETION DEPTH: 95.1ft TEST DATE: 3/31/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-163 Central Area Guideway of SVRT Project San Jose, California



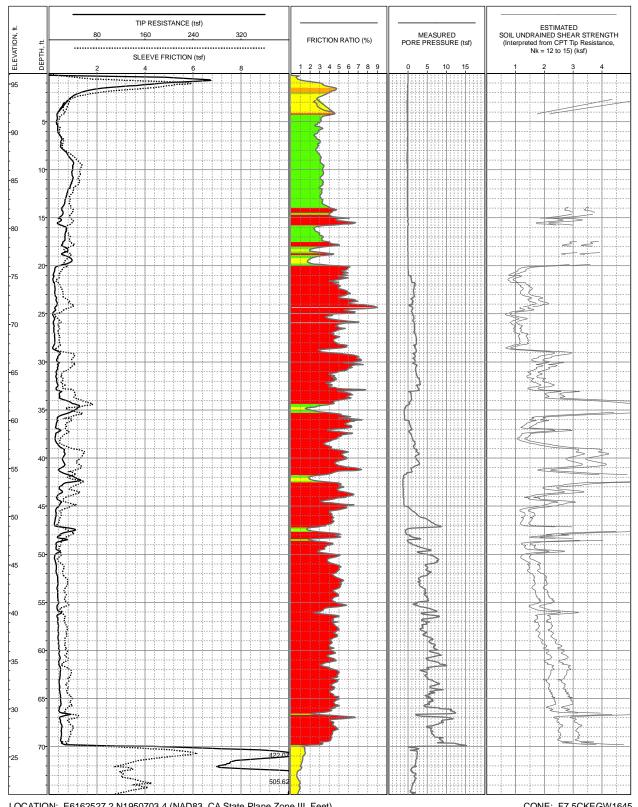
SURFACE EL: 93.4ft (NAVD88) COMPLETION DEPTH: 95.1ft TEST DATE: 3/31/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-163 Central Area Guideway of SVRT Project San Jose, California



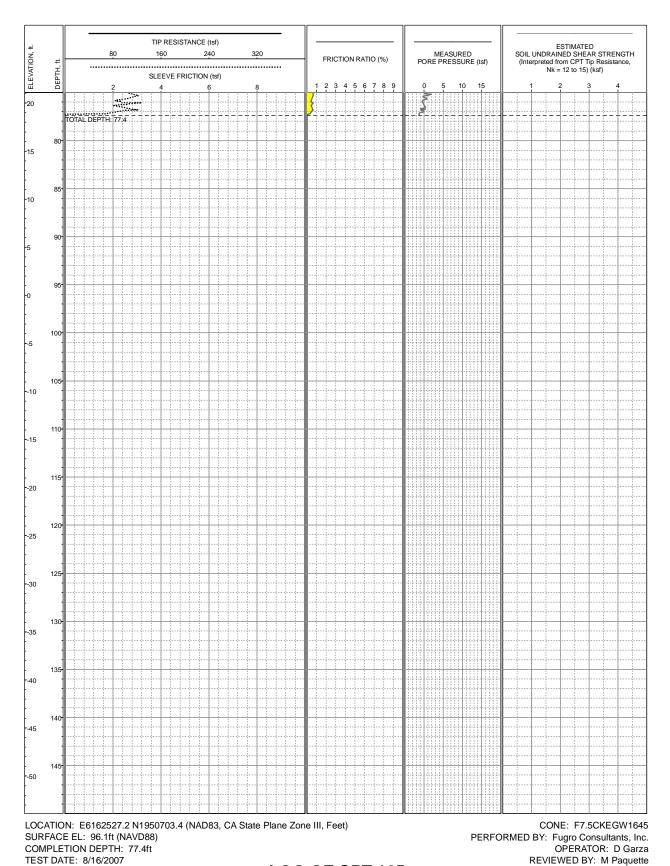
LOCATION: E6162753.1 N1950828.5 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 94.9ft (NAVD88) COMPLETION DEPTH: 86ft TEST DATE: 3/28/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-164 Central Area Guideway of SVRT Project San Jose, California

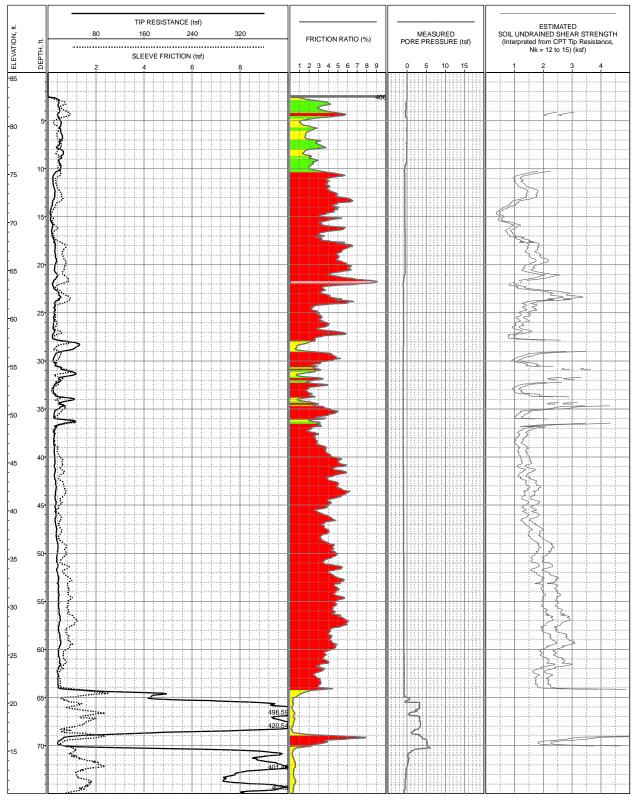


SURFACE EL: 94.9ft (NAVD88) COMPLETION DEPTH: 86ft TEST DATE: 3/28/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

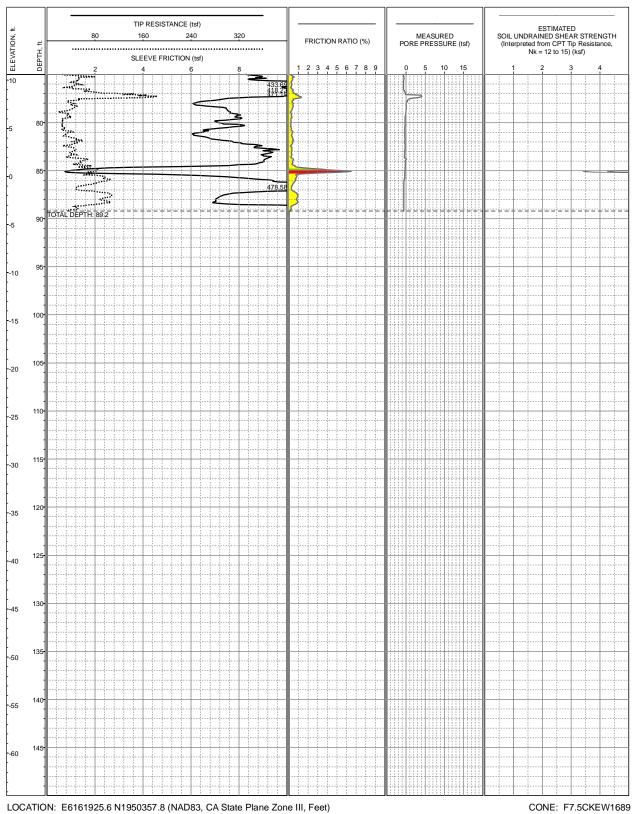
LOG OF CPT-164 Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6162527.2 N1950703.4 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 96.1ft (NAVD88) COMPLETION DEPTH: 77.4ft TEST DATE: 8/16/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette


LOG OF CPT-165 Central Area Guideway of SVRT Project San Jose, California

LOG OF CPT-165 Central Area Guideway of SVRT Project San Jose, California



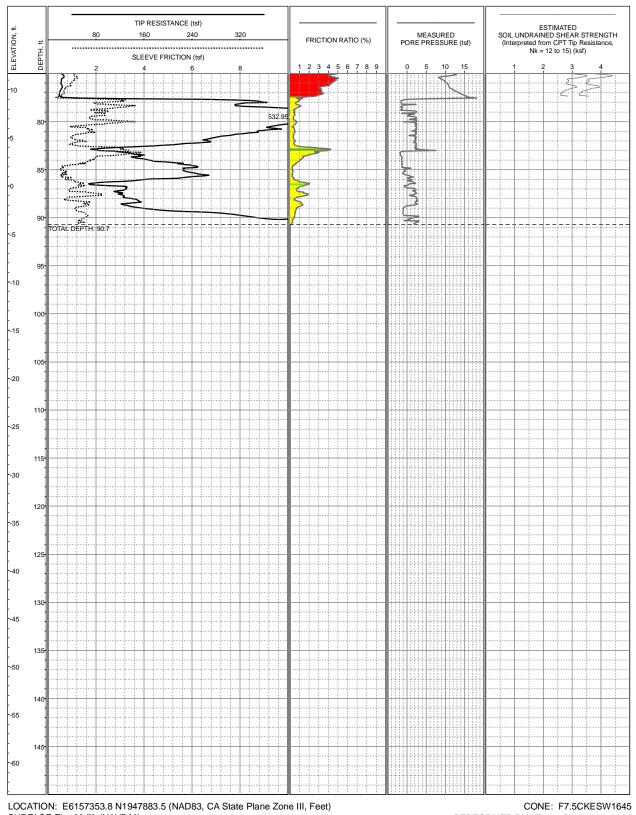
LOCATION: E6161925.6 N1950357.8 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 85.6ft (NAVD88) COMPLETION DEPTH: 89.2ft TEST DATE: 3/29/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-166 Central Area Guideway of SVRT Project San Jose, California



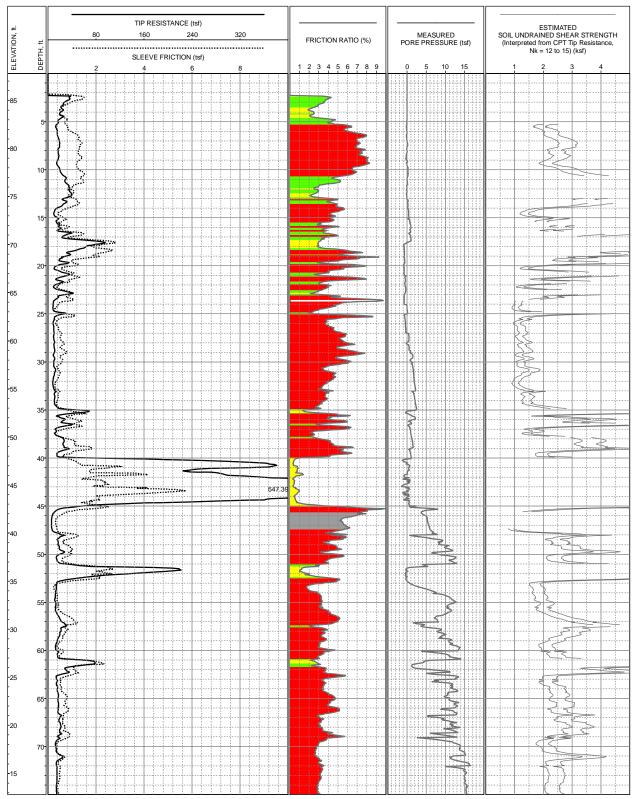
LOCATION: E6161925.6 N1950357.8 (NAD83, CA State Plane Zone III SURFACE EL: 85.6ft (NAVD88) COMPLETION DEPTH: 89.2ft TEST DATE: 3/29/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-166 Central Area Guideway of SVRT Project San Jose, California



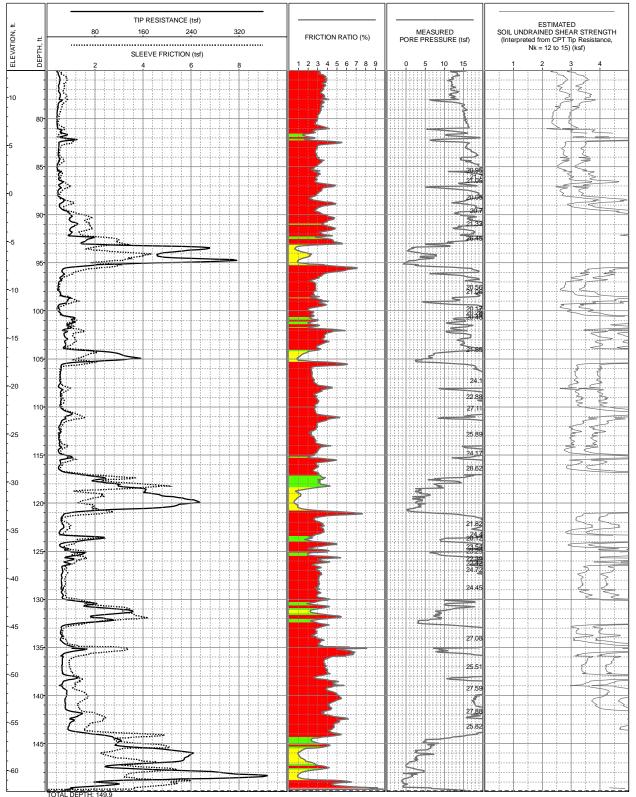
LOCATION: E6157353.8 N1947883.5 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 86.7ft (NAVD88) COMPLETION DEPTH: 90.7ft TEST DATE: 4/1/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-167 Central Area Guideway of SVRT Project San Jose, California



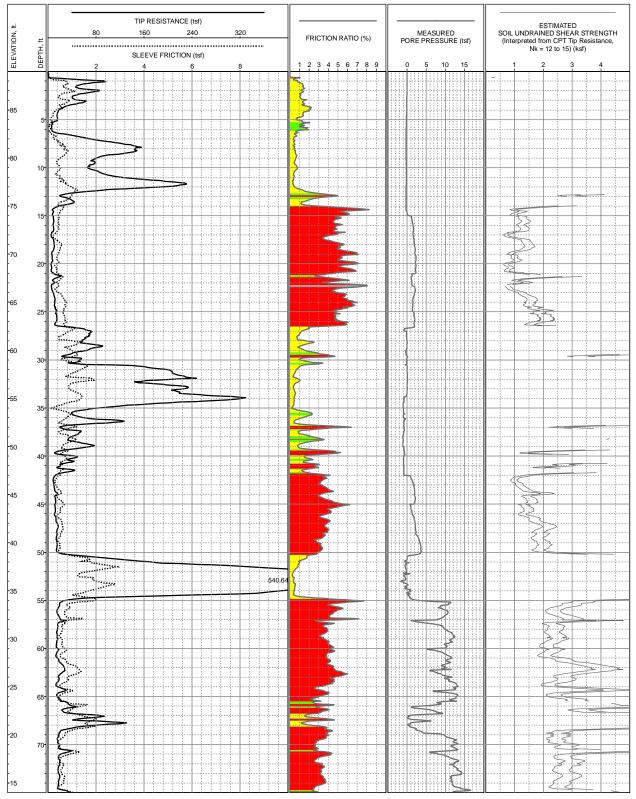
LOCATION: E615/353.8 N194/883.5 (NAD83, CA State Plane Zone I SURFACE EL: 86.7ft (NAVD88) COMPLETION DEPTH: 90.7ft TEST DATE: 4/1/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-167 Central Area Guideway of SVRT Project San Jose, California



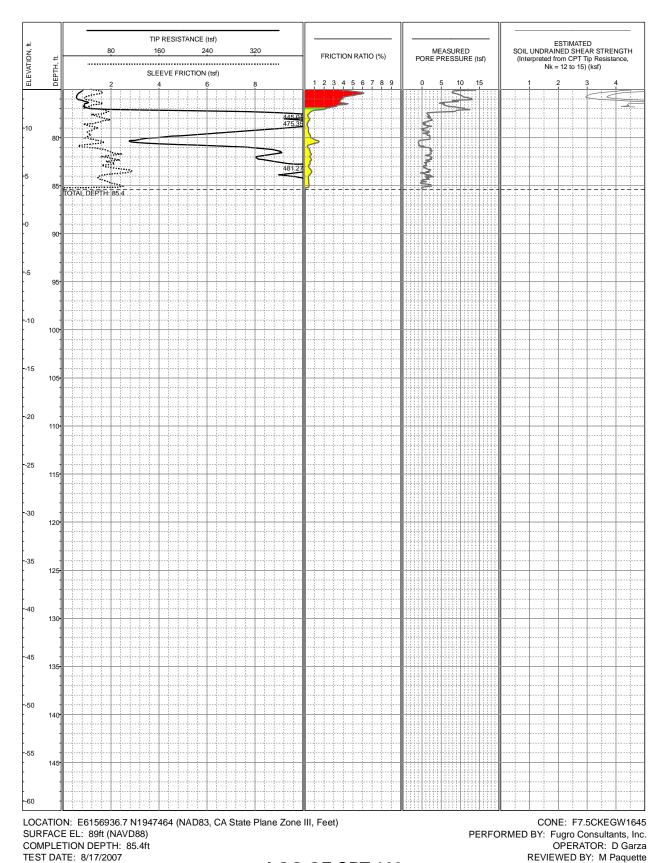
LOCATION: E6154586 N1946016.7 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 87.8ft (NAVD88) COMPLETION DEPTH: 149.9ft TEST DATE: 4/5/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-168 Central Area Guideway of SVRT Project San Jose, California

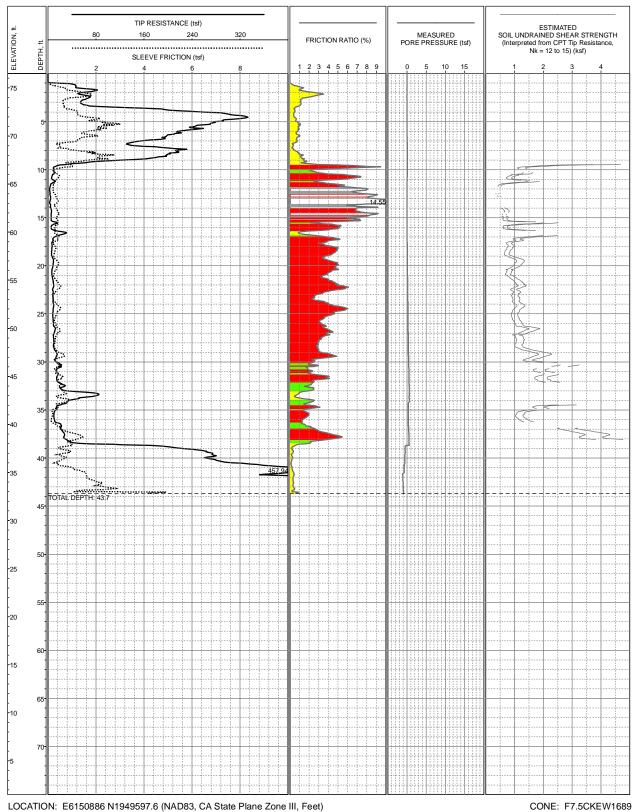


LOCATION: E6154586 N1946016.7 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 87.8ft (NAVD88) COMPLETION DEPTH: 149.9ft TEST DATE: 4/5/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

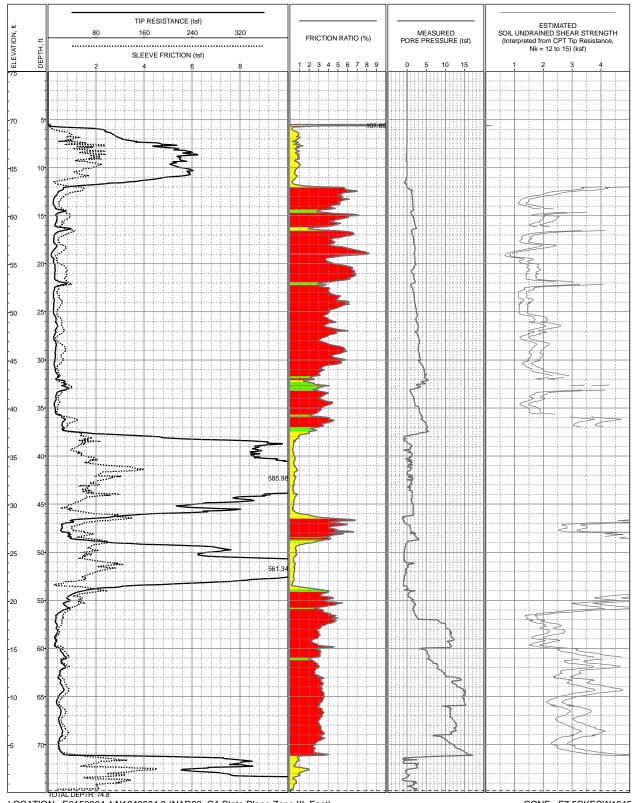
LOG OF CPT-168 Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6156936.7 N1947464 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 89ft (NAVD88) COMPLETION DEPTH: 85.4ft TEST DATE: 8/17/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

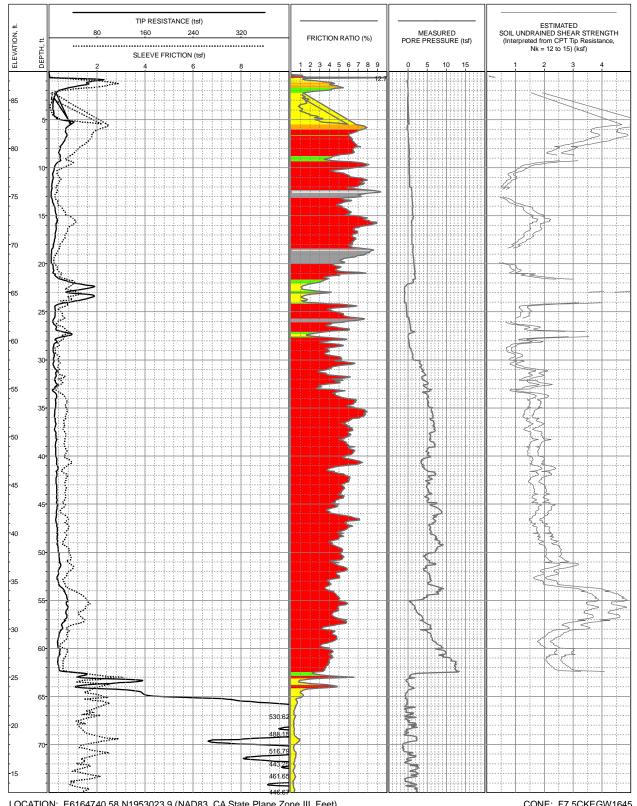

LOG OF CPT-169 Central Area Guideway of SVRT Project San Jose, California

LOG OF CPT-169 Central Area Guideway of SVRT Project San Jose, California



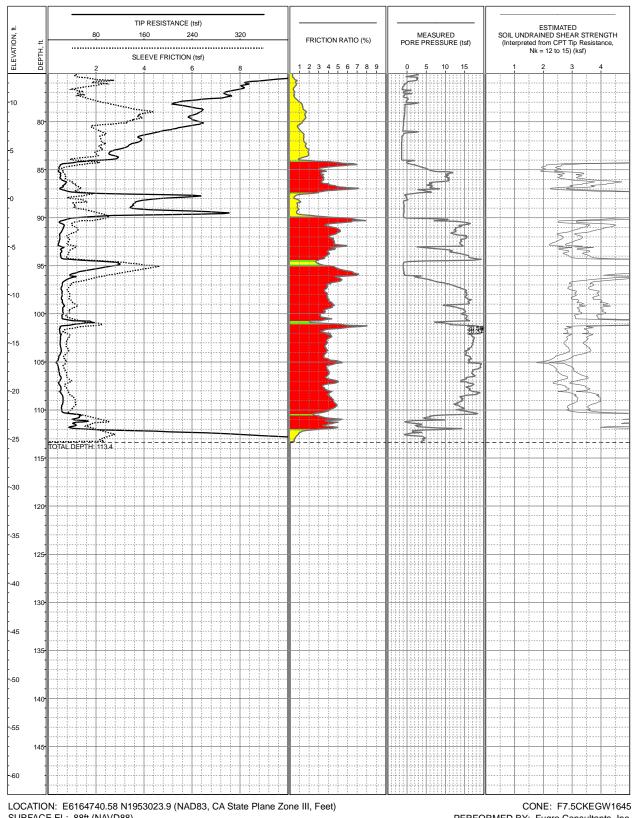
LOCATION: E6150886 N1949597.6 (NAD83, CA State Plane Zone III, F SURFACE EL: 76.5ft (NAVD88) COMPLETION DEPTH: 43.7ft TEST DATE: 3/30/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-170 Central Area Guideway of SVRT Project San Jose, California



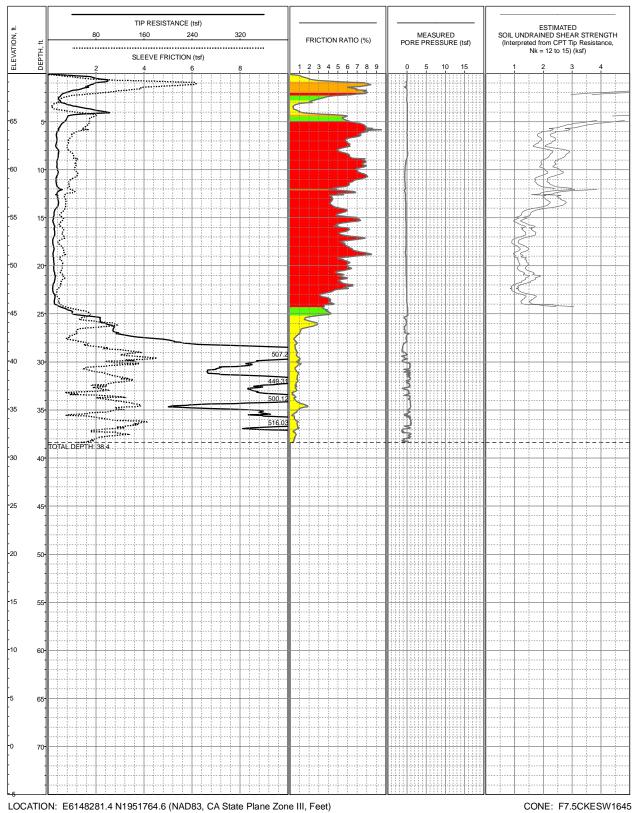
LOCATION: E6150804.4 N1949684.3 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 75.1ft (NAVD88) COMPLETION DEPTH: 74.8ft TEST DATE: 3/30/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-171 Central Area Guideway of SVRT Project San Jose, California



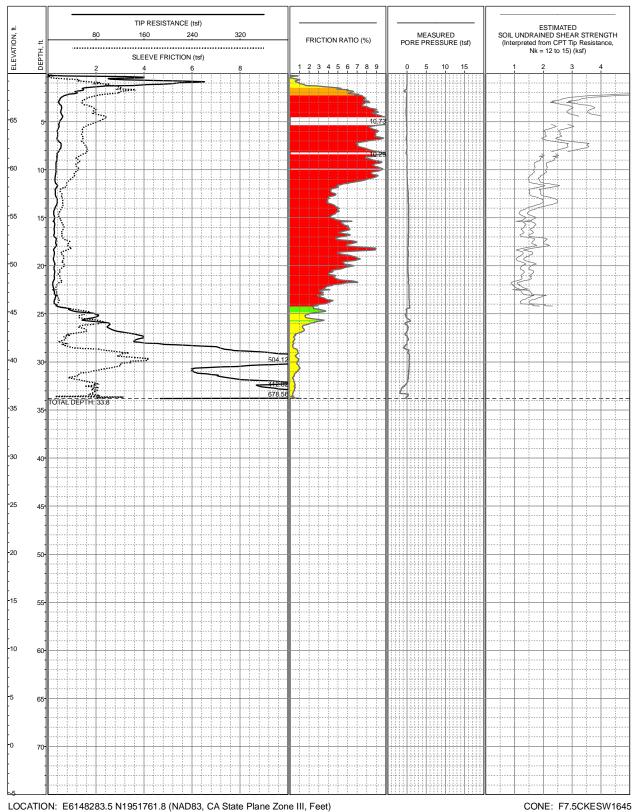
LOCATION: E6164740.58 N1953023.9 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 88ft (NAVD88) COMPLETION DEPTH: 113.4ft TEST DATE: 8/16/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

LOG OF CPT-172 Central Area Guideway of SVRT Project San Jose, California



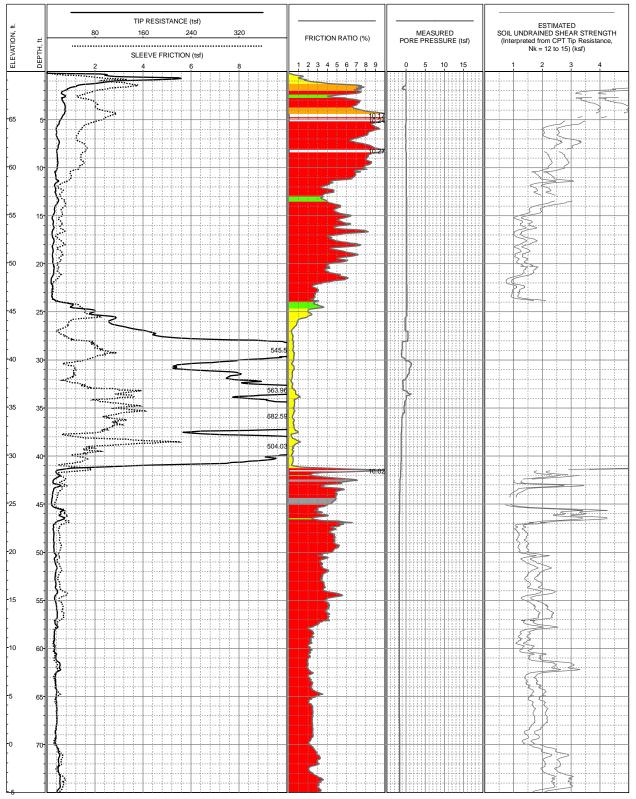
SURFACE EL: 88ft (NAVD88) COMPLETION DEPTH: 113.4ft TEST DATE: 8/16/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

LOG OF CPT-172 Central Area Guideway of SVRT Project San Jose, California



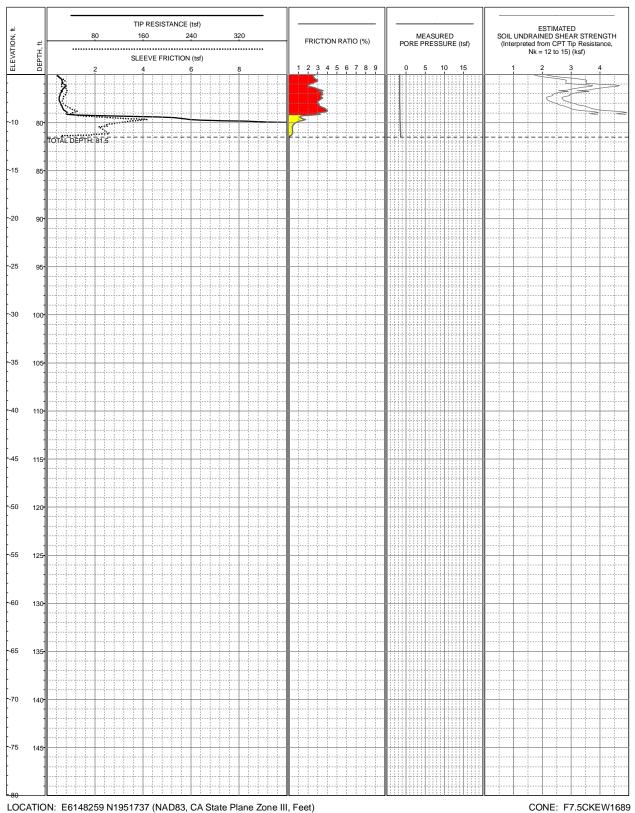
LOCATION: E6148281.4 N1951764.6 (NAD83, CA State Plane Zone III, F SURFACE EL: 69.9ft (NAVD88) COMPLETION DEPTH: 38.4ft TEST DATE: 3/29/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-173 Central Area Guideway of SVRT Project San Jose, California



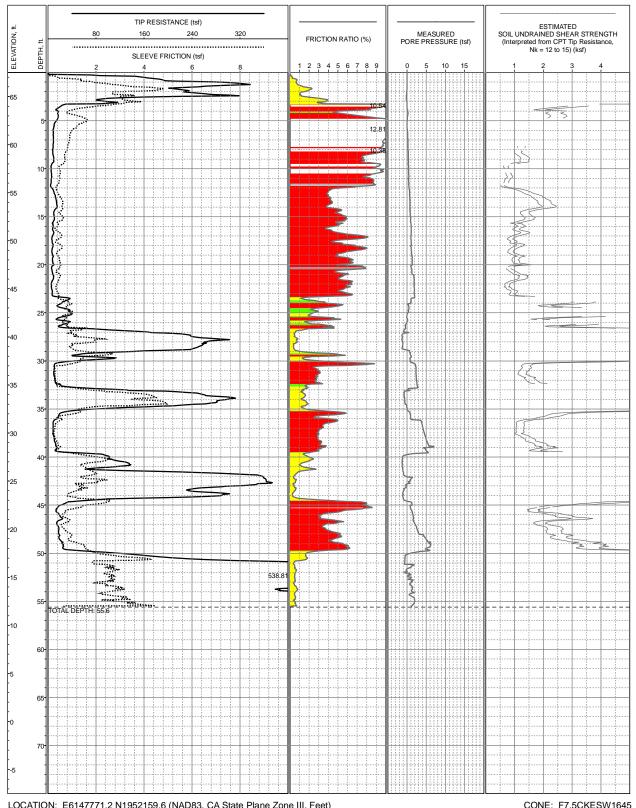
LOCATION: E6148283.5 N1951761.8 (NAD83, CA State Plane Zone III, Fe SURFACE EL: 69.8ft (NAVD88) COMPLETION DEPTH: 33.8ft TEST DATE: 3/31/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-173a Central Area Guideway of SVRT Project San Jose, California



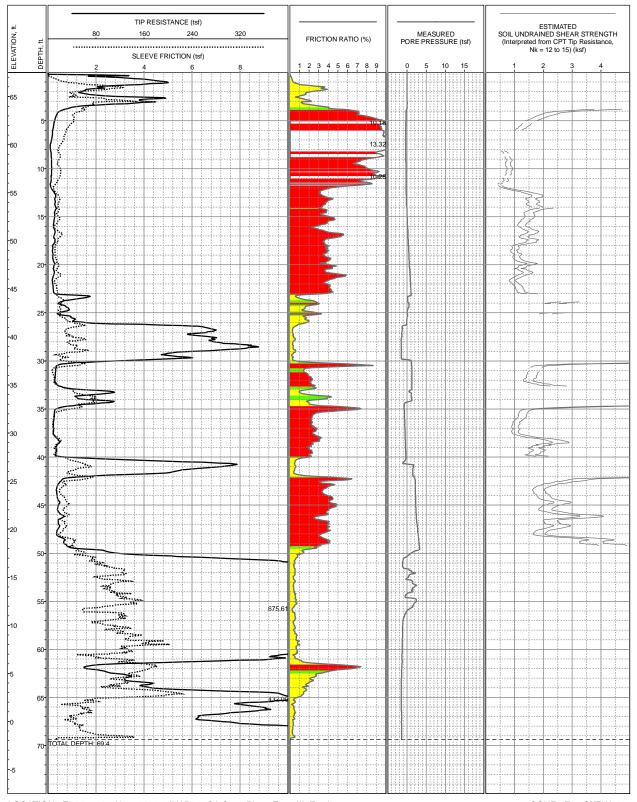
LOCATION: E6148259 N1951737 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 69.9ft (NAVD88) COMPLETION DEPTH: 81.5ft TEST DATE: 3/31/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-173b Central Area Guideway of SVRT Project San Jose, California



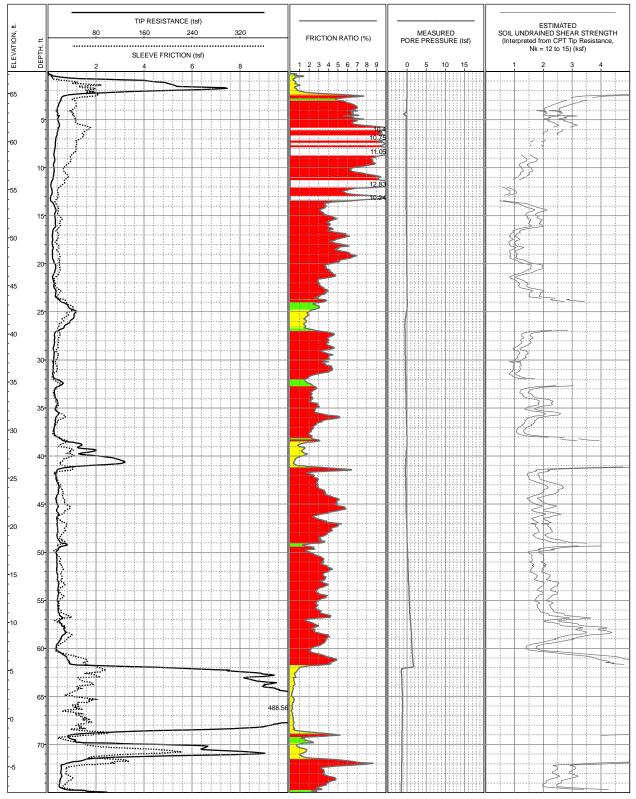
LOCATION: E6148259 N1951737 (NAD83, CA State Plane Zone III, Fee SURFACE EL: 69.9ft (NAVD88) COMPLETION DEPTH: 81.5ft TEST DATE: 3/31/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-173b Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6147771.2 N1952159.6 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 67.5ft (NAVD88) COMPLETION DEPTH: 55.6ft TEST DATE: 3/31/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

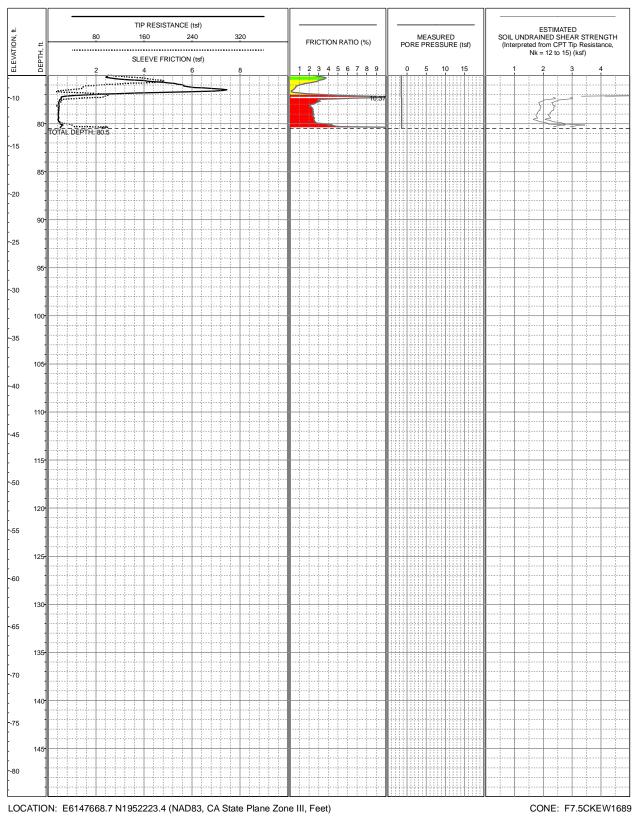
LOG OF CPT-174 Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6147774.2 N1952162.6 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 67.5ft (NAVD88) COMPLETION DEPTH: 69.4ft TEST DATE: 3/31/2007

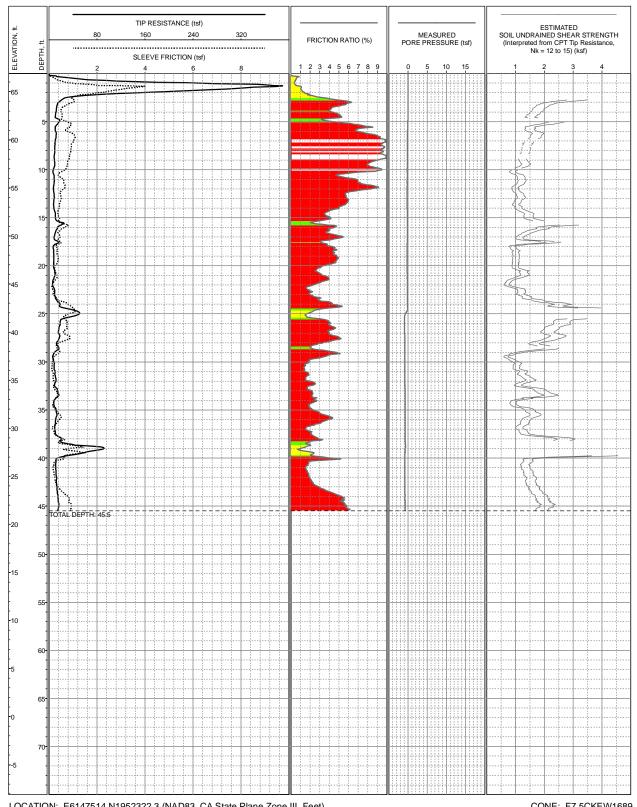
CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-174a Central Area Guideway of SVRT Project San Jose, California



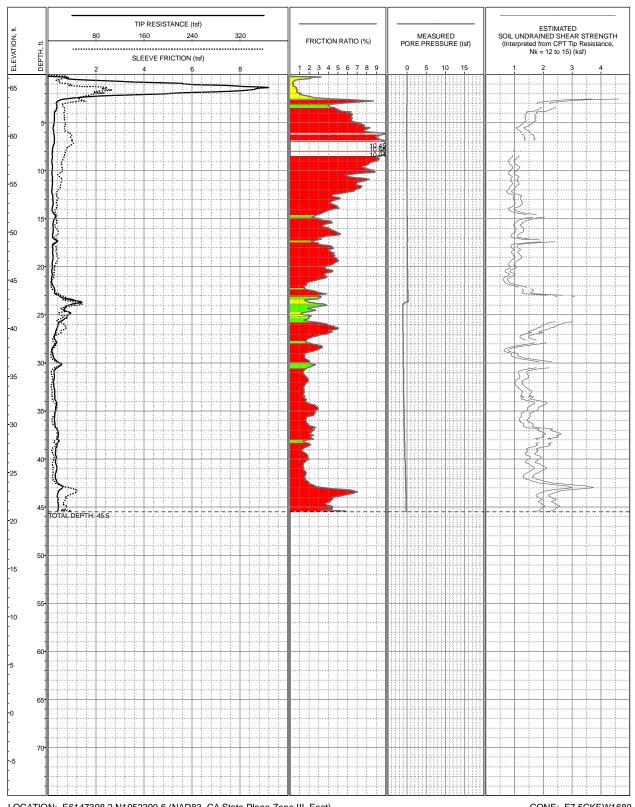
LOCATION: E6147668.7 N1952223.4 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 67.3ft (NAVD88) COMPLETION DEPTH: 80.5ft TEST DATE: 3/28/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-175 Central Area Guideway of SVRT Project San Jose, California



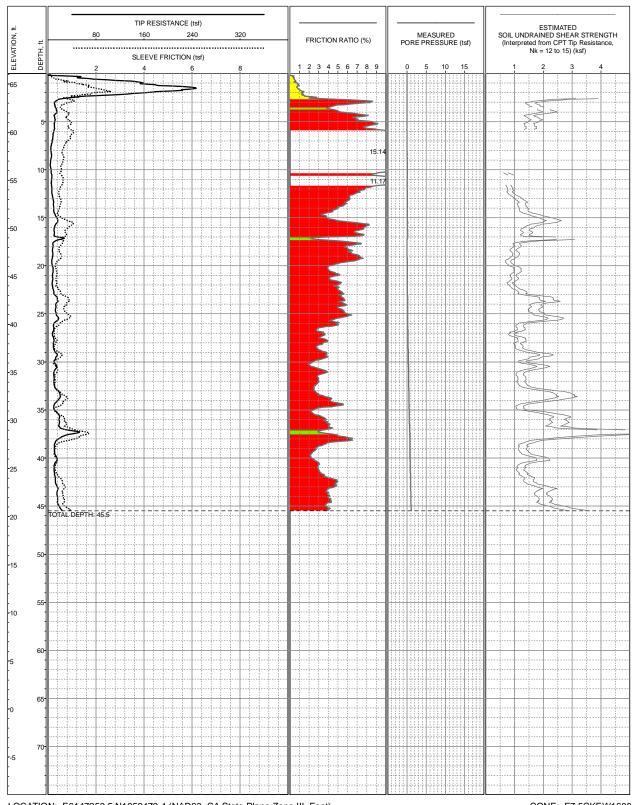
LOCATION: E6147668.7 N1952223.4 (NAD83, CA State Plane Zone III, SURFACE EL: 67.3ft (NAVD88) COMPLETION DEPTH: 80.5ft TEST DATE: 3/28/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-175 Central Area Guideway of SVRT Project San Jose, California



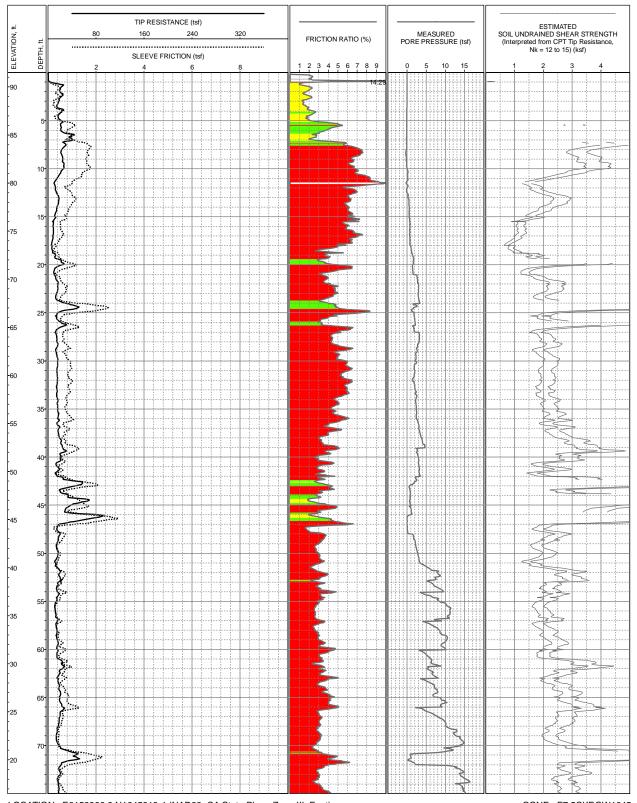
LOCATION: E6147514 N1952322.3 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 66.9ft (NAVD88) COMPLETION DEPTH: 45.5ft TEST DATE: 3/28/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-176 Central Area Guideway of SVRT Project San Jose, California



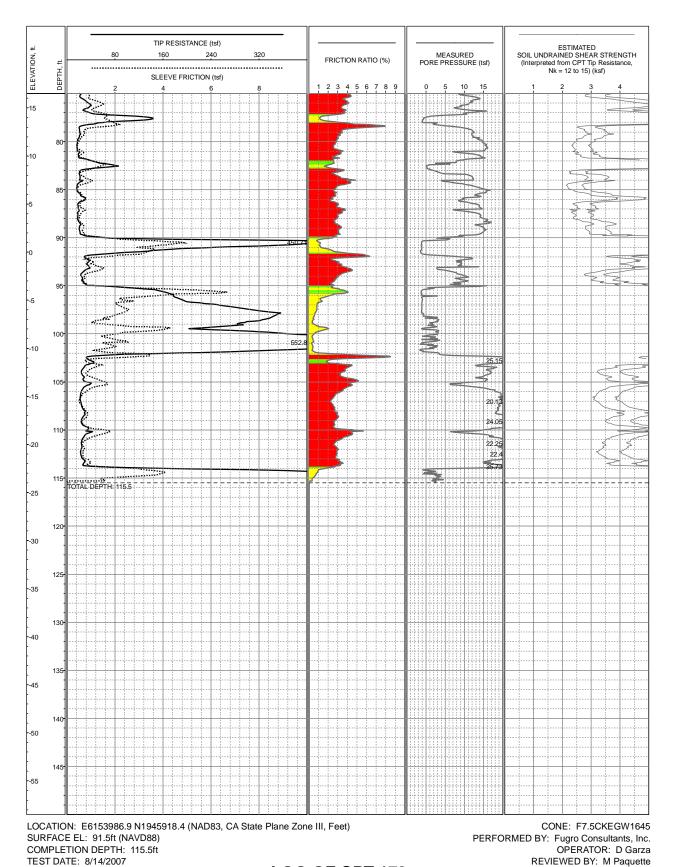
LOCATION: E6147398.2 N1952390.6 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 66.4ft (NAVD88) COMPLETION DEPTH: 45.5ft TEST DATE: 3/30/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-177 Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6147259.5 N1952479.4 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 66.1ft (NAVD88) COMPLETION DEPTH: 45.5ft TEST DATE: 3/29/2007 CONE: F7.5CKEW1689 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-178 Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6153986.9 N1945918.4 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 91.5ft (NAVD88) COMPLETION DEPTH: 115.5ft TEST DATE: 8/14/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

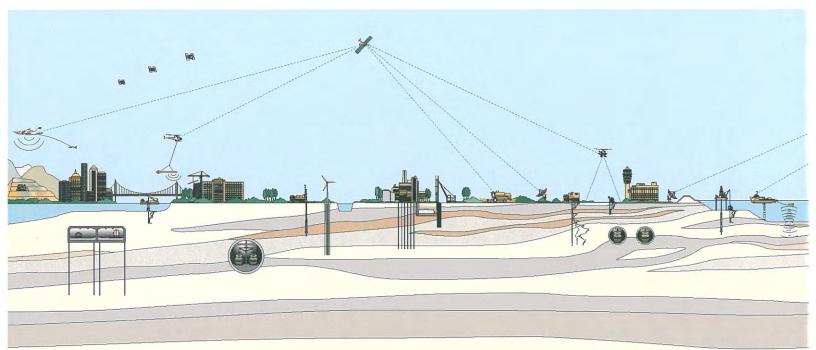
LOG OF CPT-179 Central Area Guideway of SVRT Project San Jose, California

LOG OF CPT-179 Central Area Guideway of SVRT Project San Jose, California

Appendix 3: Seismic Cone Penetration Test (SCPT) Results

FUGRO WEST, INC.

APPENDIX 3 SEISMIC CONE PENETRATION TEST (SCPT) RESULTS


GEOTECHNICAL EXPLORATION PROGRAM CENTRAL AREA GUIDEWAY

SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA

Prepared for: HMM/Bechtel

JANUARY 2008

Fugro Project No. 1637.001

REPORT DOCKET

APPROVAL

This document is approved by the following:

Name	Title	Signature	Issue Date
Michael Paquette, P.E.	Project Engineer	Muhal Fogette	1/21/08
Edwin Woo, P.E., G.E.	Principal Engineer	Edwi P. Woo	1/21/08

REVISION HISTORY

Revision	Date	Change	Approval
0	November 26, 2007	Draft Report: Appendix 9 Seismic Cone Penetration Test (SCPT) Results. Incorporating Phase 2 (2007) SCPTs	MP
1	January 21, 2008	Appendix 3 Seismic Cone Penetration Test (SCPT) Results Incorporating Phase 2 (2007) SCPTS	MP

68

January 21, 2008 Project No. 1637.001

HMM/Bechtel 3103 North First Street San Jose, California 95134

Attention: Mr. Thomas Hunt, P.E.

Subject: Appendix 3 – Seismic Cone Penetration Test (SCPT) Results, Central Area Guideway of SVRT Project, San Jose, California

Dear Mr. Hunt:

Fugro is pleased to submit this copy of "Appendix 3 – Seismic Cone Penetration Test (SCPT) Results," describing the seismic CPT test equipment, procedures and results for the Central Area Guideway of the SVRT Project in San Jose, California.

We appreciate this opportunity to be of continued service to HMM/Bechtel. Please contact Michael Paquette at (510) 267-4441 if you have any questions regarding the information presented in this appendix.

Sincerely,

FUGRO WEST, INC.

Michael Paquette, P.E. Project Engineer

Edwi P. Woo

Edwin P. Woo, P.E., G.E. Principal Engineer

MP/EW:ej

Copies Submitted: (PDF) Addressee

CONTENTS

		Page
REP	ORT DOCKET	1
1.0	INTRODUCTION	1
	1.1 Project Description	
	1.2 Geotechnical Exploration Program Overview	
	1.3 CPT Program Overview	
	1.4 Seismic Cone Penetration Test (SCPT) Program Overview	2
2.0	SCPT TEST EQUIPMENT AND PROCEDURES	3
	2.1 Field Equipment	3
	2.2 Field Procedures	
	2.3 Interpretation of Seismic Data	4
3.0	RESULTS AND DISCUSSION	5
	3.1 Data Plots	5
4.0	LIMITATIONS	5
5.0	ADDITIONAL REFERENCE MATERIAL	6

TABLES

	Table
Summary of Seismic CPT Program	A3-1

LOGS OF CPTS

L

Key to SCPT Logs SCPT Logs

68

1.0 INTRODUCTION

This appendix describes the equipment, procedures and results of the seismic cone penetration testing (SCPT) conducted by Fugro West, Inc., (Fugro) for the Central Area Guideway of the Silicon Valley Rapid Transit (SVRT) Project. The SCPTs were conducted at locations along the Central Area Guideway alignment of the SVRT Project, as shown on Figure 3-1 of the main report.

1.1 **PROJECT DESCRIPTION**

The Santa Clara Valley Transportation Authority (VTA) intends to construct the SVRT Project in San Jose, California. This will be a 26.2-km (16.3-mile) extension of the Bay Area Rapid Transit (BART) heavy rail rapid transit system from the planned terminus at the end of the Warms Springs Extension in Fremont, to San Jose. The proposed alignment currently includes several new stations and vehicle storage and maintenance facilities. The alignment is composed of two major segments:

- 1) The "Northern Area" that will be approximately 11.5 miles of at-grade, elevated and cut-and-cover track from Warm Springs to San Jose; and
- 2) The "Central Area Guideway", a 5.1-mile-long tunnel, consisting of twin bored tunnels and cut-and-cover structures through downtown San Jose.

As currently planned, the Central Area Guideway includes at-grade and open cut track, cut-and-cover stations, and a cut-and-cover track crossover structure. The cut-and-cover stations and the crossover structures have a cumulative length of approximately 4,970 feet. The remaining 4.14 miles of the alignment will be twin 19.5-foot-diameter tunnels.

This investigation and report cover the 5.1-mile-long Central Area Guideway only.

1.2 GEOTECHNICAL EXPLORATION PROGRAM OVERVIEW

The joint venture of Hatch Mott MacDonald T & T, Inc., and Bechtel Infrastructure Corporation (HMM/Bechtel) is providing engineering design services for the Central Area Guideway of the SVRT Project to the VTA. HMM/Bechtel has subcontracted with a number of companies to conduct the geotechnical field exploration program for the project. HMM/Bechtel's primary subcontractors for the geotechnical exploration program include: Fugro, Parikh Consultants (Parikh) and Pitcher Drilling Company (Pitcher).

The three companies, Fugro, Parikh, and Pitcher, conducted the majority of the geotechnical field exploration program for the Central Area Guideway of the SVRT Project from October 2004 to March 2005. This supplementary geotechnical field investigation was performed between March 2007 and August 2007. The intent of the field investigation program was to obtain geotechnical data that would aid in the design and construction of the proposed tunnel and cut-and-cover structures.

In general, the geotechnical field investigations explored subsurface conditions along the proposed Central Area Guideway. The explorations were within the vicinity of the proposed Eastern and Western Portals, at the two proposed ventilation structures, and at the proposed stations, including Alum Rock Station, Downtown San Jose Station and Diridon/Arena Station. The geotechnical exploration program included:

- 2004 / 2005 Investigation
 - o 76 Rotary Wash Borings (by others); and
 - 146 CPTs (by Fugro).
- 2007 Investigation
 - o 18 Rotary Wash Borings (by others); and
 - o 22 CPTs (by Fugro).

Figure 3-1 in the main report provides a map of the exploration locations. These locations were selected by HMM/Bechtel based on the following considerations: 1) the requirements of the tunnel designer, 2) the location of existing geotechnical data, 3) reducing impacts on private property, and 4) the avoidance of existing underground and overhead utilities. The locations of the 2007 explorations were chosen to fill in gaps in the data along the tunnel alignment. A subcontractor to HMM/Bechtel surveyed the CPT locations. HMM/Bechtel provided the surveyed coordinates to Fugro.

1.3 CPT PROGRAM OVERVIEW

Fugro West, Inc. and Fugro Consultants, Inc. (formerly Fugro Geosciences, Inc.) conducted the CPTs using a Fugro truck-mounted 25-ton cone apparatus. The CPTs were performed in general accordance with ASTM D5778. The continuous CPT soundings were typically advanced to refusal, which ranged from approximately 34 to 116 feet in depth. For detailed procedures and equipment specifications on the 2007 CPT operations, refer to Appendix 2 – CPT Testing. Downhole seismic shear (S) wave velocity measurements were successfully conducted at 12 CPT locations to obtain profiles of shear wave velocity versus depth as part of the 2007 investigation. Detailed information regarding the downhole SCPTs, including field procedures, data interpretation and results are discussed in the following sections.

1.4 SEISMIC CONE PENETRATION TEST (SCPT) PROGRAM OVERVIEW

Prior to initiation of the fieldwork, Fugro obtained the appropriate permits from the Santa Clara Valley Water District and City of San Jose. Seismic shear wave velocity tests were completed at a total of 12 locations as part of the 2007 study. Table A3-1 summarizes the Seismic CPT program.

	Proposed Structure	Location				Final Seismic	Final CPT	
СРТ		Northing	Easting	Elev.	Station	Offset	Test Depth (ft)	Test Depth (ft)
158	East Portal	1956837	6162889	91.6	562+47	30 L	44	45
161	East Portal	1956251	6163128	87.3	568+89	26 L	104	105
162	Alum Rock Station	1953716	6164945	87.1	600+71	140 L	72	73
165	Tunnel	1950703	6162527	96.1	642+21	41 L	76	77
167	Downtown Station	1947884	6157354	86.7	701+09	11 R	89	91
168	Diridon Station	1946017	6154586	87.8	734+51	100 L	149	150
169	Tunnel	1947464	6156937	89.0	706+79	145 L	83	85
171	Tunnel	1949684	6150804	75.1	794+96	42 R	74	75
172	Tunnel	1953024	6164741	88.0	607+63	66 R	112	113
173	West Portal	1951765	6148281	69.9	828+06	92 L	35	82
174	West Portal	1952160	6147771	67.5	834+47	21 L	53	69
179	Downtown Station	1945918	6153987	91.5	740+58	109 L	114	116

IGPO

2.0 SCPT TEST EQUIPMENT AND PROCEDURES

2.1 FIELD EQUIPMENT

Downhole seismic shear wave velocity measurements were conducted using Fugro's SCPT system. The SCPT system includes the basic thrust system, a seismic cone assembly, a seismic wave source, and a digital recording seismograph. SCPT testing was performed in accordance with ASTM test designation D-5778-95.

The seismic cone assembly is similar to the conventional cone assembly, but also includes a three-component array of geophones. The geophones are orthogonally mounted inside the cone assembly at about 15 cm above the cone tip. The cone tip area of the seismic cone is 15 cm^2 , with an area ratio of 0.59 to 0.61 and a cylindrical sleeve area of 200 cm².

The seismic source consisted of a heavy metal beam held firmly against the ground by the weight of the beam and additional weights placed on top of the beam. Seismic waves were generated at each test depth (3 to 5 foot intervals) by alternately striking each end of the beam with a 12-pound sledgehammer. A SmartSeis 100 Seismograph (manufactured by Geomatrics) was integrated with Fugro's CPT equipment and was used for the seismic wave recording.

2.2 FIELD PROCEDURES

For CPT soundings in which seismic data were collected, conventional CPT testing was temporarily halted at either 3-foot or 5-foot intervals to collect seismic data. Shear waves were generated by striking a heavy steel beam on the ground with a 12-pound sledgehammer. The beam was positioned parallel to the cone truck, at least 10 feet from the cone rods, and was coupled to the ground surface by the weight of the beam and additional weights on top of the beam to prevent the beam from moving when struck. The beam was struck alternatively at opposite sides, generating shear waves with opposite polarity. Hammer blows on the beam triggered the seismograph to record the time histories of the generated seismic waves as they travel through the soil and are detected by the geophones, which monitor the waveform arrivals. Each side of the beam was struck several times, and each signal produced by a blow was closely examined for signal and noise content. If the signal appeared clean (i.e., the shear wave signal is clearly defined) that waveform was selected for stacking and the arrival time of the shear wave was picked and recorded. Further signals generated by additional blows were similarly examined and stacked to minimize noise detected and improve the overall signal to noise ratio. As a standard procedure, a minimum of three stacks, per side of the beam, per depth were recorded. However, in a noisy environment, the beam is struck continuously until a clean and consistent signal is obtained for stacking. As such, the beam may have been struck more times than the actual number of signals chosen for stacking. Waveforms were digitally recorded and saved in the seismograph's hard drive for further processing. After a complete set of seismic data was recorded, the cone was advanced to the next depth, and the procedure was repeated until the hole was complete.

2.3 INTERPRETATION OF SEISMIC DATA

The seismic data at each SCPT location were interpreted as follows:

- The shear wave arrival time at each depth is first determined from the recorded "stacked" signals using software on the seismograph;
- Arrival times are determined for each of the two sides of the beam that are struck and are designated "east" and "west" arrival times;
- The east and west arrival times are checked in the field to ensure that consistent arrival times are recorded between the two strike directions;
- The average arrival time is determined from the east and west arrival times; and
- A strike angle is determined based on the horizontal offset of the seismic source from the CPT rods and the average vertical arrival time is determined by taking the sine of the strike angle;

• The incremental seismic velocity is determined by taking the difference in vertical average arrival time between two depth increments, and dividing by the length of the increment (typically 3 to 5 feet);

3.0 RESULTS AND DISCUSSION

3.1 DATA PLOTS

CPT sound logs for the 12 SCPTs performed in 2007 are attached to this appendix. The CPT logs provide graphical plots versus depth showing:

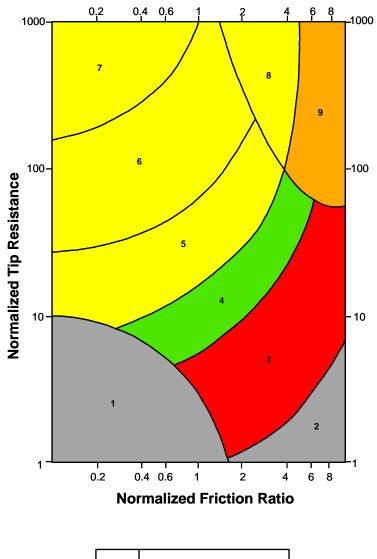
- Measured cone tip resistance, in tons per square foot (tsf);
- Measured sleeve friction, in tsf;
- Friction ratio, in percentage, including color coding denoting the Soil Behavior Type according to Robertson, 1990 (see CPT correlation chart);
- Measured pore pressure at the u2 location, in tsf; and
- Measured shear wave velocity, in feet per second.

4.0 LIMITATIONS

Our services consist of subsurface field explorations and data evaluations that are made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.

The data provided in this appendix are based on the subsurface explorations conducted for this study. These explorations indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. Variations may exist and conditions not observed or described in this report could be encountered during construction. Our results are based on our standard practices and specific data obtained.

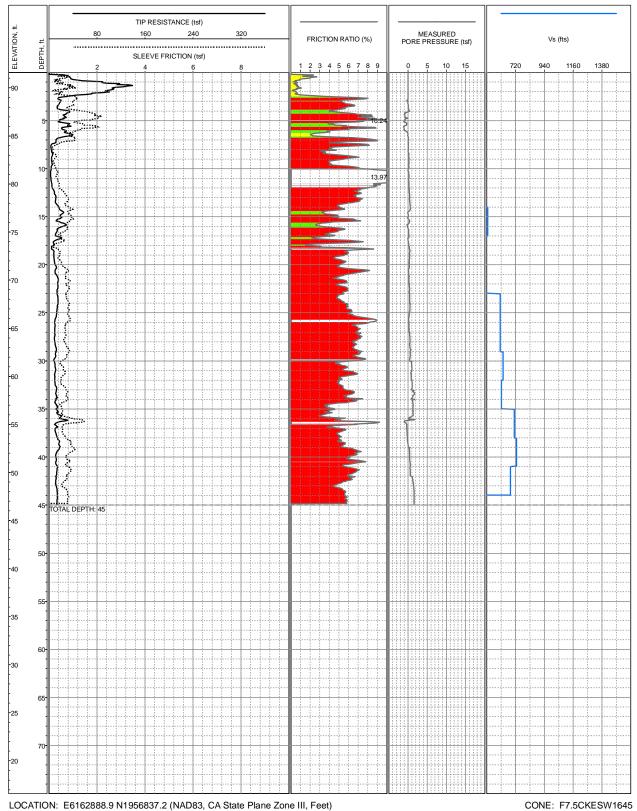
This appendix has been prepared for the exclusive use of HMM/Bechtel and their consultants for specific application to the SVRT project as described herein. In the event that there are any changes in the ownership, nature, design, or location of the proposed project, or if any future additions are planned, the results contained in this appendix should not be considered valid unless: 1) the project changes are reviewed by Fugro, and 2) results presented in this appendix are modified or verified in writing. Reliance on this report by others must be at their risk unless we are consulted on the use or limitations. We cannot be responsible for the impacts of any changes in geotechnical standards, practices, or regulations subsequent to performance of services without our further consultation. We can neither vouch for the accuracy of information supplied by others, nor accept consequences for unconsulted use of segregated portions of this report.



5.0 ADDITIONAL REFERENCE MATERIAL

- Fugro West, Inc. (2005), "Appendix 9 Seismic Cone Penetration Test (SCPT) Results, Geotechnical Exploration Program, Tunnel Segment of Silicon Valley Rapid Transit (SVRT) Project, San Jose, California" Prepared for HMM/Bechtel, Fugro Project No. 1637.001
- Lunne, Robertson & Powell (1997), Cone Penetration Testing in Geotechnical Practice, Blackie Academic & Professional, London, UK.
- Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. (1986), "Use of Piezocone Data," Proceedings of the ASCE Specially Conference In Situ 1986: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, pp.1263-80.
- Robertson, P.K., (1990), "Soil Classification using the Cone Penetration Test," *Canadian Geotechnical Journal*, 27

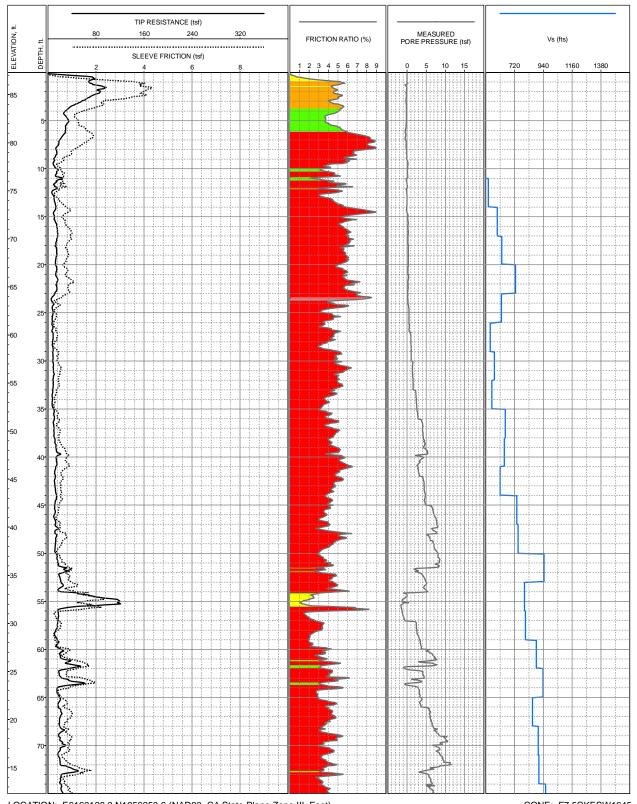
LOGS OF SEISMIC CPTs


nd *

*overconsolidated or cemented

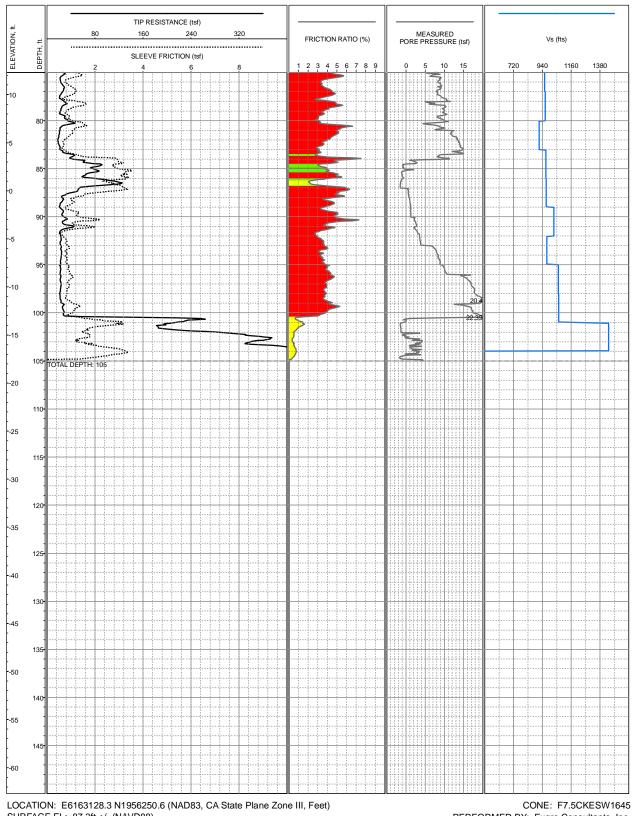
CPT CORRELATION CHART (Modified from Robertson, 1990)

KEY TO CPT LOGS Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6162888.9 N1956837.2 (NAD83, CA State Plane Zone III, Fee SURFACE EL: 91.6ft +/- (NAVD88) COMPLETION DEPTH: 45ft TEST DATE: 4/3/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-158 Central Area Guideway of SVRT Project San Jose, California

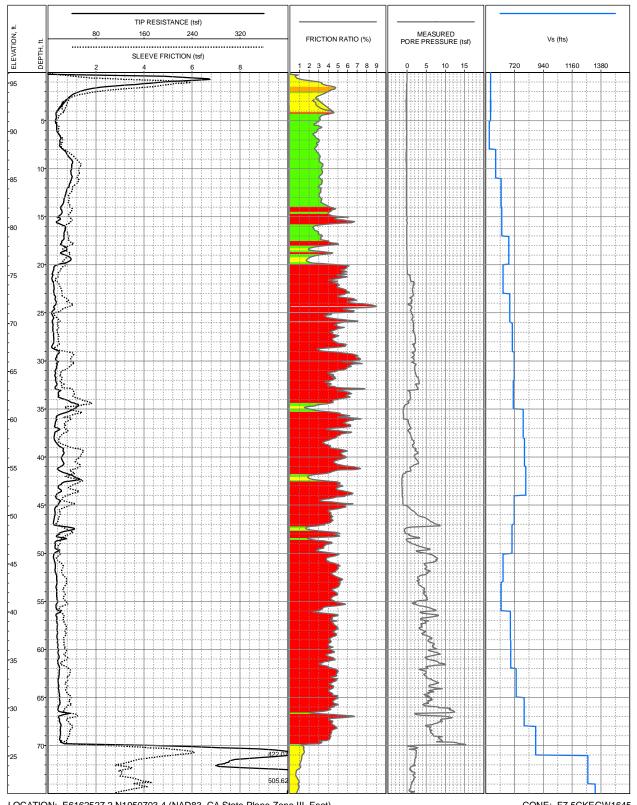


LOCATION: E6163128.3 N1956250.6 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 87.3ft +/- (NAVD88) COMPLETION DEPTH: 105ft TEST DATE: 4/3/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-161 Central Area Guideway of SVRT Project San Jose, California

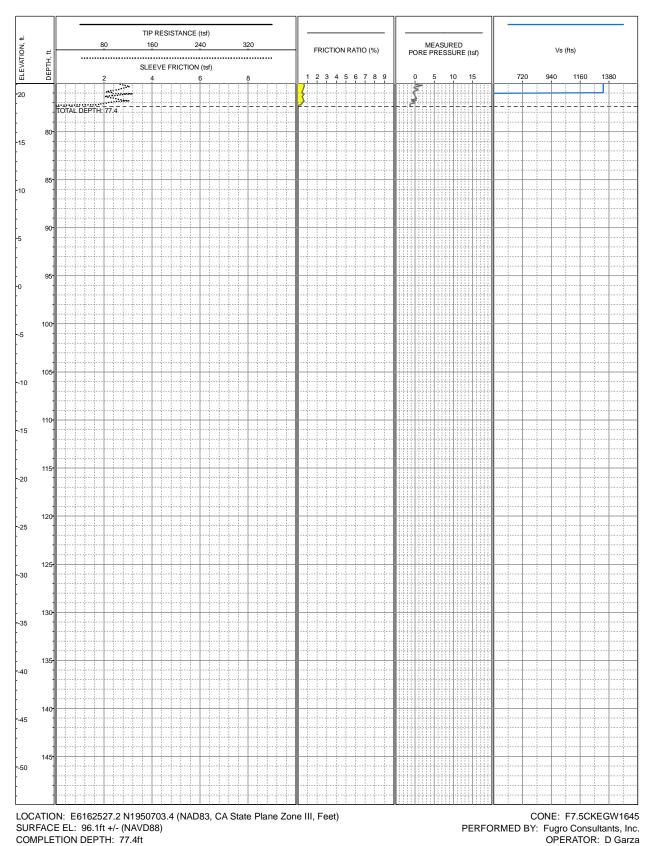
SURFACE EL: 87.3ft +/- (NAVD88) COMPLETION DEPTH: 105ft TEST DATE: 4/3/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-161 Central Area Guideway of SVRT Project San Jose, California



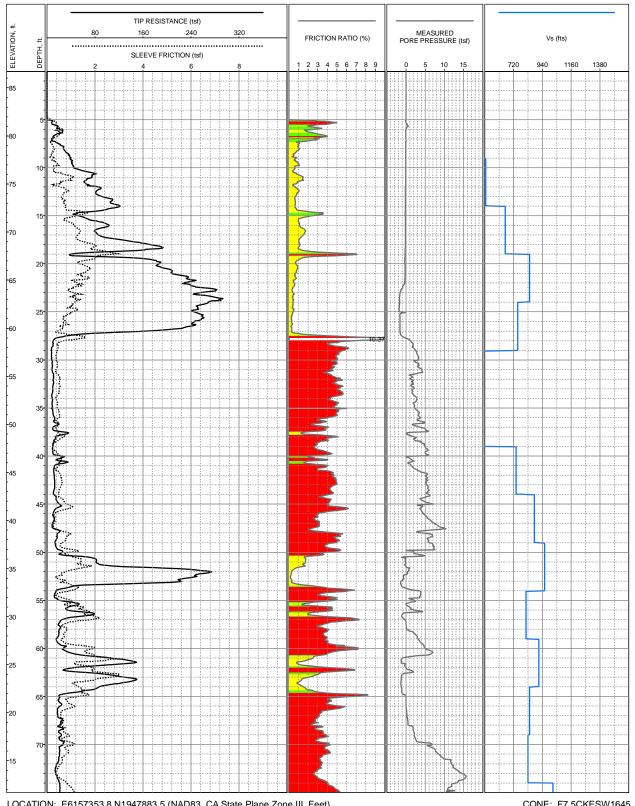
SURFACE EL: 87.1ft +/- (NAVD88) COMPLETION DEPTH: 73.2ft TEST DATE: 8/13/2007 LOG OF CPT-162 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6162527.2 N1950703.4 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 96.1ft +/- (NAVD88) COMPLETION DEPTH: 77.4ft TEST DATE: 8/16/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

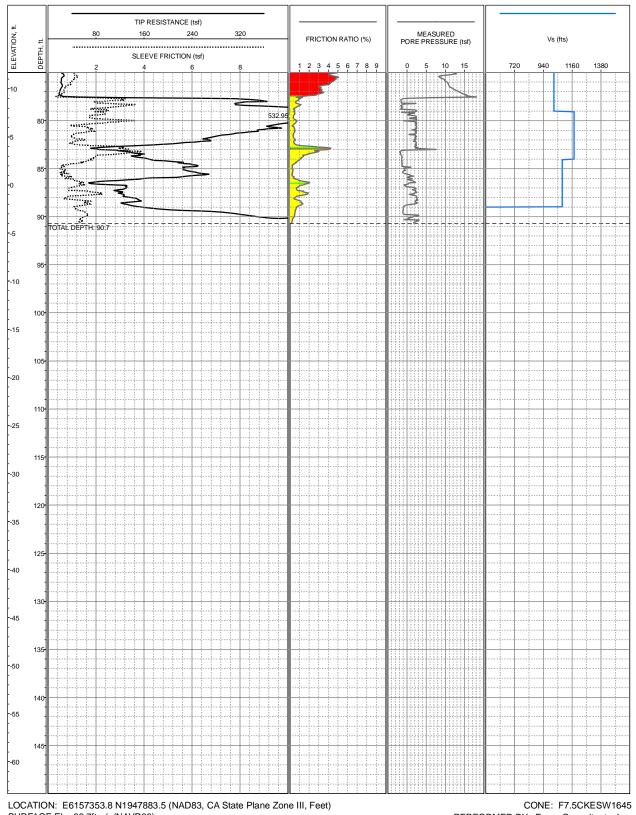
LOG OF CPT-165 Central Area Guideway of SVRT Project San Jose, California



LOG OF CPT-165 Central Area Guideway of SVRT Project San Jose, California

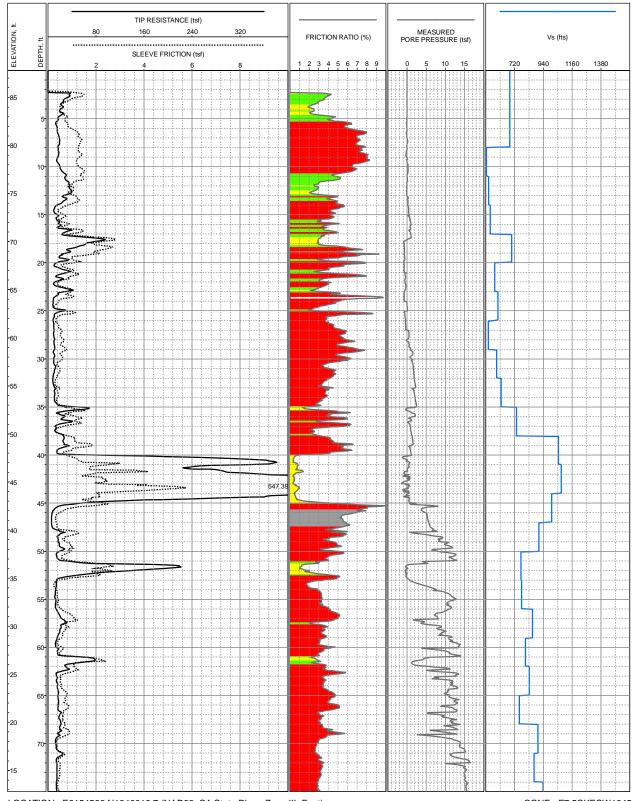
TEST DATE: 8/16/2007

REVIEWED BY: M Paquette



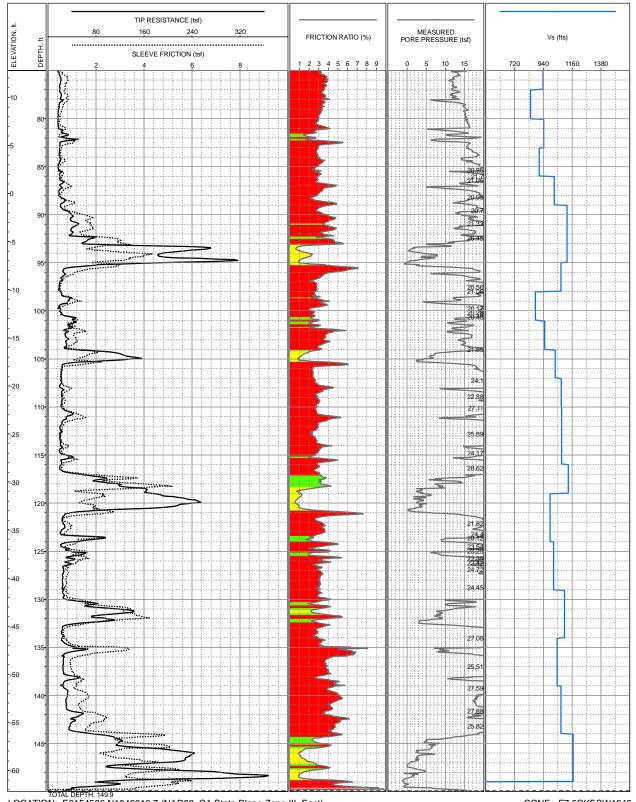
LOCATION: E6157353.8 N1947883.5 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 86.7ft +/- (NAVD88) COMPLETION DEPTH: 90.7ft TEST DATE: 4/1/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-167 Central Area Guideway of SVRT Project San Jose, California



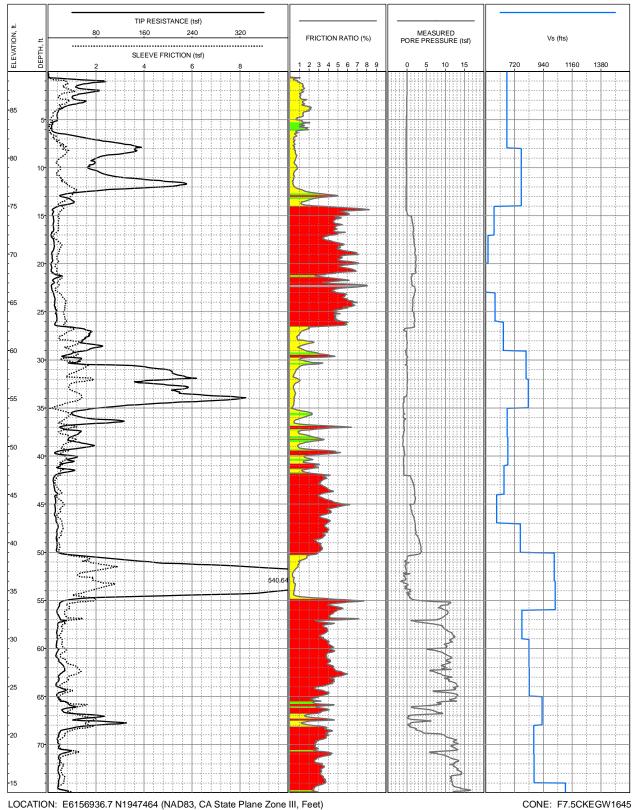
LOCATION: E6157353.8 N1947883.5 (NAD83, CA State Plane Zone SURFACE EL: 86.7ft +/- (NAVD88) COMPLETION DEPTH: 90.7ft TEST DATE: 4/1/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-167 Central Area Guideway of SVRT Project San Jose, California



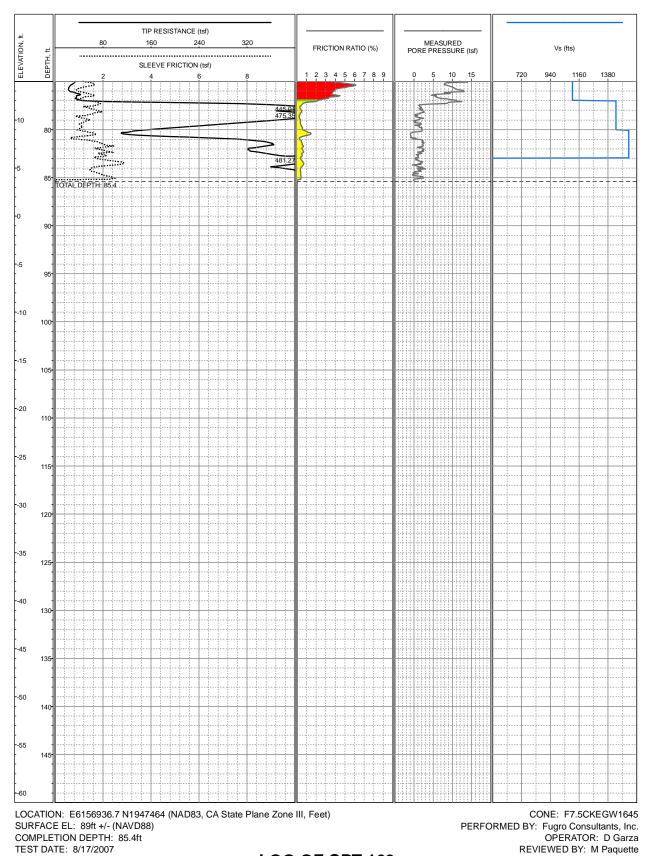
LOCATION: E6154586 N1946016.7 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 87.8ft +/- (NAVD88) COMPLETION DEPTH: 149.9ft TEST DATE: 4/5/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-168 Central Area Guideway of SVRT Project San Jose, California

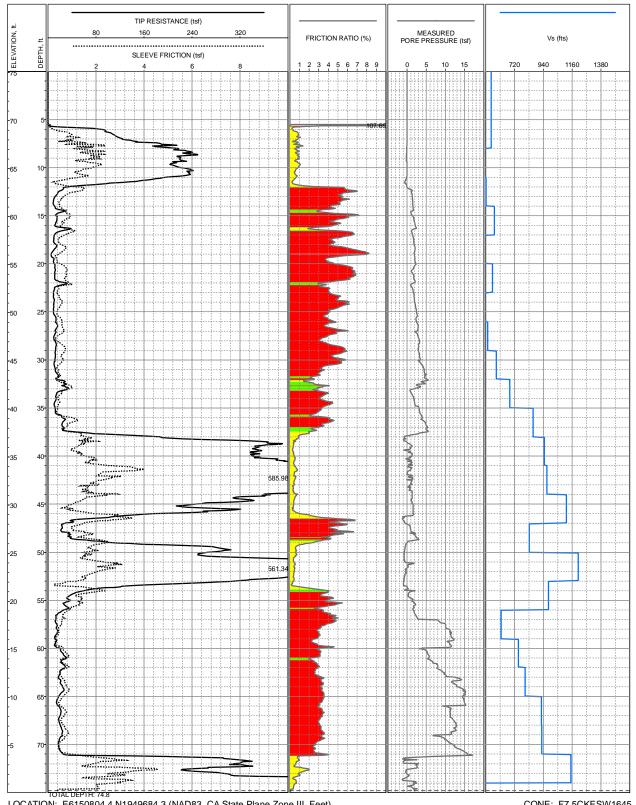


LOCATION: E6154536 N1946016.7 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 87.8ft +/- (NAVD88) COMPLETION DEPTH: 149.9ft TEST DATE: 4/5/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

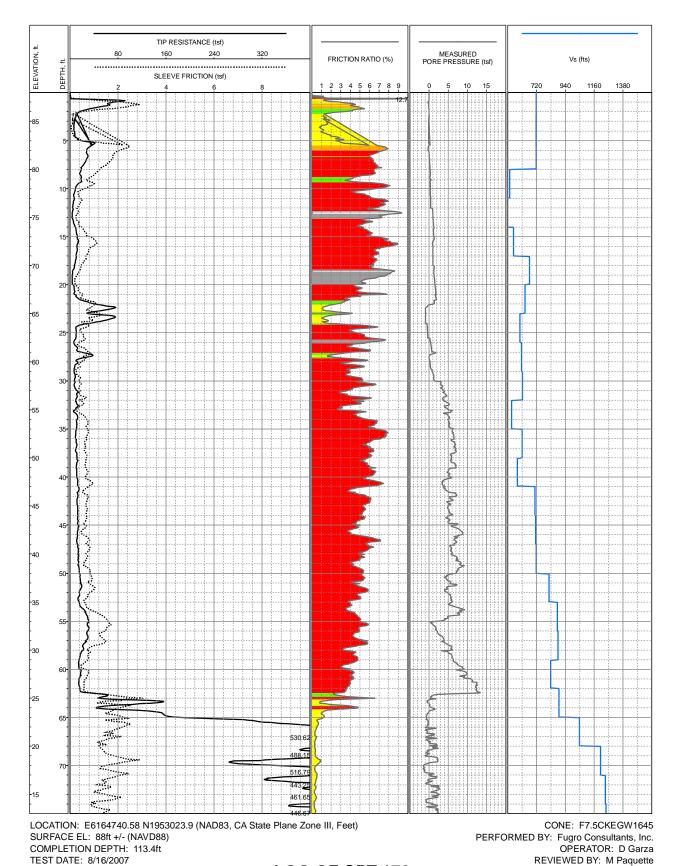
LOG OF CPT-168 Central Area Guideway of SVRT Project San Jose, California



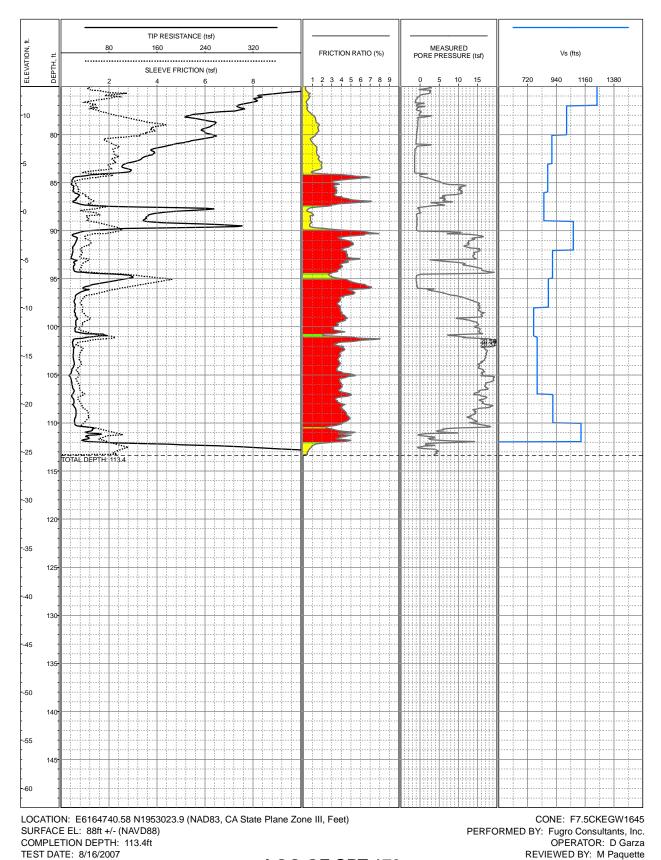
LOCATION: E6156936.7 N1947464 (NAD83, CA State Plane Zone III, Fee SURFACE EL: 89ft +/- (NAVD88) COMPLETION DEPTH: 85.4ft TEST DATE: 8/17/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

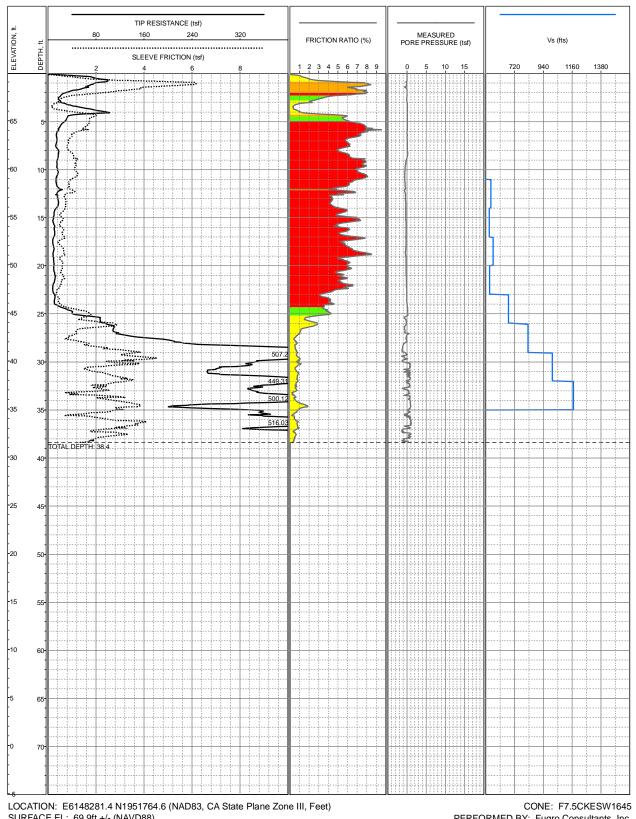

LOG OF CPT-169 Central Area Guideway of SVRT Project San Jose, California

LOG OF CPT-169 Central Area Guideway of SVRT Project San Jose, California

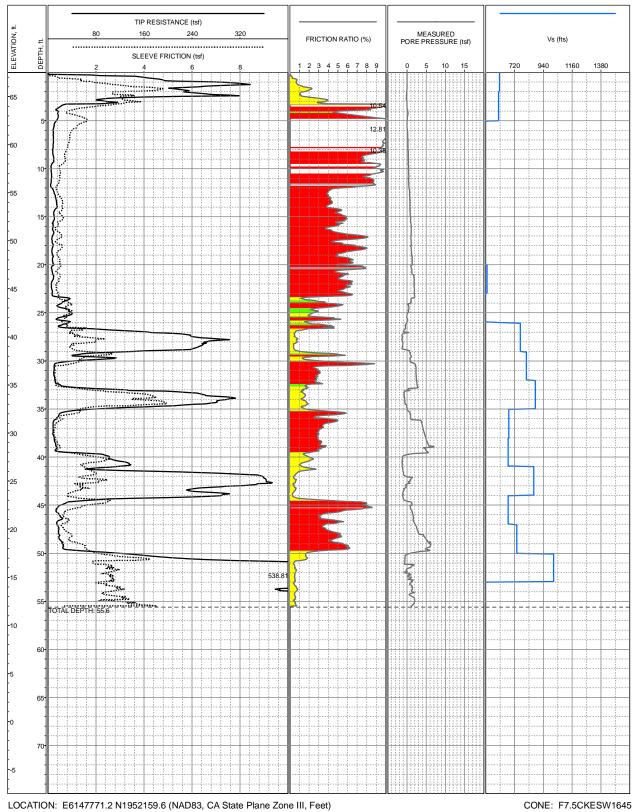


LOCATION: E6150804.4 N1949684.3 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 75.1ft +/- (NAVD88) COMPLETION DEPTH: 74.8ft TEST DATE: 3/30/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette


LOG OF CPT-171 Central Area Guideway of SVRT Project San Jose, California

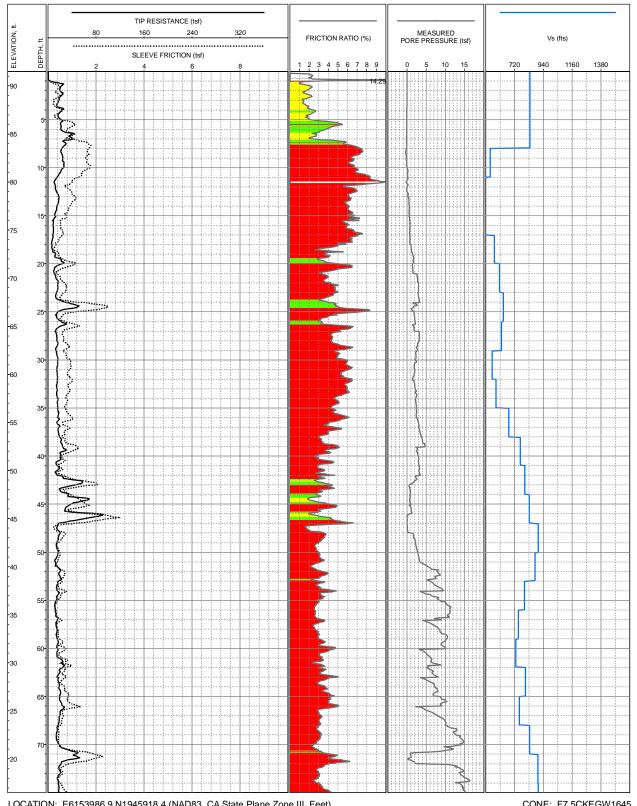

LOG OF CPT-172 Central Area Guideway of SVRT Project San Jose, California

LOG OF CPT-172 Central Area Guideway of SVRT Project San Jose, California



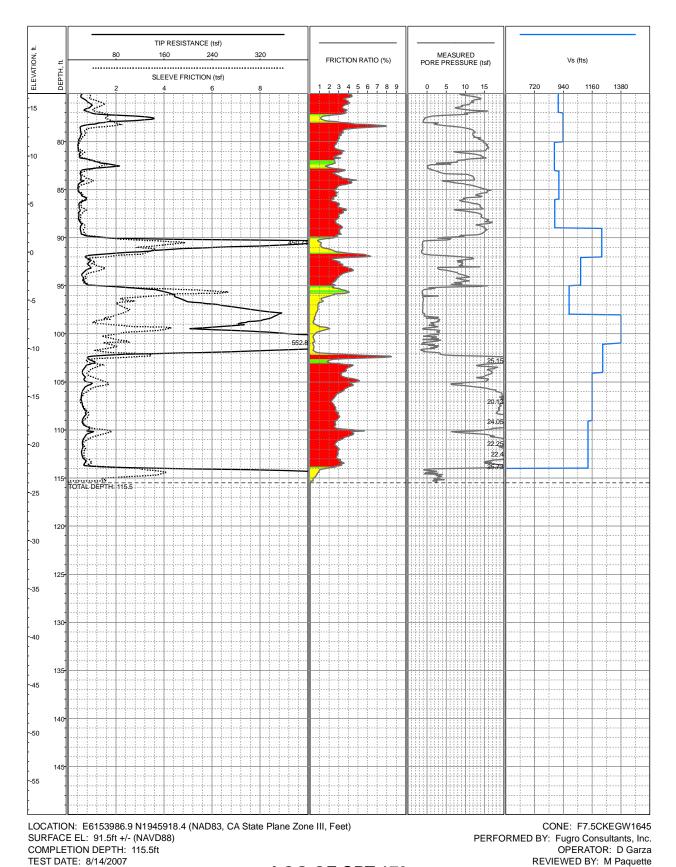
SURFACE EL: 69.9ft +/- (NAVD88) COMPLETION DEPTH: 38.4ft TEST DATE: 3/29/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-173 Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6147771.2 N1952159.6 (NAD83, CA State Plane Zone III, Fee SURFACE EL: 67.5ft +/- (NAVD88) COMPLETION DEPTH: 55.6ft TEST DATE: 3/31/2007 CONE: F7.5CKESW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza & R Norris REVIEWED BY: M Paquette

LOG OF CPT-174 Central Area Guideway of SVRT Project San Jose, California



LOCATION: E6153986.9 N1945918.4 (NAD83, CA State Plane Zone III, Feet) SURFACE EL: 91.5ft +/- (NAVD88) COMPLETION DEPTH: 115.5ft TEST DATE: 8/14/2007 CONE: F7.5CKEGW1645 PERFORMED BY: Fugro Consultants, Inc. OPERATOR: D Garza REVIEWED BY: M Paquette

LOG OF CPT-179 Central Area Guideway of SVRT Project San Jose, California

LOG OF CPT-179 Central Area Guideway of SVRT Project San Jose, California

Appendix 4: Laboratory Classification Test Results

INTRODUCTION

Parikh Consultants, Inc. (PCI), was retained to perform laboratory geotechnical tests associated with subsurface exploration for 65 % Engineering Design phase of Silicon Valley Rapid Transit (SVRT) project. They performed the exploration from June 4, 2007 through August 1, 2007. The laboratory tests were performed on samples selected by HMM/Bechtel from June through August, 2007.

PURPOSE AND SCOPE

The purpose of the laboratory tests was to obtain index geotechnical properties of the selected samples. PCI performed the following tests:

- Particle-size distribution with Hydrometer (ASTM D 422)
- Moisture/Density (ASTM D 2216)
- Atterberg Limits (ASTM D 4318)

The samples were classified according to Unified Soil Classification System (USCS) using ASTM D 2487 and ASTM D 2488. The test results were provided to HMM/Bechtel in a gINT database software format. We provided the gINT templates. The moisture/density test results are provided on the boring logs provided in Appendix 1. The Atterberg test results are presented in Figures A4-1 through A4-18. The particle-size distribution graphs are presented in Figures A4-19 through A4-38. The summary of lab test results is presented in Tables A4-1 through A4-32. The laboratory test results for borehole BH-81, which was performed near the end of 35% engineering design phase, is also included.

Boring	Comula	Danth		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-081	1	34.5	GM	48	40	12							7.0	
BH-081	2	42.5	SP											
BH-081	3	47.5	SW-SC	25	64	11							10.0	
BH-081	4	51.5												
BH-081	5	65	CL			72							22.0	
BH-081	6	70	CL											
BH-081	7	74	SC											
BH-081	8	80	ML			72						110.4	20.0	
BH-081	9	84.5	CL			70								
BH-081	10	89	CL											
BH-081	11	95												
BH-081	12	99	CL			82							25.0	
BH-081	13	104	SW											
BH-081	14	109	CL											
BH-081	15	113.5	CL											
BH-081	16	118	SP	34	63	3								
BH-081	17	125.5	ML/SM			45							16.0	
BH-081	18	130.5	SP			69							20.0	
BH-081	19	136.5	CL											
BH-081	20	141.5	CL			98							33.2	
BH-081	21	146.5	CL											
BH-081	22	150.5	SC											
				SUMN	IARY OF	LABOR	ATORY	TEST RE	SULTS			Notes:		
		PARIKH COI	NSULTANT	SILICO CENT SAN J		EY RAP EA GUID	ID TRAN EWAY	ISIT (SV				per v D 24	visual-manua 88 or classifi cordance wit	I of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
		eotechnical		-	ring							Date: 4/29/2	2008	Job No.: 204104.10

Boring	0	Denth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-082	1	3.5	ML											
BH-082	2	7.5	CL											
BH-082	3	12.5	CL											
BH-082	4	17.5	CL											
BH-082	5	22.5	CL	0	2	98	42	24	18			96.2	27.8	
BH-082	6	27.5	CL											
BH-082	7	32.5	CL										26.6	
BH-082	8	37.5	CL											
BH-082	9	42.5	CL	1	27	72	35	17	18				25.7	
BH-082	10	46.5	CL-ML											
BH-082	11	51.5	ML										23.6	
BH-082	12	56.5	ML											
BH-082	13	61.5	CL-ML											
BH-082	14	67.5	ML	0	4	96	38	29	9			94.3	26.9	
BH-082	15	72.5	CL											
BH-082	16	82.5	SM											
BH-082	17	92.5	CL									110.1	20.6	
ſ	SUMMARY OF LABORATORY TEST RESULTS Notes: SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT **USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D 2488 or classification based on laboratory test results in accordance with ASTM D 2487 when laboratory data is available. PARIKH CONSULTANTS, INC. Notes:													
		Seotechnical	& Materials	Engineer	ring							Date: 4/29/2	2008	Job No.: 204104.10

ample No.	Depth (ft)	USCS**					erberg Lir	1110	Unconfined			Moisture	
		0303	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
2	3.5	SM											
2	12.5	CL											
3	21.5	SM											
4	32.5	CL											
5	42.5	CH				58	27	31			89.9	33.0	
6	52.5	CL											
7	62.5	CL											
8	71.5	CL											
9	82.5	SW-SC	42	48	10							15.5	
10	92.5	SW-SC											
11	101.5	SM											
12	111.5	SW-SM	46	48	6							8.2	
13	122.5	CL											
14	131.5	CL/SC	0	44	56							21.3	
15	141	SW-SM	4	84	12							15.5	
16	152.5	CL											
17	157.5	CL				29	17	12			111.7	18.8	
18	162.5	CL											
19	167.5	CL/CH				49	27	22				28.9	
20	172.5	CL											
21	177.5	CL/ML				36	24	12			100.8	25.6	
22	182.5	CL											
23	187.5	CL											
24	192.5	CL				30	18	12				20.7	
25	197.5	CL											
SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC. Geotechnical & Materials Engineering												visual-manual 88 or classific cordance with able.	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test resutls n ASTM D 2487 when laboratory data is Job No.: 204104.10
				SILICO CENTI SAN J PARIKH CONSULTANTS, INC.	SILICON VALL CENTRAL ARI SAN JOSE, CA	SILICON VALLEY RAP CENTRAL AREA GUID SAN JOSE, CALIFORN PARIKH CONSULTANTS, INC.	SILICON VALLEY RAPID TRAN CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	SILICON VALLEY RAPID TRANSIT (SV CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	SILICON VALLEY RAPID TRANSIT (SVRT) PRO CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC. **USCS - Symbol per visual-manual D 2488 or classifiti in accordance with available.

Boring	Comula	Denth		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-084	26	201.5	СН											
BH-084	27	207.5	СН				57	25	32				21.6	

P

SUMMARY OF LABORATORY TES	ST RESULTS	Notes:	
SILICON VALLEY RAPID TRANSIT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA	(SVRT) PROJECT	per visual-manual D 2488 or classifio	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test resutls a ASTM D 2487 when laboratory data is
PARIKH CONSULTANTS, INC.	-		
Geotechnical & Materials Engineering		Date: 4/29/2008	Job No.: 204104.10

Boring	Comple	Donth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-085	1	3.5	GP-GC											
BH-085	2	12.5	CL											
BH-085	3	22.5	CL											
BH-085	4	32.5	CL											
BH-085	5	42.5	СН											
BH-085	6	52.5	CL				43	19	24			103.2	23.5	
BH-085	7	62.5	CL											
BH-085	8	66.5	CL											
BH-085	9	71.5	CL											
BH-085	10	76.5	CL											
BH-085	11	81.5	CL											
BH-085	12	86.5	SW-SC	43	49	8							9.5	
BH-085	13	92.5	CL											
BH-085	14	102.5	ML	0	41	59	NP	NP	NP			104.3	20.3	
BH-085	15	111.5	GM											
BH-085	16	121.5	SP-SC	24	68	8							11.0	
BH-085	17	131.5	CL											
BH-085	18	141.5	CL											
BH-085	19	151.5	CL				29	20	9				23.1	
BH-085	20	155.8	CL											
BH-085	21	161	CL											
BH-085	22	167.5	СН				53	27	26			99.4	26.3	
BH-085	23	172.5	CL											
BH-085	24	177.5	CL											
BH-085	25	182.5	CL											
	SUMMARY OF LABORATORY TEST RESULTS Notes: SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT **USCS - Symbol of Unified Soil Classification System CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC. Notes:													procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
	G	eotechnical	& Materials	Enginee	rıng							Date: 4/29/2	2008	Job No.: 204104.10

Boring	0	Denth		Grain Size Analysis			Atterberg Limits			Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-085	26	187.5	СН											
BH-085	27	192.5	CL	0	40	60	27	18	9			112.8	17.2	
BH-085	28	197.5	СН											
BH-085	29	202.5	CL											

SUMMARY OF LABORATORY TEST RESULTS	

SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA

**USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D 2488 or classification based on laboratory test resutls in accordance with ASTM D 2487 when laboratory data is available.

Date: 4/29/2008

Job No.: 204104.10

PARIKH CONSULTANTS, INC.

Geotechnical & Materials Engineering

Boring	Camala	Death		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-087	1	4.5	CL											
BH-087	2	12.5	SM											
BH-087	3	22.5	CL											
BH-087	4	32.5	SM											
BH-087	5	37.5	CL											
BH-087	6	42.5	ML											
BH-087	7	47.5	CL											
BH-087	8	52.5	CL				46	24	22				29.0	
BH-087	9	57.5	CL											
BH-087	10	62.5	CL				46	24	22				28.3	
BH-087	11	67.5	CL											
BH-087	12	71.5	GW	69	27	4							8.3	
BH-087	13	74	SC											
BH-087	14	76.5	SM											
BH-087	15	79	GP-GC	65	28	7							10.8	
BH-087	16	81.5	CL											
BH-087	17	84	ML											
BH-087	18	86.5	SP-SM	3	89	8							13.7	
BH-087	19	89	SM											
BH-087	20	91.5	SM											
BH-087	21	96	GP-GC											
BH-087	22	101.5	SM											
BH-087	23	107.5	CL											
BH-087	24	112.5	CL											
BH-087	25	117.5	SM											
–	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC. Geotechnical & Materials Engineering											per v D 24 in ac avail	visual-manual 88 or classific cordance wit able.	I of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
		eoleciiiicai		Engineer	iiig							Date: 4/29/2008 Job No.: 204104.10		

Boring	Comula	Danth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-087	26	121.5	SW-SM	43	51	6							8.3	
BH-087	27	126.5	SW-SM											
BH-087	28	132.5	CL-ML											
BH-087	29	136.25	GC	47	40	13							9.1	
BH-087	30	141.5	SM											
BH-087	31	146.5	ML											
BH-087	32	152.5	ML											
BH-087	33	157.5	SM	0	76	24						91.7	16.2	
BH-087	34	160.8	SM											
BH-087	35	166	SM											
BH-087	36	171	GP-GM											
BH-087	37	176.4	GP-GM											
BH-087	38	181	SP-SM	43	51	6							9.4	
BH-087	39	187.5	MH/CH				56	31	25				35.3	
BH-087	40	191.5	CL											
BH-087	41	201.5	CL											
ſ		PARIKH COI		SILICO CENTI SAN J S, INC .	on Vall Ral Ari Ose, Ca			TEST RI NSIT (SV				per v D 24	visual-manual 88 or classifi cordance wit able.	l of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is Job No.: 204104.10

Boring	Comple	Donth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined		Des Dessette	Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-088	1	3.5	ML											
BH-088	2	7.5	ML											
BH-088	3	12	ML											
BH-088	4	16.5	SP-SM											
BH-088	5	22.5	CL											
BH-088	6	27.5	CL											
BH-088	7	34.5	ML	0	10	90	29	24	5					
BH-088	8	37	CL-ML											
BH-088	9	39	CL-ML											
BH-088	10	41	CL				34	18	16				25.4	
BH-088	11	43	CL											
BH-088	12	45	CL											
BH-088	13	47	SM											
BH-088	14	49	CL-ML											
BH-088	15	51	CL											
BH-088	16	53	CL											
BH-088	17	55	ML											
BH-088	18	57	CL											
BH-088	19	59	CL											
BH-088	20	62	CL											
BH-088	21	65	ML											
BH-088	22	68	ML	0	0	100	40	27	13					
BH-088	23	69	ML											
BH-088	24	71	GP-GM	51	38	11	NP	NP	NP					
BH-088	25	72.5	SW-SM											
				SUMM	IARY OF		ATORY	TEST R	ESULTS			Notes:		
		PARIKH CO	NSULTANT	SILICO CENTI SAN J	on vall Ral Ari			NSIT (SV				per v D 24	visual-manual 88 or classific cordance with	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
	G	eotechnical	& Materials	Engineer	ring							Date: 4/29/2	2008	Job No.: 204104.10

Boring	Comula	Danth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	LL PL (%) (%)		Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-088	26	75.5	SW-SM											
BH-088	27	78	SW-SM											
BH-088	28	80	SW-SM											
BH-088	29	81.5	SW-SM	43	50	7								
BH-088	30	83	SW-SM											
BH-088	31	84.5	GP											
BH-088	32	86.5	CL											
BH-088	33	88.5	CL											
BH-088	34	91	CL											
BH-088	35	93	GW-GM											
BH-088	36	94.5	GW-GM	51	44	5								
BH-088	37	95	SM											
BH-088	38	96.5	SM											
BH-088	39	98	SM											
BH-088	40	100	SM											
BH-088	41	102	GC											
BH-088	42	104	GC	28	65	7								
BH-088	43	106	GC											
BH-088	44	108	GC											
BH-088	45	110	SM											
BH-088	46	112.5	GM											
				SUMM				TEST R	SUI TS	3		Notes:		
	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.												/isual-manual 88 or classifi	of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
		Seotechnical			ring							Date: 4/29/2	2008	Job No.: 204104.10

Boring	Sample	Donth		Grain	Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	Pl (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-089	1	3.5	CL											
BH-089	2	12.5	ML											
BH-089	3	22.5	CL				37	21	16				31.9	
BH-089	4	32.5	ML											
BH-089	5	41.5	SM	0	53	47						106.3	23.0	
BH-089	6	51.5	GW-GM	53	38	9								
BH-089	7	67.5	ML											
BH-089	8	72.5	ML											
BH-089	9	81.5	SP-SM	30	63	7							11.4	
BH-089	10	91.5	SP-SM											
BH-089	11	101.5	ML											
BH-089	12	112.5	ML											
BH-089	13	122.5	SC											
BH-089	14	131.5	SC											
BH-089	15	142.5	CL											
BH-089	16	147.5	ML	0	21	79							20.3	
BH-089	17	152.5	SM											
BH-089	18	156.5	CL											
BH-089	19	151.5	CL	0	33	67							19.3	
BH-089	20	167.5	ML											
BH-089	21	172.5	ML	3	44	53						107.5	21.0	
BH-089	22	176.5	CL											
BH-089	23	181.5	CL											
BH-089	24	187.5	SC											
BH-089	25	191.5	CL	0	2	98	49	25	24				25.2	
		PARIKH CO		SILICO CENTI SAN J S, INC .	on Vall Ral Ari Ose, Ca	EY RAP EA GUID LIFORN	ID TRAN EWAY					per v D 24 in ac	visual-manual 88 or classific cordance wit able.	I of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is Job No.: 204104.10

Doring				Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Maiatuma	
Boring No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	Pl (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Moisture Content (%)	Remarks
BH-089	26	196.5	SM											
BH-089	27	201.5	SM											
														·

ΤΟ	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	per visual-manual D 2488 or classifi	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
	Geotechnical & Materials Engineering	Date: 4/29/2008	Job No.: 204104.10

Boring	Comula	Denth		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-090	1	5	CONCRET	E										
BH-090	2	7.5	CL											
BH-090	3	11.5	CL											
BH-090	4	17.5	ML											
BH-090	5	22.5	CL											
BH-090	6	24	СН											
BH-090	7	27.5	CL											
BH-090	8	29	CL	0	11	89	36	22	14				23.4	
BH-090	9	32.5	SM											
BH-090	10	34	ML	0	30	70	NP	NP	NP				28.2	
BH-090	11	37.5	SM											
BH-090	12	39	CL	0	19	81	30	22	8				27.8	
BH-090	13	41.5	СН											
BH-090	14	45	ML										22.4	
BH-090	15	46.5	CL	0	30	70	26	18	8				24.4	
BH-090	16	49	CL											
BH-090	17	52.5	ML											
BH-090	18	54	CL-ML	0	22	78	28	22	6				29.4	
BH-090	19	56	CL											
BH-090	20	58.5	CL	1	34	65	34	15	19				21.7	
BH-090	21	62.5	CL											
BH-090	22	72.5	CL											
BH-090	23	81.5	GM											
BH-090	24	91.5	GM											
BH-090	25	101.5	CL											
	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.													of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test results h ASTM D 2487 when laboratory data is
		Seotechnical	& Materials	Enginee	ring							Date: 4/29/2	2008	Job No.: 204104.10

Boring	Sample	Death		Grair	n Size An	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-090	26	112.5	CL											
BH-090	27	121.5	SM											
BH-090	28	131.5	CL											
BH-090	29	142.5	ML											
BH-090	30	151.5	ML	0	53	47							21.3	
BH-090	31	157.5	CL											
BH-090	32	162.5	CL	0	27	73						104.6	21.6	
BH-090	33	166.5	SM											
BH-090	34	171.5	CL											
BH-090	35	177.5	CL											
BH-090	36	182.5	CL	0	37	63							26.4	
BH-090	37	186.33	CL	0	30	70							28.0	
BH-090	38	191.33	ML											
BH-090	39	197.5	ML	0	34	66						104.5	20.5	
BH-090	40	202.5	ML											
BH-090	41	206.5	CL											
BH-090	42	211.5	ML									109.7	18.5	
	SUMMARY OF LABORATORY TEST RESULTS Notes: SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT **USCS - Symbol of Unified Soil Classification Symper visual-manual procedures in accordance with D 2488 or classification based on laboratory test min accordance with ASTM D 2487 when laboratory test min accordance with ASTM D 2487 when laboratory test min available. PARIKH CONSULTANTS, INC.													
	G	Seotechnical	& Materials	Enginee	ring							Date: 4/29/2	2008	Job No.: 204104.10

Boring	Comple	Donth		Grain	n Size An	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-091	1	3.5	CL											
BH-091	2	12.5	SM											
BH-091	3	22.5	CL				45	25	20				38.0	
BH-091	4	27.5	CL											
BH-091	5	29	SM	0	63	37	NP	NP	NP				24.4	
BH-091	6	31	SM	11	54	35	NP	NP	NP				24.3	
BH-091	7	32.5	SP-SM	16	75	9	NP	NP	NP				16.8	
BH-091	8	35	SP-SM											
BH-091	9	37	SM											
BH-091	10	39	SM											
BH-091	11	40.5	CL	0	18	82	33	21	12					
BH-091	12	44	CL											
BH-091	13	45.5	CL	0	25	75	32	18	14					
BH-091	14	52.5	SM											
BH-091	15	61.5	CL											
BH-091	16	72.5	CL									103.5	22.4	
BH-091	17	81.5	GC											
BH-091	18	91.5	GC											
BH-091	19	101.5	CL											
BH-091	20	112.5	CL-ML									101.2	23.9	
BH-091	21	121.5	GM											
BH-091	22	132	CL											
BH-091	23	136.5	CL											
BH-091	24	142.5	SC	23	38	39							14.9	
BH-091	25	146	SP-SM	31	61	8							12.0	
		PARIKH CO		SILICO CENTI SAN J S, INC .	on Vall Ral Ari Ose, C/	EY RAP Ey Rap Ea guid Aliforn	D TRAN					per v D 24 in ac avail	risual-manual 88 or classifi cordance wit able.	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
	G	Seotechnical	& Materials	Engineer	ring							Date: 4/29/2	8008	Job No.: 204104.10

Boring	Comula	Denth		Grain	Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	Pl (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-091	26	151	SP-SM											
BH-091	27	156.5	SM	0	85	15							18.8	
BH-091	28	162.5	CL											
BH-091	29	166	GP-GM											
BH-091	30	171	GP-GM											
BH-091	31	176.5	GP-GM	50	41	9							10.6	
BH-091	32	182.5	CL	0	1	99							28.0	
BH-091	33	186.5	CL											
BH-091	34	190.8	GP-GC											
BH-091	35	196.5	GP-GC	64	29	7							9.0	

SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	per visual-manual D 2488 or classifio	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
Geotechnical & Materials Engineering	Date: 4/29/2008	Job No.: 204104.10

Boring	Comple	Donth		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined		Des Dessette	Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-093	1	3.5	CL											
BH-093	2	12.5	ML											
BH-093	3	22.5	CL											
BH-093	4	32.5	CL											
BH-093	5	41.5	GM											
BH-093	6	52.5	CL-ML				28	23	5			105.3	21.1	
BH-093	7	62.5	CL-ML											
BH-093	8	71.5	SW											
BH-093	9	82.5	CL											
BH-093	10	91.5	CL											
BH-093	11	101.5	SP-SM	2	87	11							18.5	
BH-093	12	111.5	SM											
BH-093	13	122.5	CL									101.5	23.6	
BH-093	14	131.5	SM											
BH-093	15	141.5	CL											
BH-093	16	151.5	CL-ML											
BH-093	17	153.5	SW											
BH-093	18	156	SM											
BH-093	19	158.5	CL	0	17	83	30	21	9				23.0	
BH-093	20	161	CL											
BH-093	21	163	CL											
BH-093	22	164.7	SP-SM	4	90	6							20.1	
BH-093	23	167.2	SP-SM											
BH-093	24	169.7	CL	9	37	54							17.7	
BH-093	25	171.7	GP-GM											
	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC. Geotechnical & Materials Engineering												visual-manual 88 or classific cordance with able.	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test results h ASTM D 2487 when laboratory data is
	G	Seotechnical	& Materials	Enginee	ring							Date: 4/29/2	2008	Job No.: 204104.10

Boring	0	Denth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-093	26	173.2	GP-GM	73	21	6							7.7	
BH-093	27	175.2	SM											
BH-093	28	177.2	GP-GC											
BH-093	29	179.7	SP-SM											
BH-093	30	181.8	SP-SM	34	60	6							9.7	
BH-093	31	184.3	ML											
BH-093	32	186.8	CL											
BH-093	33	190	CL									97.6	26.4	
BH-093	34	191.5	CL											
BH-093	35	193.7	CL											
BH-093	36	195.2	SM											
BH-093	37	197.7	CL											
BH-093	38	200	CL	0	25	75	35	26	9				26.9	
BH-093	39	211.5	CL											
	SUMMARY OF LABORATORY TEST RESULTS													
ſ	SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.											per v D 24	visual-manual 88 or classifi cordance wit	l of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data
	Geotechnical & Materials Engineering Date: 4/29/2008 Job No.: 204104.10													1

Boring	Comula	Denth		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-095	1	3.5	CL										. ,	
BH-095	2	7.5	CL											
BH-095	3	12.5	CL-ML											
BH-095	4	17.5	CL											
BH-095	5	22.5	MH/CH				55	30	25				39.9	
BH-095	6	25	CL											
BH-095	7	27.5	CL											
BH-095	8	30	CL											
BH-095	9	32.5	SM	0	61	39						104	23.3	
BH-095	10	34	ML											
BH-095	11	36.5	GW											
BH-095	12	39	GP-GM	56	39	5							7.5	
BH-095	13	41.5	CL-ML											
BH-095	14	44	CL-ML											
BH-095	15	45	CL											
BH-095	16	46.5					38	23	15				30.4	
BH-095	17	49	CL											
BH-095	18	51.5	CL				35	23	12			100.1	26.1	
BH-095	19	54	CL-ML											
BH-095	20	57.5	SP-SM											
BH-095	21	59	SP-SM	45	49	6							9.0	
BH-095	22	61.5	GW											
BH-095	23	64	GM	75	12	13							9.0	
BH-095	24	67.5	SM											
BH-095	25	69	GP-GM	49	45	6							8.4	
	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC. Geotechnical & Materials Engineering											per v D 24 in ac avail	visual-manual 88 or classific cordance with able.	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test results h ASTM D 2487 when laboratory data is
	G	Seotechnical	& Materials	Enginee	ring							Date: 4/29/2	2008	Job No.: 204104.10

Boring	Comunic	Denth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-095	26	71.5	GP-GM											
BH-095	27	74	GP-GM											
BH-095	28	76.5	GW											
BH-095	29	79	SW-SM	43	52	5							7.2	
BH-095	30	81.5	CL											
BH-095	31	84	GW											
BH-095	32	87.5	CL-ML											
BH-095	33	92.5	CL-ML											
BH-095	34	97.5	CL				34	19	15				25.0	
BH-095	35	101.5	CL									105.1	22.8	

SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA	per visual-manual D 2488 or classifie	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test results h ASTM D 2487 when laboratory data is
PARIKH CONSULTANTS, INC. Geotechnical & Materials Engineering	Date: 4/29/2008	Job No.: 204104.10

Boring	Commite	Darath		Grain	n Size An	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	Pl (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-097	1	3.5	CL											
BH-097	2	7.5	CL											
BH-097	3	11.5	CL											
BH-097	4	17.5	CH	0	1	99	62	30	32			78.4	42.5	
BH-097	5	21.5	CL											
BH-097	6	26.5	GW-GM											
BH-097	7	31.5	ML											
BH-097	8	37.5	CL											
BH-097	9	41.5	SM											
BH-097	10	48	ML										29.5	
BH-097	11	51.5	SP-SM	28	65	7							9.6	
BH-097	12	55.792	GW-GM											
BH-097	13	60.875	GW-GM											
BH-097	14	66.5	SW-SM											
BH-097	15	71.5	GC	41	35	24							13.6	
BH-097	16	77.5	CL											
BH-097	17	81.5	GW-GM											
BH-097	18	86.5	GW	90	9	1							6.3	
BH-097	19	91.5	GC											
				SUMM	IARY OF		ATORY	TEST RI	ESULTS	;		Notes:		
	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.											per v D 24	visual-manual 88 or classifi cordance wit	l of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
	Geotechnical & Materials Engineering												2008	Job No.: 204104.10

Boring	0	Denth		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-098	1	3.5	ML											
BH-098	2	7.5	CL											
BH-098	3	11.5	ML				60	33	27			85.7	35.9	
BH-098	4	17.5	CL-ML											
BH-098	5	21.5	CL											
BH-098	6	27.5	CL											
BH-098	7	31.5	CL-ML											
BH-098	8	37.5	ML	0	49	51							22.0	
BH-098	9	41.5	SM	0	79	21						104.5	21.9	
BH-098	10	46.5	CL	0	10	90							30.7	
BH-098	11	52.5	CL-ML											
BH-098	12	56.5	ML				39	30	9				33.8	
BH-098	13	61.5	GW-GM											
ſ	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.											per v D 24	visual-manua 88 or classifi cordance wit	I of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls th ASTM D 2487 when laboratory data is
	Geotechnical & Materials Engineering												2008	Job No.: 204104.10

Boring	Comula	Danth		Grain	n Size An	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-099	1	3.5	СН											
BH-099	2	7.5	CL											
BH-099	3	11.5	CL											
BH-099	4	17.5	ML											
BH-099	5	21.5	СН											
BH-099	6	27.5	CL											
BH-099	7	31.5	CL	0	39	61	27	16	11				26.8	
BH-099	8	37.5	CL											
BH-099	9	41.5	CL											
BH-099	10	47.5	SM	0	73	27						106.5	19.7	
BH-099	11	51.5	CL											
BH-099	12	57.5	CL	0	28	72							20.2	
BH-099	13	61	GW											
BH-099	14	66.5	SP-SM	37	58	5							9.8	
BH-099	15	71.5	SP-SM											
BH-099	16	76.5	SW-SM	31	62	7							10.1	
BH-099	17	81.5	SW-SM											
ſ	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC. Geotechnical & Materials Engineering											per v D 24	visual-manua 88 or classifi cordance wit able.	I of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is Job No.: 204104.10

Boring	Comula	Darath		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	Pl (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-100	1	3.5	СН											
BH-100	2	7.5	СН											
BH-100	3	11.5	CL											
BH-100	4	17.5	CL											
BH-100	5	21.5	CL											
BH-100	6	27.5	CL-ML				27	20	7			104.7	21.8	
BH-100	7	31.5	SP-SM	31	61	8							11.2	
BH-100	8	36.5	SC	7	48	45							20.1	
BH-100	9	41.5	SP-SM	11	78	11							10.0	

SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY	per visual-manual	of Unified Soil Classification System procedures in accordance with ASTM
PARIKH CONSULTANTS, INC.	D 2488 or classific	ation based on laboratory test resutls n ASTM D 2487 when laboratory data is
Geotechnical & Materials Engineering	Date: 4/29/2008	Job No.: 204104.10

Boring	0	Denth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-101	1	3.5	SC											
BH-101	2	6.5	GP-GM	77	18	5							8.1	
BH-101	3	12.5	ML											
BH-101	4	17.5	CL											
BH-101	5	22.5	СН				52	27	25			81.4	41.0	
BH-101	6	27.5	CL											
BH-101	7	32.5	CL											
BH-101	8	37.5	CL				31	19	12			107.3	20.6	
BH-101	9	42.5	CL											
BH-101	10	47.5	CL											
BH-101	11	52.5	ML											

ſ

SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA PARIKH CONSULTANTS, INC.	per visual-manua D 2488 or classifi	l of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
Geotechnical & Materials Engineering	Date: 4/29/2008	Job No.: 204104.10

Boring	Comple	Donth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined		Des Des site	Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-102	1	3.5	SP-SM											
BH-102	2	6.5	SP-SM											
BH-102	3	11.5	GW-GM											
BH-102	4	16.5	GW-GM											
BH-102	5	22.5	CL											
BH-102	6	27.5	CL	0	6	94						87.7	33.2	
BH-102	7	33	CL											
BH-102	8	36	CL											
BH-102	9	39	ML											
BH-102	10	42	CL											
BH-102	11	46	CL											
BH-102	12	49	GW-GM	48	45	7								
BH-102	13	51	GW-GM											
BH-102	14	52	CL											
BH-102	15	53.5	CL											
BH-102	16	56	CL											
BH-102	17	57.5	SM											
BH-102	18	59	GW-GM											
BH-102	19	60.5	GW-GM	66	30	4								
BH-102	20	62	GW-GM											
BH-102	21	63.5	GW-GM											
BH-102	22	65	GW-GM											
BH-102	23	66.5	ML	0	28	72								
BH-102	24	68.5	CL-ML											
BH-102	25	70	CL-ML											
				SUMN	IARY OF		ATORY	TEST R	ESULTS			Notes:		
		PARIKH CO	NSULTANT	SILICO CENTI SAN J	on vall Ral ari	EY RAP EA GUID ALIFORN	ID TRAN EWAY					per v D 24	visual-manual 88 or classifi cordance wit	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
			& Materials	-	ring							Date: 4/29/2	2008	Job No.: 204104.10

Boring	Comula	Denth		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-102	26	72	CL-ML											
BH-102	27	74	SP-SM											
BH-102	28	75.5	SP-SM											
BH-102	29	77	GW-GM											
BH-102	30	78.5	GW-GM	46	45	9								
BH-102	31	80	GW-GM											

SUM	MAF	ry of	LAB	ORA'	TORY	TES	T RESL	JLTS	

SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA

Date: 4/29/2008

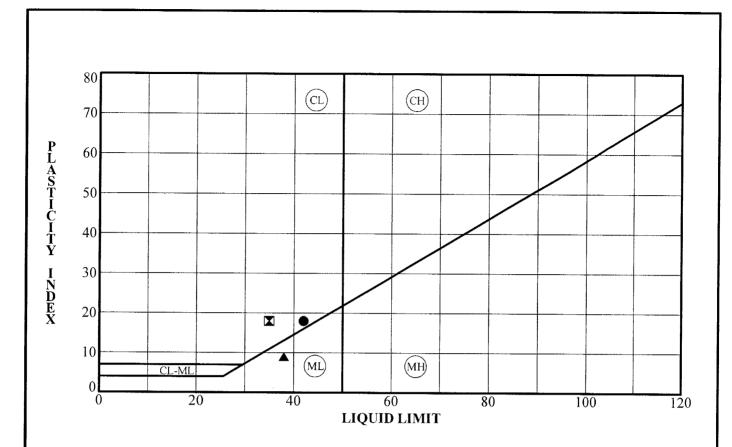
**USCS - Symbol of Unified Soil Classification System per visual-manual procedures in accordance with ASTM D 2488 or classification based on laboratory test resutls in accordance with ASTM D 2487 when laboratory data is available.

PARIKH CONSULTANTS, INC.

Geotechnical & Materials Engineering

Job No.: 204104.10

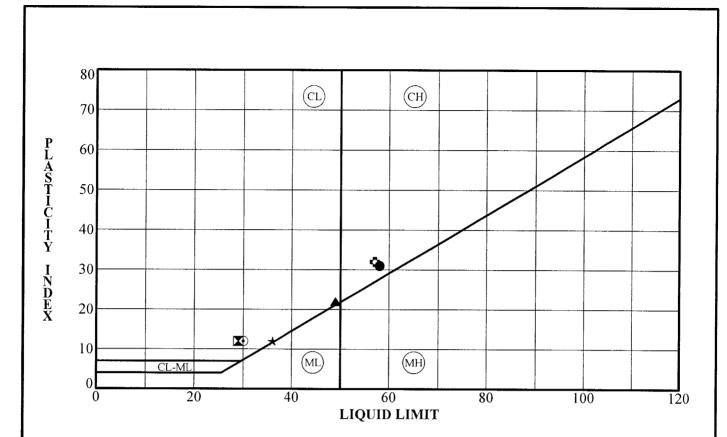
Boring	Comple	Donth		Grain	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined		Des Desseite	Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-103	1	3.5	CL											
BH-103	2	6.5	CL-ML											
BH-103	3	11.5	ML											
BH-103	4	16.5	ML											
BH-103	5	22.5	ML											
BH-103	6	27.5	CL											
BH-103	7	32	СН	0	10	90	59	22	37					
BH-103	8	34	CL											
BH-103	9	36	CL											
BH-103	10	38	CL											
BH-103	11	40	CL											
BH-103	12	41.5	GP											
BH-103	13	43	GP											
BH-103	14	44.5	GP											
BH-103	15	46	GP											
BH-103	16	47.5	GW-GM	59	36	5								
BH-103	17	49	GW-GM											
BH-103	18	50.5	GW-GM											
BH-103	19	52	GW-GM											
BH-103	20	53.5	CL											
BH-103	21	55	ML	0	35	65	NP	NP	NP					
BH-103	22	56.5	SW											
BH-103	23	58	SW											
BH-103	24	59.5	SW											
BH-103	25	61	SW											
				SUMN	IARY OF		ATORY	TEST R	ESULTS	;		Notes:		
		PARIKH CO	NSULTANT	SILICO CENT SAN J	on vall Ral ari		ID TRAN EWAY	NSIT (SV				per v D 24	visual-manual 88 or classifi cordance wit	l of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is
			& Materials		ring							Date: 4/29/2	2008	Job No.: 204104.10


Boring	0	Death		Grair	n Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	Pl (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-103	26	62.5	SW	46	51	3								
BH-103	27	64	SW											
BH-103	28	65.5	SW											
BH-103	29	68	ML											
BH-103	30	70.5	ML											
BH-103	31	72	ML	1	44	55								
BH-103	32	75	ML											
BH-103	33	77.5	SM	8	79	13								
BH-103	34	79	SM											
BH-103	35	79.92	SM											
BH-103	36	81.5	SW											
BH-103	37	84	SW	51	45	4								
BH-103	38	86.5	GP											
BH-103	39	89	ML	0	48	52	NP	NP	NP					
BH-103	40	90.5	ML											
ſ		PARIKH COI		SILICO CENT SAN J S, INC.	on Vall Ral Ari Ose, Ca	.EY RAP EA GUID	ID TRAN	TEST RI NSIT (SV				per v D 24	visual-manua 88 or classifi cordance wit able.	I of Unified Soil Classification System I procedures in accordance with ASTM cation based on laboratory test resutls h ASTM D 2487 when laboratory data is Job No.: 204104.10

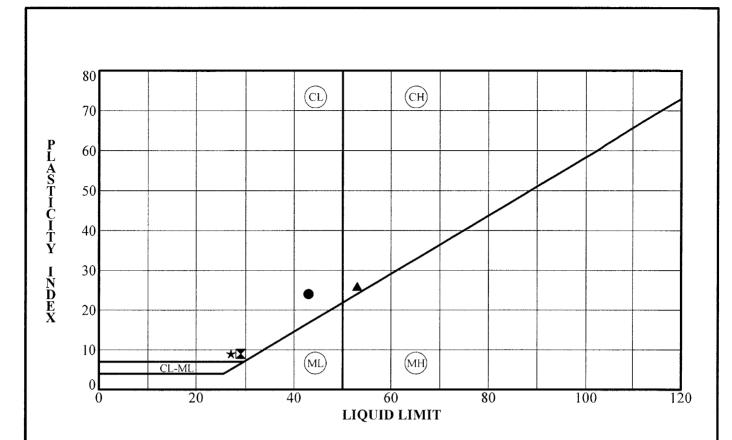
Boring	0	Dauth		Grain	Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-105	1	3.5	CL											
BH-105	2	7.5	ML											
BH-105	3	11.5	SW-SM	35	53	12							8.2	
BH-105	4	17.5	CL											
BH-105	5	22.5	CL											
BH-105	6	24	SM	0	50	50	NP	NP	NP				27.1	
BH-105	7	27.5	SM	0	66	34	NP	NP	NP			84.1	34.5	
BH-105	8	29	SM											
BH-105	9	32.5	CL	0	55	45	29	19	10				31.9	
BH-105	10	34	SC											
BH-105	11	37.5	CL											
BH-105	12	39	SM	0	52	48	86	62	24				64.6	
BH-105	13	41.5	SW-SM	39	51	10							12.6	
BH-105	14	46.5	CL-ML											
BH-105	15	51.5	CL-ML											
				SUMM								Notes:		

			Grain	Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
	epth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
1 ;	3.5	CL										. ,	
2	7.5	ML											
3	12.5	CL											
4	17.5	ML											
5 2	22.5	CL				31	17	14					
6 2	27.5	CL											
7 3	33	CL											
8 3	36	CL											
9 :	39	CL											
10 '	41.5	CL											
11 '	43	GP	51	45	4								
12 '	44.5	GP											
13 '	46	GP											
14 '	47.5	GP											
15 '	49	GW	51	44	5								
16	50.5	GW											
17	52	GW											
18	53.5	GW											
19	55.5	GW											
20	57	GW											
21	58.5	ML	0	10	90								
22	62	ML											
23	64	ML											
24	65.5	ML											
25	67	GW-GM											
			SILICO CENTI SAN J S, INC .	on Vall Ral Are Ose, Ca	.EY RAP EA GUID	ID TRAN EWAY	test Ri Isit (SV				per v D 24 in ac avail	visual-manua 88 or classifi cordance wit able.	I of Unified Soil Classification System I procedures in accordance with ASTM ication based on laboratory test results th ASTM D 2487 when laboratory data is Job No.: 204104.10
				CENTI SAN J RIKH CONSULTANTS, INC .	CENTRAL ARE SAN JOSE, CA	Central Area Guid San Jose, Californ Rikh Consultants, Inc.	CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA RIKH CONSULTANTS, INC.	CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA RIKH CONSULTANTS, INC.	CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA RIKH CONSULTANTS, INC.	SAN JOSE, CALIFORNIA RIKH CONSULTANTS, INC.	CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA RIKH CONSULTANTS, INC.	CENTRAL AREA GUIDEWAY D 24 SAN JOSE, CALIFORNIA in ac avail	CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA RIKH CONSULTANTS, INC.

Boring	Comula	Denth		Grain	Size Ana	alysis	Att	erberg Lir	nits	Unconfined			Moisture	
No.	Sample No.	Depth (ft)	USCS**	gravel (%)	sand (%)	fines (%)	LL (%)	PL (%)	PI (%)	Comp. (qu, ksf)	Lab Vane (su, ksf)	Dry Density (pcf)	Content (%)	Remarks
BH-106	26	68.5	ML	0	49	51	NP	NP	NP					
BH-106	27	70	ML											
BH-106	28	72.5	ML											
BH-106	29	74	CL											
BH-106	30	77.5	CL-ML											
BH-106	31	80	CL											
BH-106	32	81.5	ML											
BH-106	33	85	ML				32	23	9					
BH-106	34	87.5	CL											
BH-106	35	90	ML											


	SUMMARY OF LABORATORY TEST RESULTS SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT CENTRAL AREA GUIDEWAY SAN JOSE, CALIFORNIA	per visual-manual D 2488 or classifio	of Unified Soil Classification System procedures in accordance with ASTM cation based on laboratory test resutls n ASTM D 2487 when laboratory data is
P	PARIKH CONSULTANTS, INC. Geotechnical & Materials Engineering	Date: 4/29/2008	Job No.: 204104.10

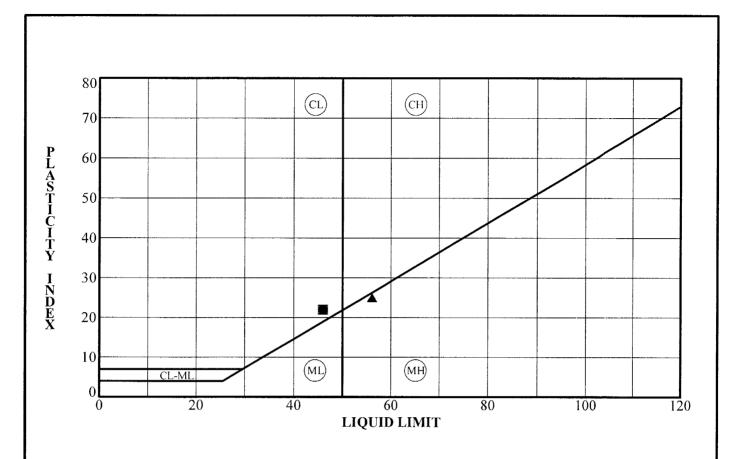
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-082	22.5	42	18	0.211	28	98	CL
	BH-082	42.5	35	18	0.483	26	72	CL
	BH-082	67.5	38	9	-0.233	27	96	ML


.

1	PREPOBY: L. Tran	PLASTICITY CHART AND DATA	FIGURE
	APP'D BY: F. Wang DATE: 4/29/08	SILICON VALLEY RAPID TRANSIT PROJECT	4-1
	DWG FILE:	San Jose, California	PROJECT No.
			213213

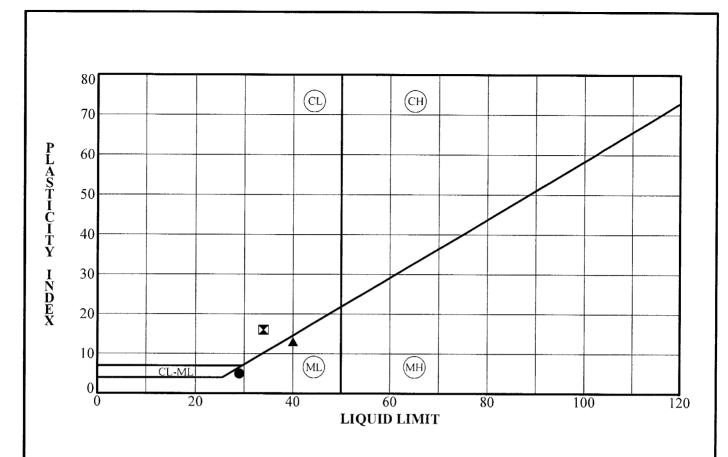
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
٠	BH-084	42.5	58	31	0.194	33		CH
	BH-084	157.5	29	12	0.150	19		CL
	BH-084	167.5	49	22	0.086	29		CL/CH
*	BH-084	177.5	36	12	0.133	26		CL/ML
ullet	BH-084	192.5	30	12	0.225	21		CL
0	BH-084	207.5	57	32	-0.106	22		CH
								

	PREPIDIBY: L. Tran	PLASTICITY CHART AND DATA	FIGURE
$\mathbf{\bullet}$	APPD BY: F. Wang DATE: 4/29/08	SILICON VALLEY RAPID TRANSIT PROJECT	4-2
	DWG FILE	San Jose, California	PROJECT No. 213213


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-085	52.5	43	24	0.188	24		CL
	BH-085	151.5	29	9	0.344	23		CL
	BH-085	167.5	53	26	-0.027	26		СН
*	BH-085	192.5	27	9	-0.089	17	60	CL
		PREPD BY: L. Tran					ТЛ	FIGU

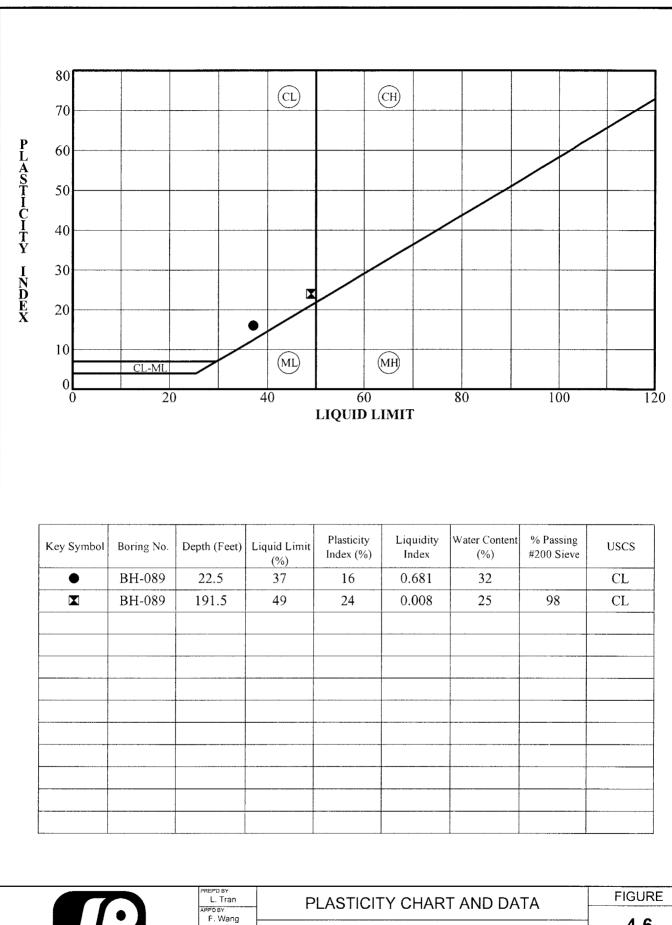
 PREPD BY:
 L. Train
 PLASTICITY CHART AND DATA
 FIGURE

 APP'D BY:
 E. Train
 PLASTICITY CHART AND DATA
 4-3


 DATE:
 4/29/08
 SILICON VALLEY RAPID TRANSIT PROJECT
 PROJECT No.

 OWG FILE
 San Jose, California
 213213

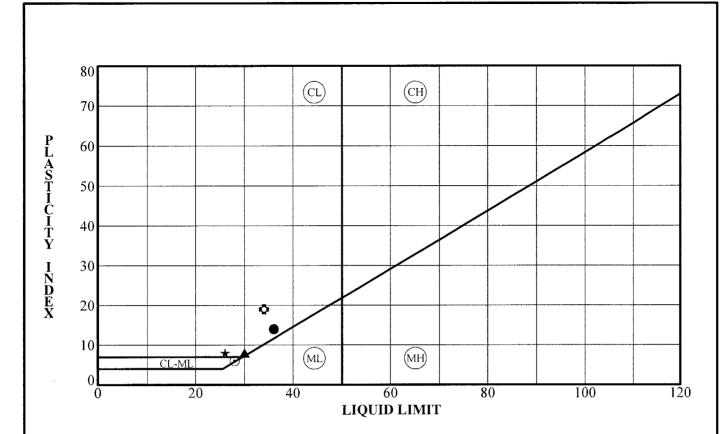
PREPOBY International and a second	Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
BH-087 187.5 56 25 0.172 35 MH/CI Image: Strain Str	•	BH-087	52.5	46	22	0.227	29		CL
Image: Prepay L. Tran PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: Prepay L. Tran Image: PLASTICITY CHART AND DATA FIG Image: PLASTICITY PROJECT Image: PLASTICITY PROJECT Image: PLASTICITY PROJECT		BH-087	62.5	46	22	0.195	28		CL
PREPDBY L. Tran PLASTICITY CHART AND DATA FIG. APPDBY F. Wang SILICON VALLEY RAPID TRANSIT PROJECT 4		BH-087	187.5	56	25	0.172	35		MH/CH
PREPDBY L. Tran PLASTICITY CHART AND DATA FIG. APPDBY F. Wang SILICON VALLEY RAPID TRANSIT PROJECT 4									
PREPDBY L. Tran PLASTICITY CHART AND DATA FIG. APPDBY F. Wang SILICON VALLEY RAPID TRANSIT PROJECT 4									• · · · · ·
PREPDBY L. Tran PLASTICITY CHART AND DATA FIG. APPDBY F. Wang SILICON VALLEY RAPID TRANSIT PROJECT 4					· · · · · · · · · · · · · · · · · · ·				
PREPDBY L. Tran PLASTICITY CHART AND DATA FIG. APPDBY F. Wang SILICON VALLEY RAPID TRANSIT PROJECT 4									
PREPDBY L. Tran PLASTICITY CHART AND DATA FIG. APPDBY F. Wang SILICON VALLEY RAPID TRANSIT PROJECT 4									
L. Tran PLASTICITY CHART AND DATA FIG APPD BY F. Wang DATE SILICON VALLEY RAPID TRANSIT PROJECT									·
L. Tran PLASTICITY CHART AND DATA FIG APPD BY F. Wang DATE SILICON VALLEY RAPID TRANSIT PROJECT									
AFP Der F. Wang DATE 4/29/08 SILICON VALLEY RAPID TRANSIT PROJECT DWG FILE: 4			L. Tran	_ Р	LASTICIT	Y CHAR	T AND DA	ТА	FIGL
DWG FILE:		-	F. Wang						4-
			DWG FILE:						PROJEC


213213

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-088	33.5	29	5			90	ML
	BH-088	41.0	34	16	0.463	25		CL
	BH-088	68.0	40	13			100	ML
	BH-088	71.0	NP	NP			11	GP-GM
						-		
		PREPD BY.						
		L. Tran	_ P	LASTICIT	Y CHAR	T AND DA	ΓA	FIGU
	•	F. Wang DATE 4/29/08 DWG FILE	SILIC			TRANSIT PR	OJECT	4-

San Jose, California

PROJECT No. 213213

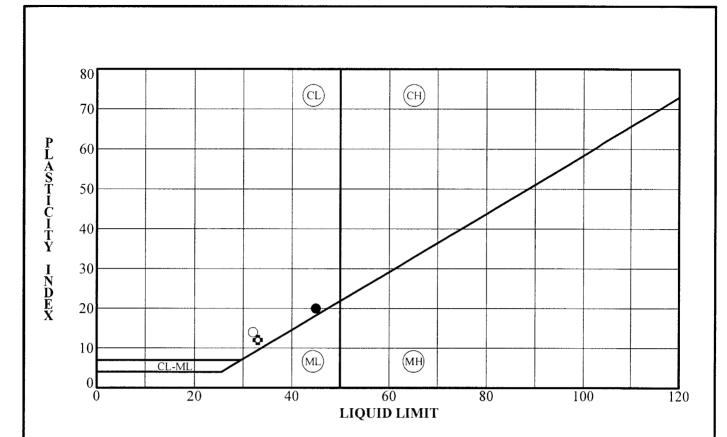

ATTERBERG SVRT_PHASE 2_041808.GPJ SVRT-BART.GDT 4/29/08

 PREPPO BY:
 L. Tran
 PLASTICITY CHART AND DATA
 FIGURE

 TAPPO BY:
 F. Wang
 SILICON VALLEY RAPID TRANSIT PROJECT
 4-6

 DWG FILE
 SILICON VALLEY RAPID TRANSIT PROJECT
 PROJECT NO

 DWG FILE
 San Jose, California
 213213

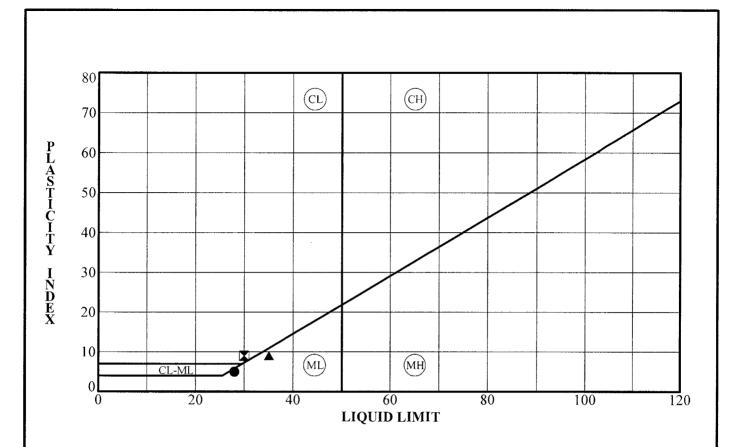

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-090	29.0	36	14	0.100	23	89	CL
	BH-090	34.0	NP	NP		28	70	ML
	BH-090	39.0	30	8	0.725	28	81	CL
*	BH-090	46.5	26	8	0.800	24	70	CL
\odot	BH-090	54.0	28	6	1.233	29	78	CL-MI
٥	BH-090	58.5	34	19	0.353	22	65	CL

 PREPDBY:
 L. Tran
 PLASTICITY CHART AND DATA
 FIGURE

 APPDBY:
 F. Wang
 Date:
 4/29/08

 Date:
 4/29/08
 SILICON VALLEY RAPID TRANSIT PROJECT
 4-7

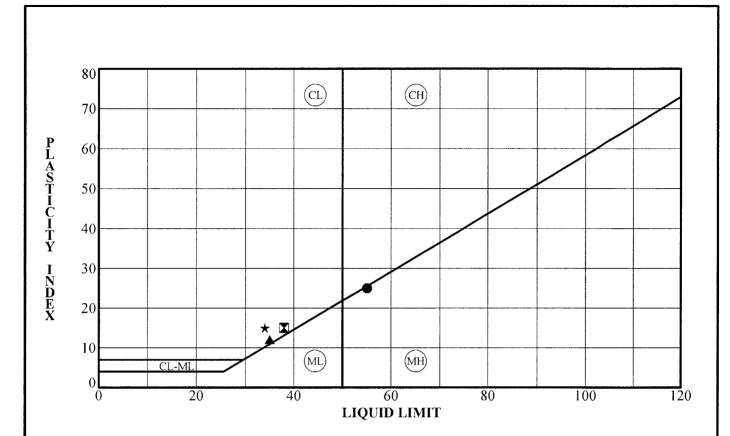
 DWG FILE:
 San Jose, California
 PROJECT No.



Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-091	22.5	45	20	0.650	38		CL
	BH-091	27.5	NP	NP				
	BH-091	29.0	NP	NP		24	37	SM
	BH-091	31.0	NP	NP		24	35	SM
	BH-091	32.5	NP	NP		17	9	SP-SM
•	BH-091	40.5	33	12			82	CL
<u>,</u> O	BH-091	45.5	32	14			75	CL
	· · · · · · · · · · · · · · · · · · ·							

 PREPD 8V.
 L. Tran
 PLASTICITY CHART AND DATA
 FIGURE

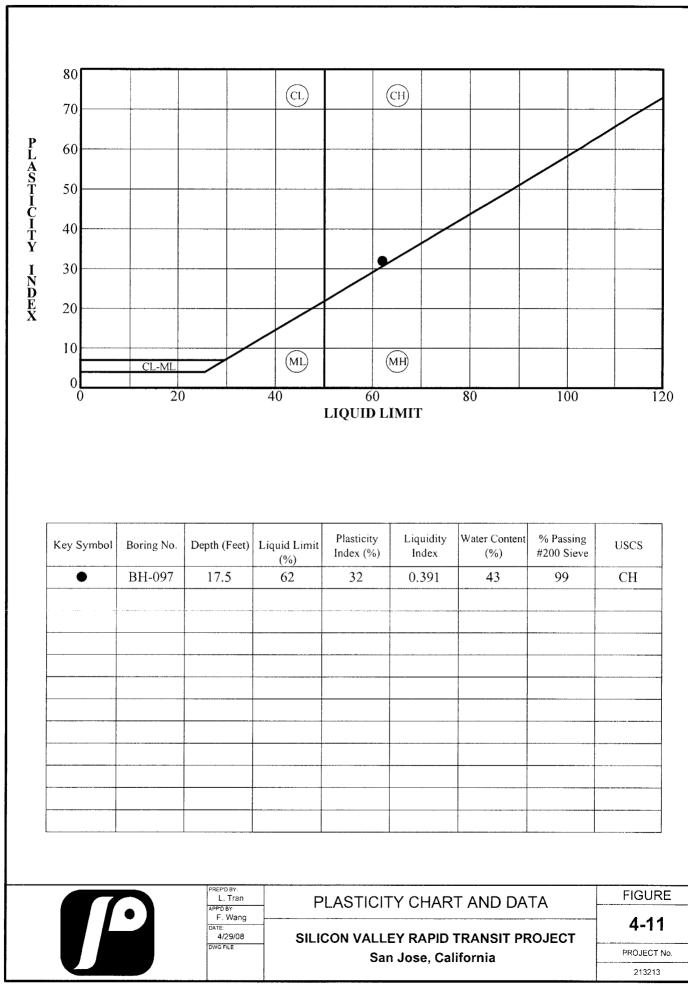
 APPD BV:
 F. Wang
 DATE:
 SILICON VALLEY RAPID TRANSIT PROJECT
 4-8

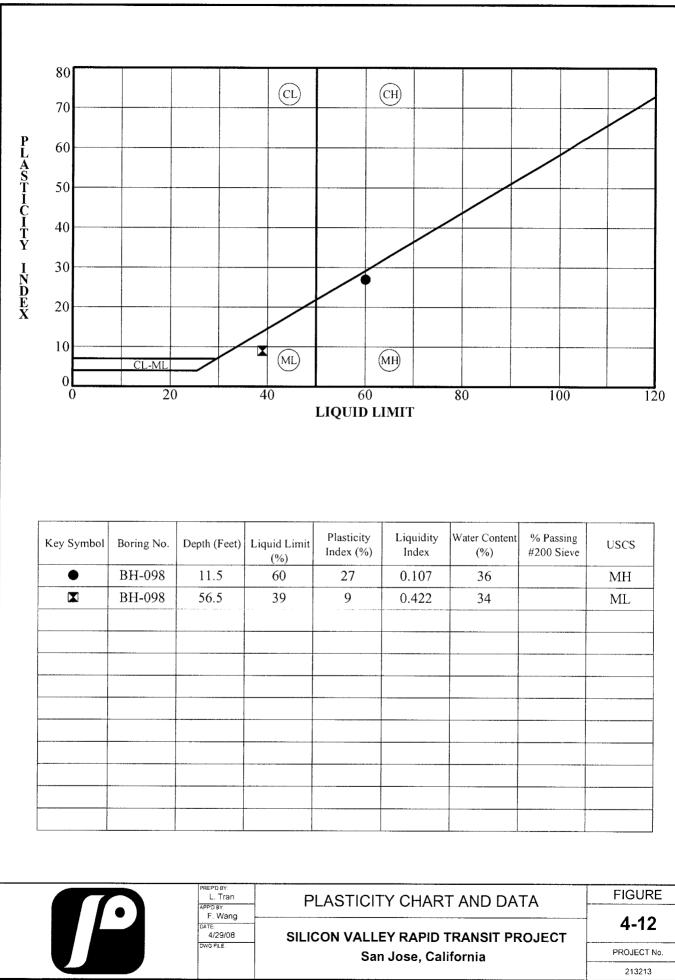

 DWG FILE:
 DWG FILE:
 SILICON VALLEY RAPID TRANSIT PROJECT
 PROJECT NO.
 213213

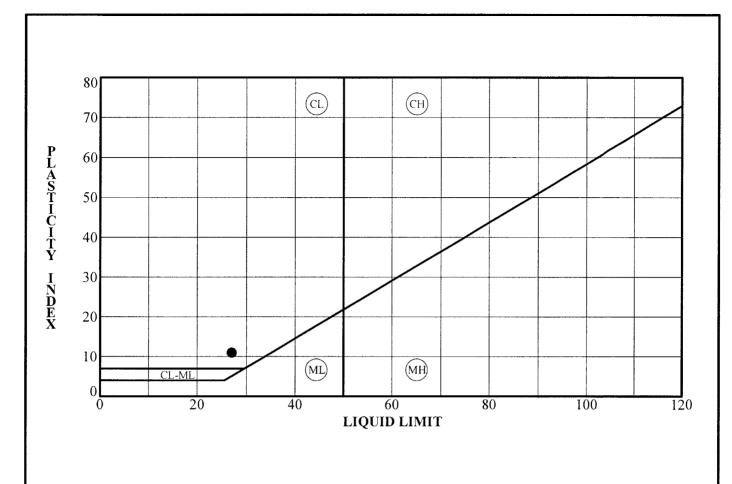
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-093	52.5	28	5	-0.380	21		CL-ML
	BH-093	158.5	30	9	0.222	23	83	CL
	BH-093	200.0	35	9	0.100	27	75	ML
								· · · · · · · · · · · · · · · · · · ·
		PREPDBY						
		L. Tran	_ Р	LASTICIT	Y CHAR	T AND DA	TA	FIGL
	•	F. Wang DATE 4/29/08 DWG FILE	SILI		EY RAPID	TRANSIT PR	OJECT	4 -

San Jose, California

PROJECT No. 213213

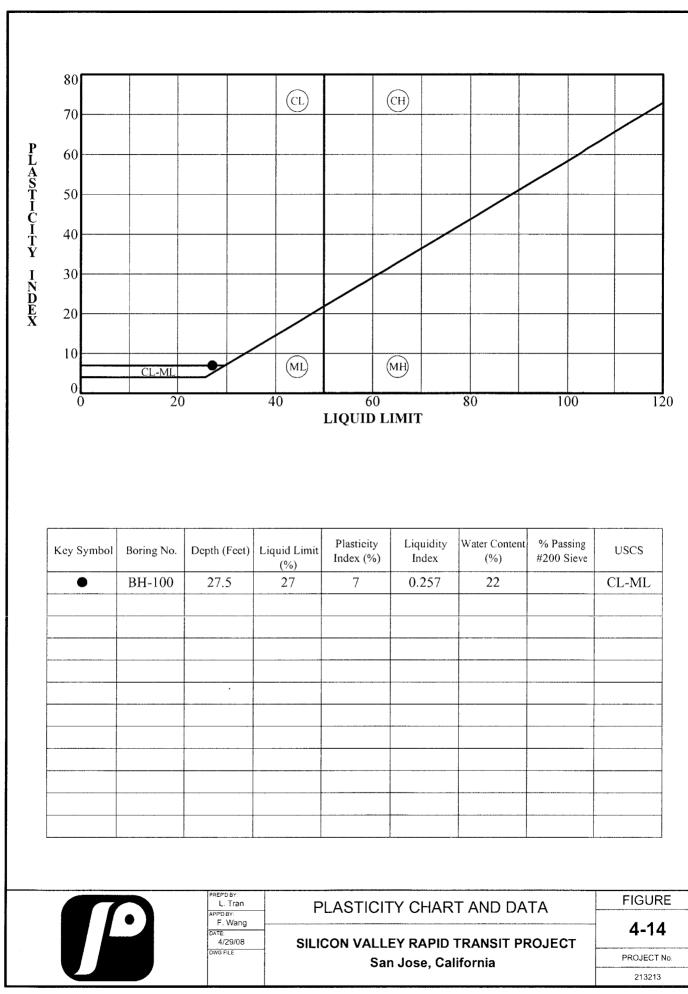

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-095	22.5	55	25	0.396	40		MH/CH
	BH-095	46.5	38	15	0.493	30		CL
A	BH-095	51.5	35	12	0.258	26		CL
*	BH-095	97.5	34	15	0.400	25		CL
	.							

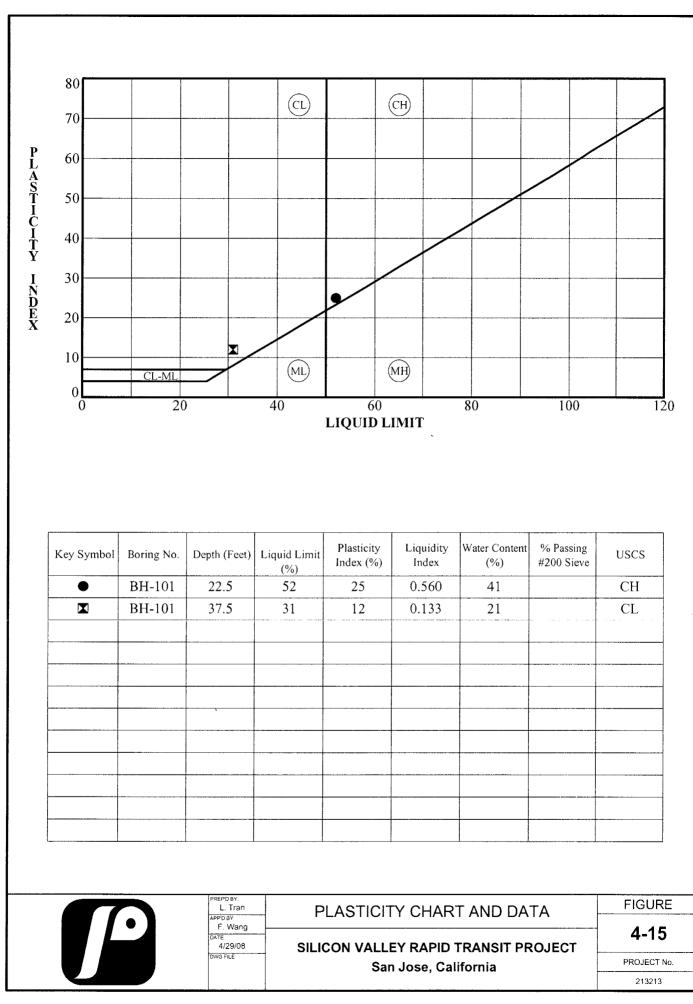

 PREPOBY
 L. Tran
 PLASTICITY CHART AND DATA
 FIGURE

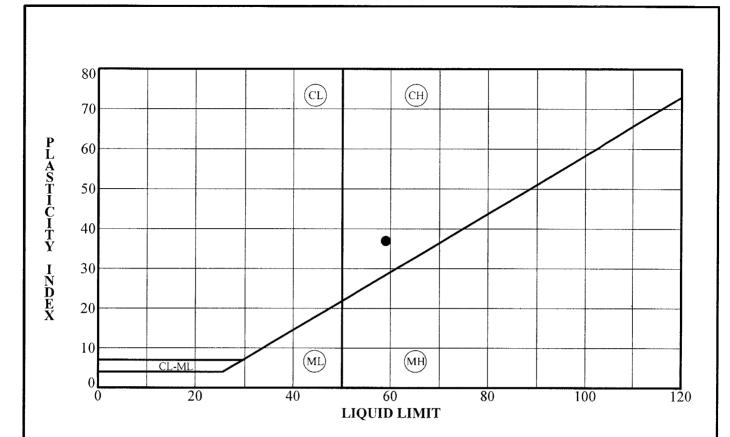

 APPOBV
 F. Wang
 Date
 4-10

 Date
 4/29/08
 SILICON VALLEY RAPID TRANSIT PROJECT
 PROJECT NO.

 DWG FILE
 San Jose, California
 213213

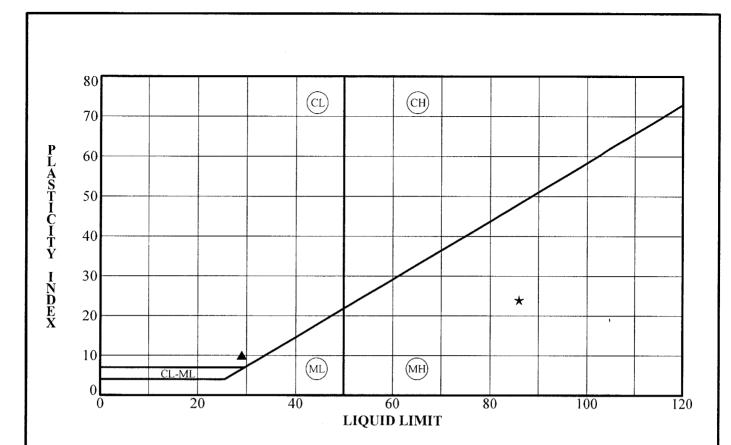






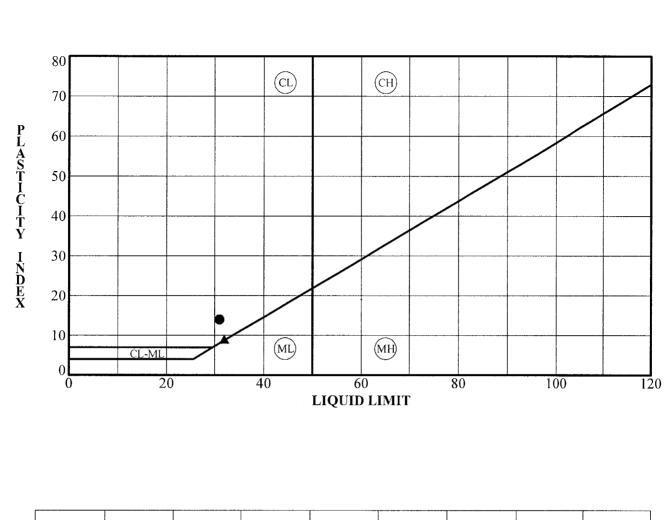
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-099	31.5	27	11	0.982	27	61	CL
			1			11		
		PREPD BY: L. Tran	_ Р	LASTICIT	Y CHAR	T AND DA	TA	FIGL
	•	F. Wang DATE: 4/29/08				TRANSIT PR		4-
		DWG FILE:			Jose, Cal			PROJE

213213


Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-103	32.0	59	37			90	СН
	BH-103	55.0	NP	NP	· · · · · · · · · · · · · · · · · · ·		65	ML
	BH-103	89.0	NP	NP			52	ML
		,						
					,,,,,			
			l l			<u> </u>		
		PREPOBY: L. Tran					та	FIGU

 PREPOBY
 L. Tran
 PLASTICITY CHART AND DATA
 FIGURE

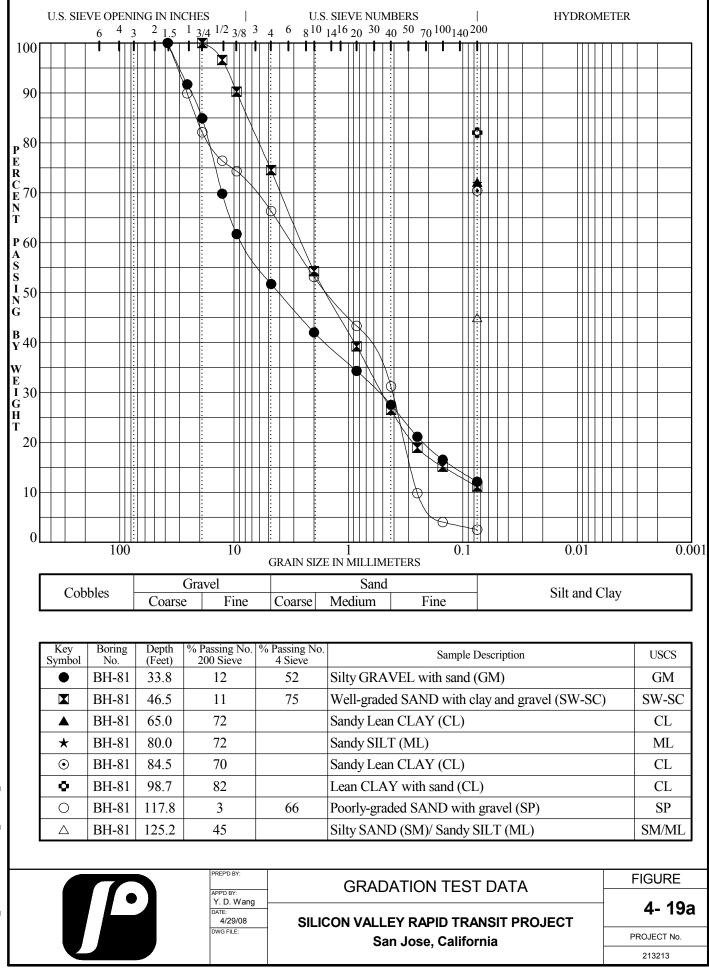
 APPOBY
 F. Wang
 SILICON VALLEY RAPID TRANSIT PROJECT
 4-16


 DATE
 4/29/08
 SILICON VALLEY RAPID TRANSIT PROJECT
 PROJECT NO.

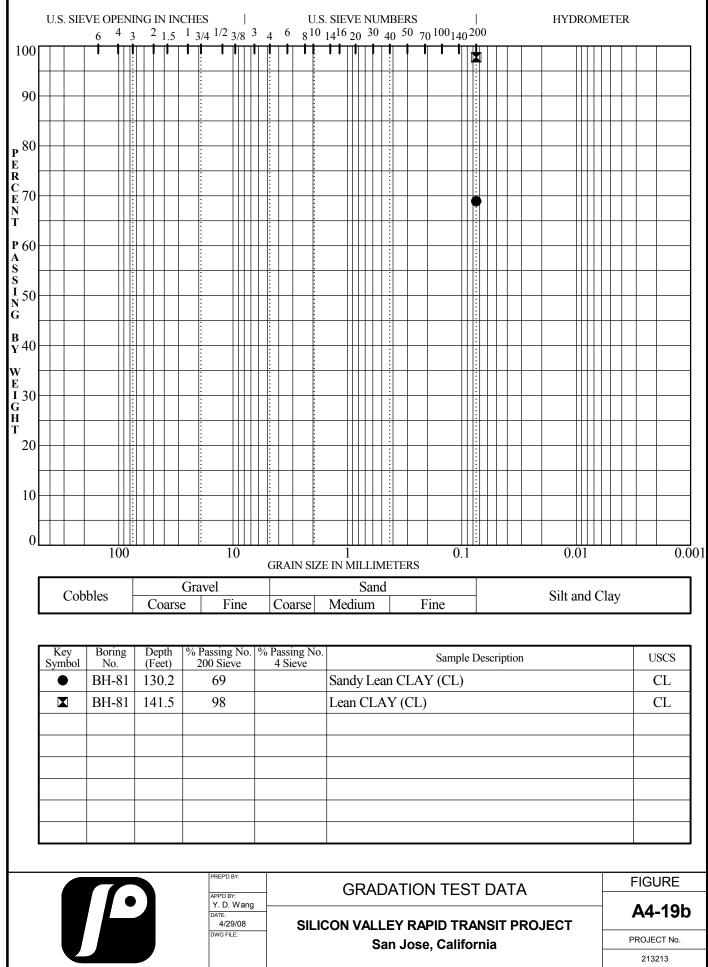
 DWG FILE
 San Jose, California
 213213

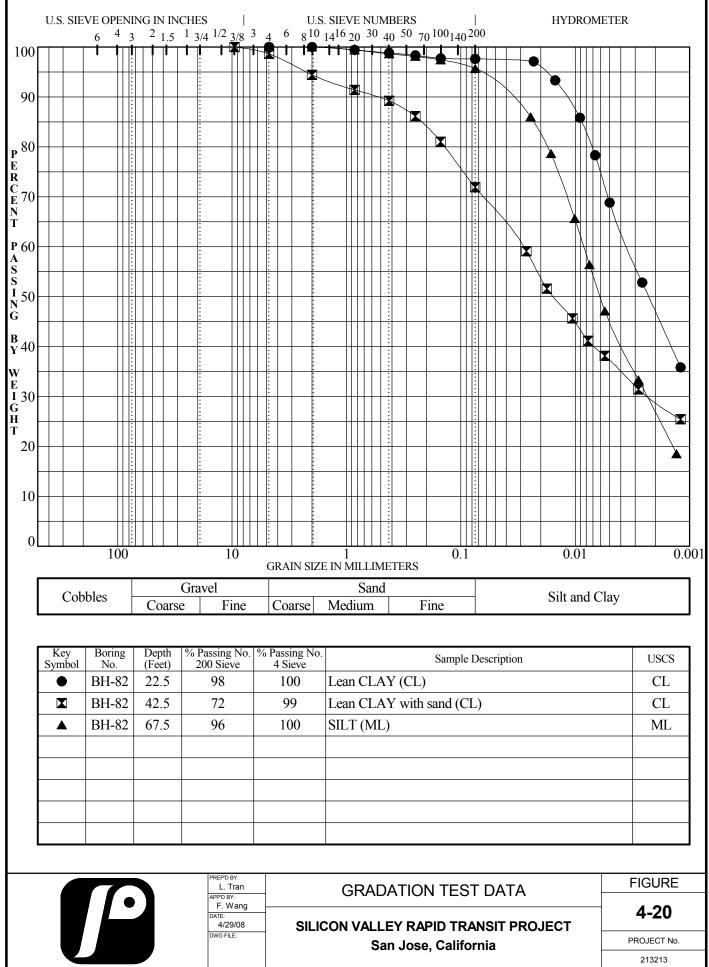
Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
	BH-105	24.0	NP	NP		27	50	SM
	BH-105	27.5	NP	NP		35	34	SM
	BH-105	32.5	29	10	1.290	32	45	SC
*	BH-105	39.0	86	24	0.108	65	48	SM/OH

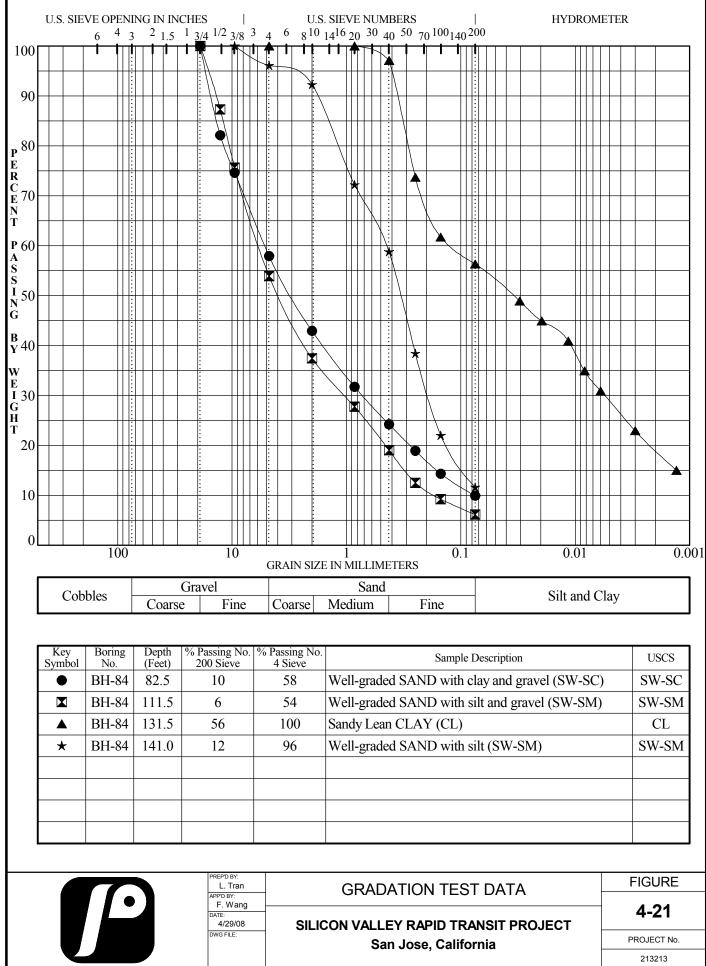
Γ		PREPD BY: L. Tran	PLASTICITY CHART AND DATA	FIGURE
	$\mathbf{\dot{\mathbf{D}}}$	APP'D BY: F. Wang DATE: 4/29/08	SILICON VALLEY RAPID TRANSIT PROJECT	4-17
		DWG FILE:	San Jose, California	PROJECT No.
				213213

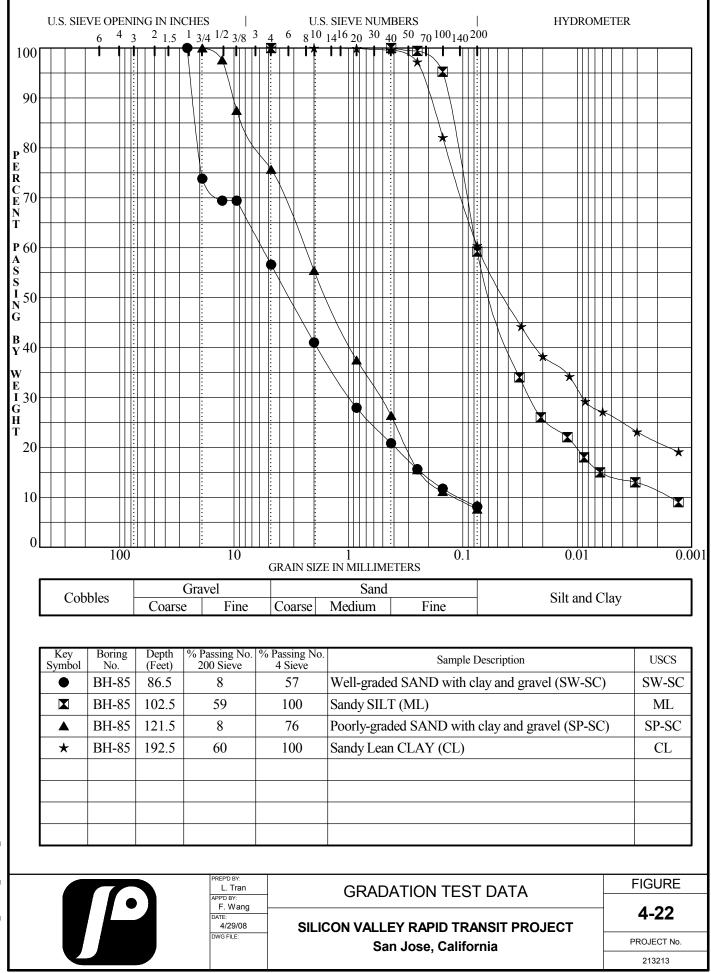

Key Symbol	Boring No.	Depth (Feet)	Liquid Limit (%)	Plasticity Index (%)	Liquidity Index	Water Content (%)	% Passing #200 Sieve	USCS
•	BH-106	22.5	31	14				CL
	BH-106	68.5	NP	NP			51	ML
	BH-106	85.0	32	9				ML
					· · · · · · · ·			
				· · · · · · · · · · · · · · · · · · ·				
	· · · · · · ·							

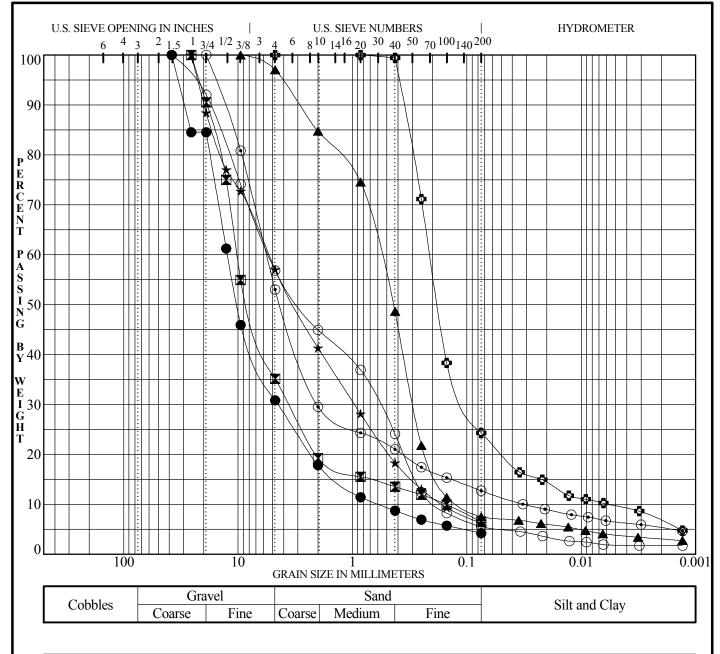
 PREPD BY:
 L. Tran
 PLASTICITY CHART AND DATA
 FIGURE

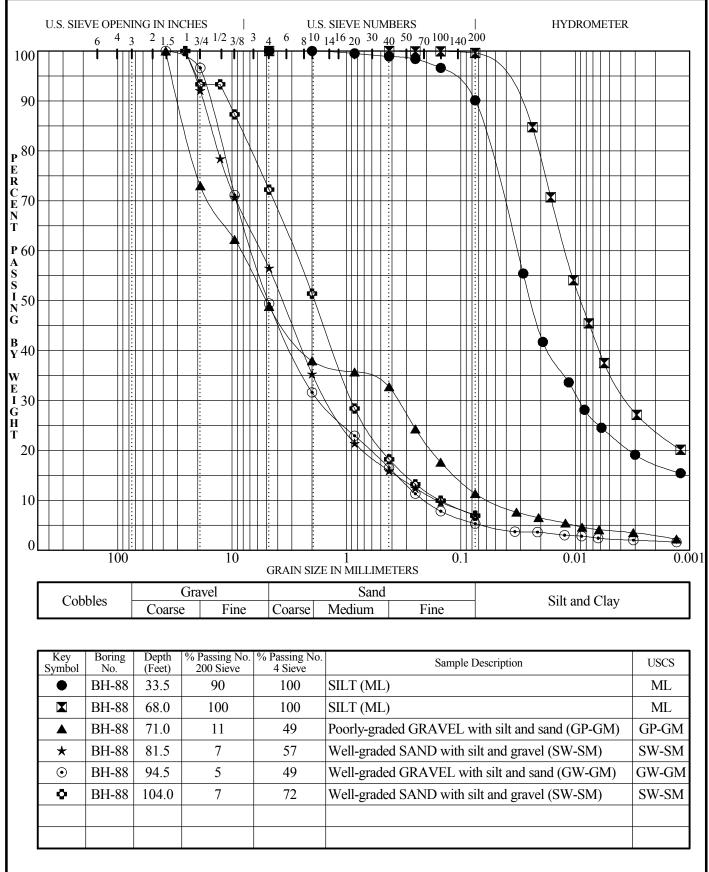

 APPO BY:
 F. Wang
 BILICON VALLEY RAPID TRANSIT PROJECT
 4-18


 DATE
 4/29/08
 SILICON VALLEY RAPID TRANSIT PROJECT
 PROJECT NO.


 DWIG FILE:
 San Jose, California
 213213




GRADATION_B ALTERNATE SVRT_PHASE 2_041808.GPJ SVRT-BART.GDT 4/29/08



Key Symbol	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	% Passing No. 4 Sieve	Sample Description	USCS
	BH-87	71.5	4	31	Well-graded GRAVEL (GW)	GW
	BH-87	79.0	7	35	Poorly-graded GRAVEL with clay and sand (GP-GC)	GP-GC
	BH-87	86.5	8	97	Poorly-graded SAND with silt (SP-SM)	SP-SM
*	BH-87	121.5	6	57	Well-graded SAND with silt and gravel (SW-SM)	SW-SM
\odot	BH-87	137.5	13	53	Clayey GRAVEL with sand (GC)	GC
•	BH-87	157.5	24	100	Silty SAND (SM)	SM
0	BH-87	181.0	6	57	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM

I	PREPD BY: L. Tran	GRADATION TEST DATA	FIGURE
	APP'D BY: F. Wang		4.00
I	DATE: 4/29/08	SILICON VALLEY RAPID TRANSIT PROJECT	4-23
	DWG FILE:	San Jose, California	PROJECT No.
		,	213213

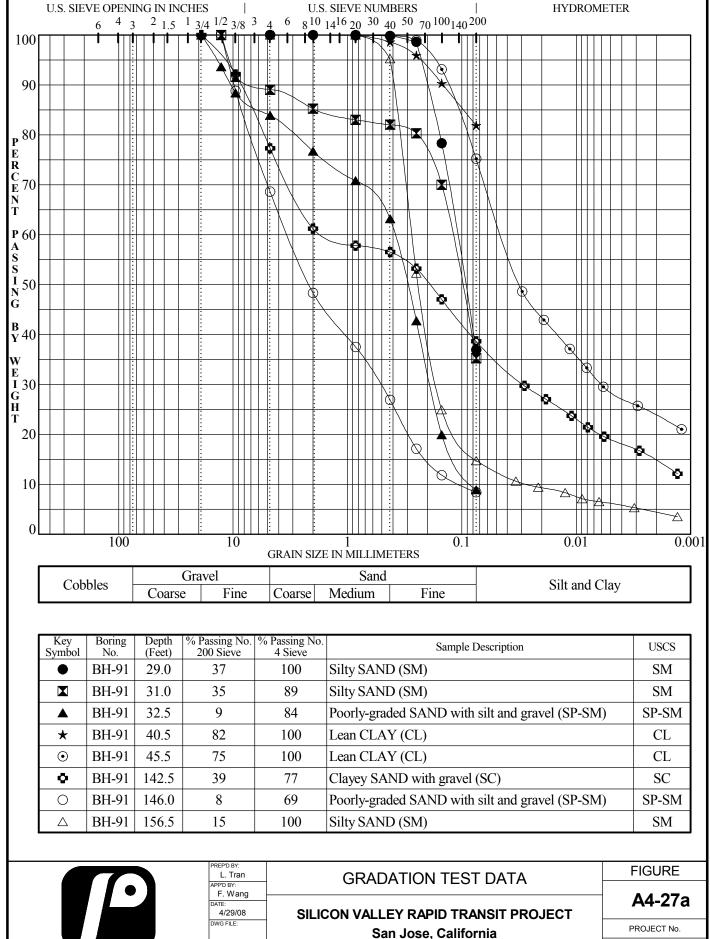
PREP'D BY: L. Tran	GRADATION TEST DATA	FIGURE
APP'D BY: F. Wang		4.04
DATE: 4/29/08	SILICON VALLEY RAPID TRANSIT PROJECT	4-24
DWG FILE:	San Jose, California	PROJECT No.
		213213

0.5. 51	EVE OPENI 6 4 3		$1_{3/4} 1/2_{3/8} 3$		HYDROMETER	
0					2	
)						
)						
	100		10		0.01	
	100		10	GRAIN SIZE IN MILLIMETERS	0.01	0
	bbles		Gravel	Sand	Silt and Clay	
	obles	Coarse	e Fine	Coarse Medium Fine	Silt and Clay	
Key Symbo	Boring No.	Depth (Feet)	% Passing No. 200 Sieve	6 Passing No. 4 Sieve Sample Description		USCS
	BH-89	41.5	47	100 Silty SAND (SM)		SM
	BH-89	51.5	9	47 Well-graded GRAVEL with silt and sand	l (GW-GM)	GW-GN
	BH-89	81.5	7	70 Poorly-graded SAND with silt and gravel	(SP-SM)	SP-SM
*	BH-89	147.5	79	100 SILT with sand (ML)		ML
\odot	BH-89	161.5	67	100 Sandy Lean CLAY (CL)		CL
•	BH-89	172.5	53	97 Sandy SILT (ML)		ML
0	BH-89	191.5	98	100 Lean CLAY (CL)		CL
			PREP'D BY:		1	
			L. Tran APP'D BY: F. Wang	GRADATION TEST DATA		-IGURE
			DATE: 4/29/08 DWG FILE:	SILICON VALLEY RAPID TRANSIT PROJE		4-25

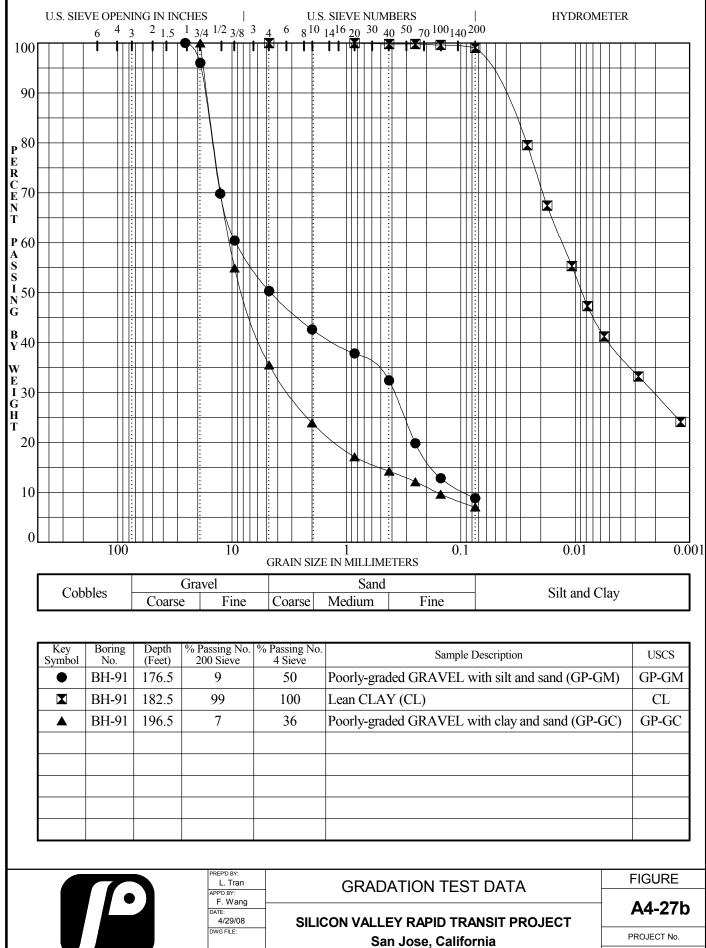
San Jose, California

PROJECT No.

213213

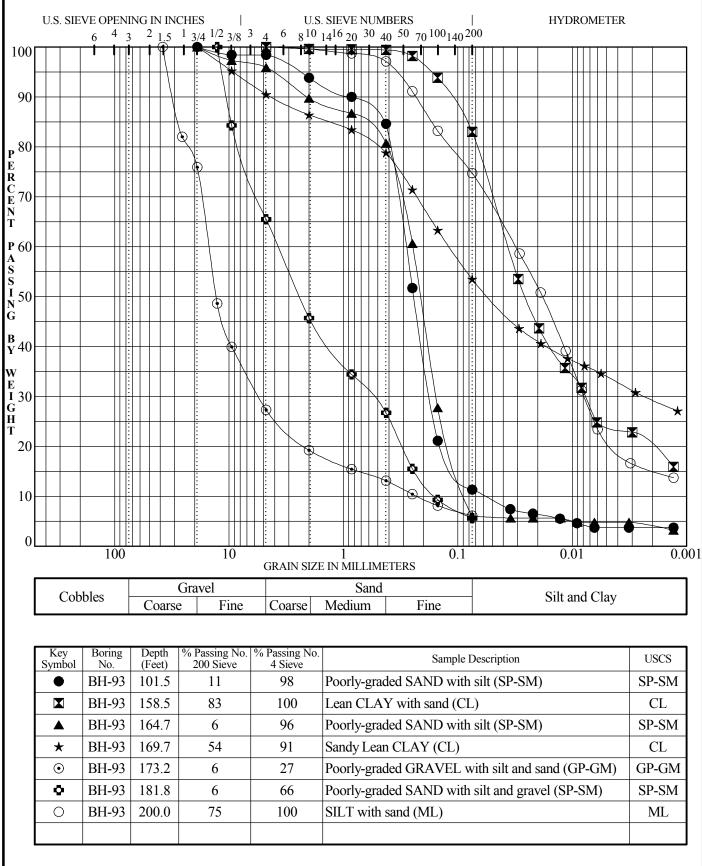

GRADATION_B SVRT_PHASE 2_041808.GPJ SVRT-BART.GDT 4/29/08

	U.S. SI	IEVE OPE							2			SIEV						100		 20	A				HY	DR	O	ME?	ГER	٤			
0 F		6^{4}	4 3	<u>_</u>	1.5	1 3/	/4 1/2] I	3/8 ⊐ ●⊤⊤	, 4 ₩		• 1 •	.4 ¹⁰ 2	.0 -	30 士	40		70 •		140 ·	20, רורי													_
Ί							: • P	1			E	\square	F			×	#	X															
F	\uparrow	\uparrow			\uparrow			ſΠ	†		ė		T	7			$\left\{ \right\}$	<u>کر</u>	1		\square	\square	\top	\top		\uparrow	\parallel	\square	\square	\top	\uparrow		_
╟	++	+	l#	++	++	ţ.	+	$\parallel \parallel \parallel$	+	++		\dashv	, 	++		$\left\{ \star \right\}$		<u> </u>	\mathbb{A}	i	,++	\vdash	+	+		+	\parallel	+	\vdash	+	+		_
┞	++	+	<u> </u> } }	++	++	-]	$\parallel \mid \mid$	+	++		-++	\mathbb{H}	+	++	+	X	*	\rightarrow	N-	++	\vdash	+	+		++	╟┼┥	+	\vdash	+	+		_
)	\downarrow		Щ.	Щ.		Ë	<u>:</u>	Щ	1		; F		Щ	\downarrow			₁⊥		\downarrow	Ŵ	.	Щ	\perp	\downarrow		Щ	Щ	\parallel	Ц	\perp	\downarrow		_
							; _				ė_		,]_				Ľ	[//	\mathbb{N}	Ø	']				_							_	_
ſ					\square			冊	T		ė	\square	,Ħ	Ţ		\top	\square	Ŕ	\mathcal{N}			Π	\top	\top		\uparrow	Ť	\uparrow	Π	T	\top		_
	++	+	1		+	<u> </u>	;+	$\parallel \parallel \parallel$	+	+++	; F	$\neg \uparrow \uparrow$,#†	++	†‡	+	+	+	1	ř,		\vdash	+	+		+		+	$ \uparrow$	+	+		_
┝	++	+	l ii	++	++	;	. <u></u>	$\parallel \mid \mid$	+	+++	ė.	-++	╫	+	H	+	+		\mathbb{H});		\vdash	+	+		+	+	+	\mathbb{H}	+	+		_
	++	+	∄	++	++		<u>; </u>	$\parallel \mid \mid$	+	++	; F	-++	\mathbb{H}	\downarrow	1	+	+		+	H	$\downarrow\downarrow$	\vdash	+	+		\parallel	╟╫	++	\vdash	+	+		_
				Щ.		;	<u> </u>	Щ			i		Щ	\downarrow		\square	\square		\mathbb{A}	Щ	\square	ЦĻ	\perp	\downarrow		Щ	Щ		Ц	\perp	\downarrow		
┝							: _I				é _							_	$\left \right\rangle$	N					_								
ſ	+				\square		;	冊	T		Ē		,Ħ	\uparrow		\top	\top		\uparrow	6	\square	\square		\top		\uparrow	\parallel	\uparrow	\square	\top	T		-
┢	++	+	tt:		++	;	+	$\parallel \parallel \parallel$	+	+	é	\dashv	#	++	Ħ	+	+		+			\vdash	X	+		+	\parallel	+	\vdash	+	+		-
$\left \right $	++	+	<u>₩</u>	++	++	-		$\parallel \mid \mid$	+	+++	 F	-++	+	+		+	+		+	H	\mathbb{H}	\vdash	+	+		+	\mathbb{H}	+	\vdash	+	+		_
┞	++	+	H.	++-	++		<u></u>]	###	<u> </u>	+++	E		#	\downarrow	<u> </u>	+	+		\parallel	H	\parallel	A+	+	4		\parallel	Щ	\parallel	\vdash	+	+		_
L			Щ	Щ			<u> </u>	Щ			É		Щ	\downarrow			\perp			Щ	Ш	\square	\checkmark	\downarrow	\sum	4	Щ		Ц		\downarrow		_
											F			1)				-					T	\$	L	¥						-	
ŀ	$\uparrow \uparrow$	\uparrow			\uparrow	i		I			ė		,Ħ	1		+	\top		\uparrow	(İ)	\uparrow	$ \uparrow $	\top	\top) Se	2	T.	4	\square	$\overline{}$	\uparrow		
ŀ	++	+	間	++	++	<u> </u>	;+	$\parallel \parallel \parallel$	+	+++	 i	+	,#	++	††	+	+		++	1	++	H	+	+		1	\$	$\frac{1}{2}$	\vdash	4	\neq		-
╞	++	+		++	++		 .:	H	+	+	i	-++	\mathbb{H}	+		+	+		$+\!\!+\!\!+$	HH	++	\vdash	+	+		$+\!\!+$	\mathbb{H}	\mathbb{H}	\vdash	Ø	\exists	\geq	*
L	++	+			++	;	: 	###	<u> </u> -	+ + +	i—	\parallel	#	\downarrow'		_	+		\parallel	H	\square	\square	_	+			Щ	\parallel	\vdash	1	4	-t	-
			Ш								; F		Щ	Ľ							Ш	Ц					Ш		Ц				
											ė	[]]]															Ī.				
-		10	10			<u> </u>	1	0	G	GRAIN SL	ίΖΕ	1 , IN M	IILI		MET	ΓERS	<u> </u>	(0.1	1					0).0	1				.	(0
Γ	Cc	1-1-1-0	Τ			Gra	ıvel				_		Sa	anc	d		_	_	_						C:1+								•
L		obbles		C	oarse	e	Fi	ine	(Coarse		Medi	iun	n			Fin	ne							Silt	an	ia v	Cla	ıу				
			-	-	-				-		-		-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	
	Key Symbo	Borin ol No.	g	Dep (Fe	pth eet)	% P 2	Passing 200 Siev	No. ve	% P	Passing No 4 Sieve	0.		_		_		_	Sam	nple	• D	escr	ripti	on				_			Ι	US	SCS	
	•	BH-9	<i>•</i> 0	29	.0		89	!		100		Lean		L/	<u>AY</u>	(CL	_)	_									_				C	CL	
l		BH-9)0	34	.0	<u> </u>	70		<u> </u>	100	'	Sand	ly S	SII	ĹŢ	(MI	Ĺ)			_											N	ЛL	
l		BH-9)0	39	0.0		81			100	,	Lean	١Ĉ	.L/	ĀŶ	wit	h sa	and	(C	Ľ))						_			T_	C	CL	
ľ	*	BH-9) 0	46	5.5	\square	70			100		Lean	n C	Ľ	AY	wit	h sa	and	(C	Ľ))									\uparrow	-0	CL	
ľ	\odot	BH-9) 0	54	1.0		78	,		100		Silty										L)								(CL	-MI	J
ľ	0	BH-9) 0	58	3.5		65		[99		Sand	Jy I	Le	an (CLA	4Y	(CJ	L)											\uparrow	C	CL	
ľ	0	BH-9	<i>)</i> 0	151	1.5		47	,		100		Silty	$\sqrt{S/}$	A٢	ND.	(SN	1)	-												\uparrow	S	SM	
Ľ	\triangle	BH-9)0	162	2.5		73			100		Lean						and	. (C	Ľ))										С	CL	-
							-290																										
		7				-	PREP'D B L. TI APP'D BY	Tran			-	G	R/	٩ſ	CAC	ATIC)N	- TF	ES	۶T	D	A٦	ΓA	-				┝				JRE	_
		I L	Ì	4			F. W DATE: 4/29	Vang 9/08	+	911	10				. C.	V D	^ D	יחי	τp	• • •		 ידי	סר		-07			1		Α	.4-	-26	j
							4/29 DWG FILE		\neg	SIL	.IC	UN 1				i y RA I Jos							Prv	UJI	EUI]		F		PRC	JEC	CT No	0
	Y													•			<i></i> ,	••••		*• .										2	2132	213	

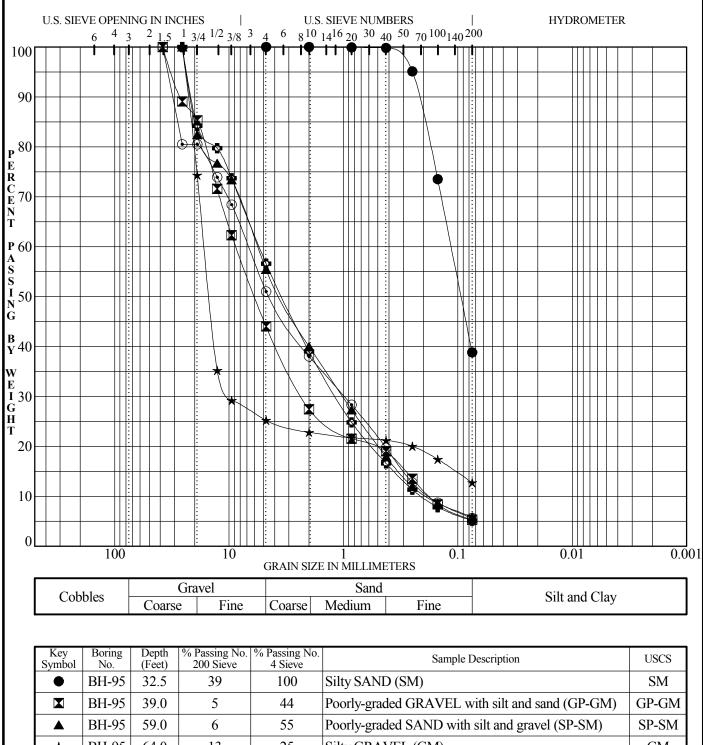

Г

	U	.S. SII											12			,			r										RS		1.	00			0					I	HYI	DR	RO	MI	ET	ER	Ĺ				
001				5 '	4 •	3	-	2 1 •	1.5	1	3/	4 I	./2	3/8	8	5 •	4) 	5 ==	8	10	14	16	20) 1	30 +	4	0				001	40)20 t)0 												_				_
00					1					'	:		'	T		'	ŀ	' '				+	+	Π			ľ					•	1																		
						:					:						-											Ň				X												Π							
90	+				+	:	+				:			╫		+	÷		+		:			+	+			\vdash	\uparrow		Λ		+		Ħ	+			-					H	+	+	+		\vdash		_
-	+				+	:	+				:			╢	$\left \right $	+	:		+		:			+	+	+		-	-	\mathcal{A}	H	<u> </u>	$\left(+ \right)$		H	+			_					\mathbb{H}	+	+	+		\vdash		_
80	_										-			\parallel							-										ľ	Ţ	Ì		Ц									\square	\downarrow	\perp	_		L		
																																<u>ر</u> ا	$\langle \rangle$																		
						:					:						:															$\overline{\ }$		<u> </u>																	
70	+						t							Ħ					T					Ħ	T			T					7	N.										Ħ	Ť						-
	+				+	:	+				:			╫		+	:		+		:			+	+			$\left \right $					+	X	\mathbb{N}				-					+	+	-	-		\vdash		-
50	_					:					:			\parallel			:				:				_								_		\mathbb{N}	¥.			_					\parallel	+	_	_		╞		_
																																				$\langle \rangle$								Ц	_	\perp					
-						:					:						-				ŀ															V	$\left \right\rangle$														
50																	-				ŀ																														
ŀ	+					:	t				:			╢			÷		T		İ			Ħ	T								+		Ħ		$\left \right $			X				Ħ	+	+			\vdash		-
10	+	+	-		+		+	\parallel		-	:			\parallel	H	+	:	+	+		:		_	+	+	+		\vdash	+	_	\vdash		+		H	+	\mathbf{h}	+	╡	~	$\overline{\ }$	+	╟	\mathbb{H}	+	+	+		\vdash		-
ŀ	_	_				:	-							\parallel											_								_		\parallel	_			_					\parallel	+	+	+		╞		-
30						:					:						:																					Y						╽	_	_	_				
50																					-																		X						4						
						:					:						:																							~		$\overline{\ }$				\mathbb{Z}	J				
20	╡	+					t				:			╢			-		+		ŀ			†	+			\vdash					+		Ħ	+	\uparrow					1			+	\uparrow		Ł	t		
ŀ	+	+			+	:	+				:			╢		+	:		+		:			+	+								+		\mathbb{H}	+			-					+	+	-	Ŧ	\geq	\vdash	X	ł
10	+					:	+							╢		_	:		+		-			+	+	-		-	_				+		H	+	+		_						+	+	+		╞	_	
						:					:						:				-																							Ц	_	_	_		\vdash		
0																																																			
				1	00								1	0			G	R/	٩ľ	١S	IZI	ΞI] N 1	MI	LL	LIN	МЕ	ETE	ERS	S			0.	1							0	.0	1							0.	•
ſ		Coł	hl	20						G	ra	vel									_				Sa		d													S	Silt	ar	hd	C	lav	v					
Į		COL	501				(Co	ars	se			F	in	e		(Сс	oar	rse	;	Ν	/le	diı	un	n				F	in	e								D	m	a	lu		lay	у 					_
ſ	0	Key	1	Borii No	ng		D	ep	th	%	b P	ass	ing	g N	0.	%	6 P	as	sin	g N	No.										S	Sam	npl	еD)es	crit	otio	n									Т	U	JSC	s	
	<u> </u>	<u>mbol</u>		NO BH-			18	Fee R2			20	00 6	<u>51e</u> 53	ve				4 S 1	$\frac{100}{00}$			S	lar	d	γI	[e	an		Ľ	41		(CI															+		CL		-
			-	BH-		-	18			-			/0						00			-			_	_	_																				+		CL		-
			-	н- Н-		_	19			+			6 6						00			-		-					M																		+		MI		
		_		-11-	70		1,			-								-		, 				uy	y	-		. (.	1.11	<u> </u>																	+				-
			-			_				+																																		—	—	—	+				_
			-			+				+																																					+				-
			-			+				+																																					+				
																																															+				-
l																																																			
					_			<u> </u>				PR	EPD		n		Γ							20		<u>л</u> г		^ 7		 יר		TE			- г	^		^						Τ			FI	GI	UR	١E	
													P'D E F. V (TE:	Var	-							~																	<u> </u>		<u></u>	-		-			A	\ 4	-2	:61	k
												DV	4/2 VG FI		0				;	51)ز	JN	V								D 1 Ca					P	'K(J	ιE	СТ			╞			PR	OJE	ECTI	No.	-
		Z						1																		-		•			, ,																	213	8213		

٢

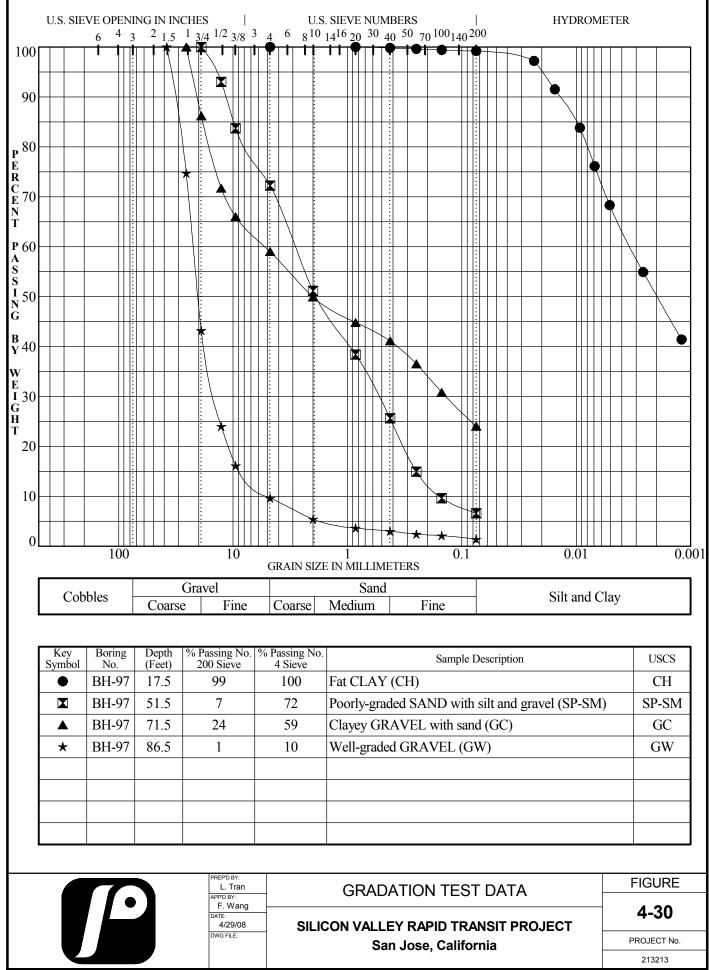


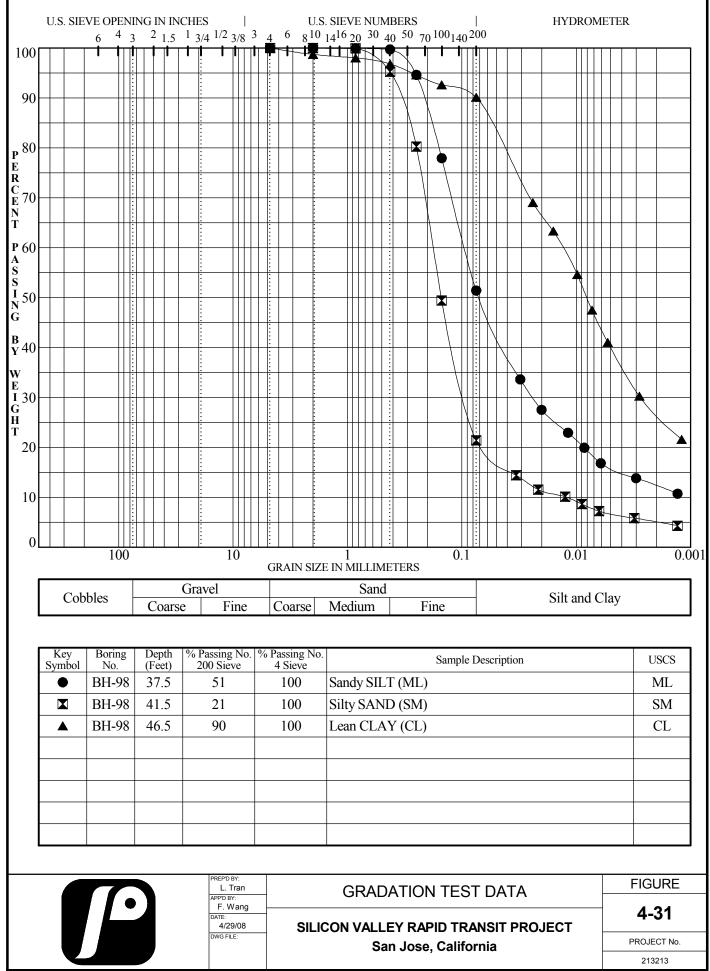
213213

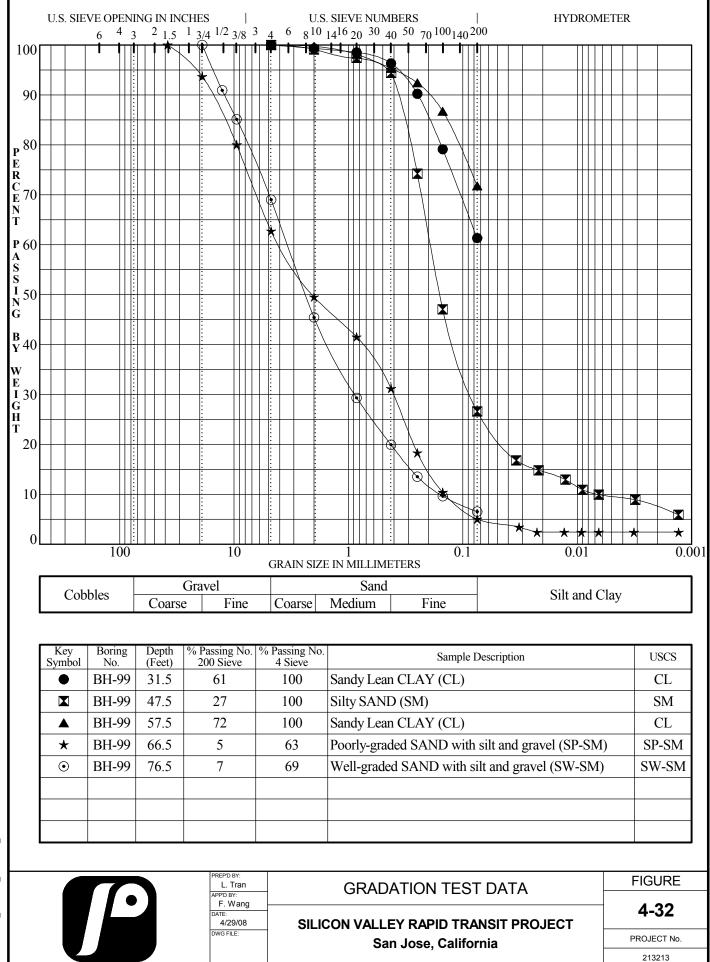


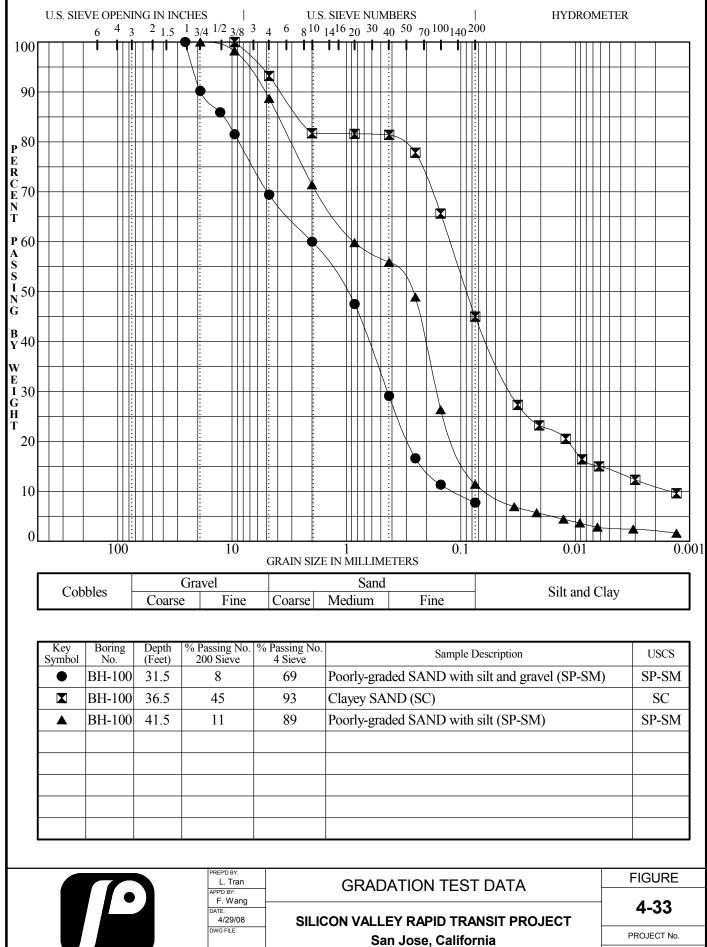
213213

GRADATION_B ALTERNATE SVRT_PHASE 2_041808.GPJ_SVRT-BART.GDT_4/29/08

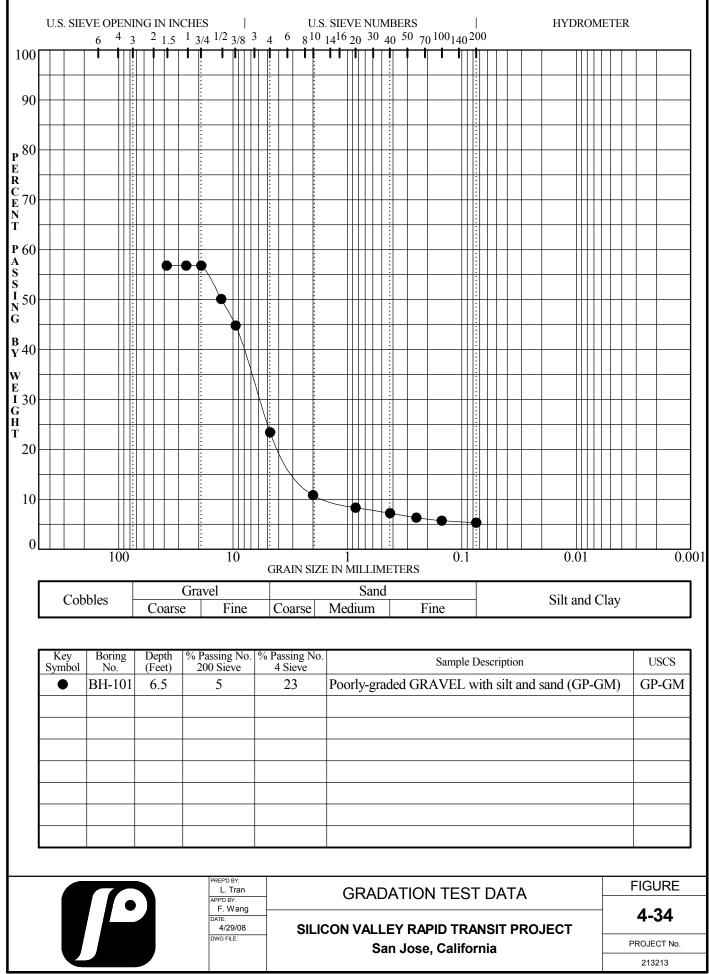


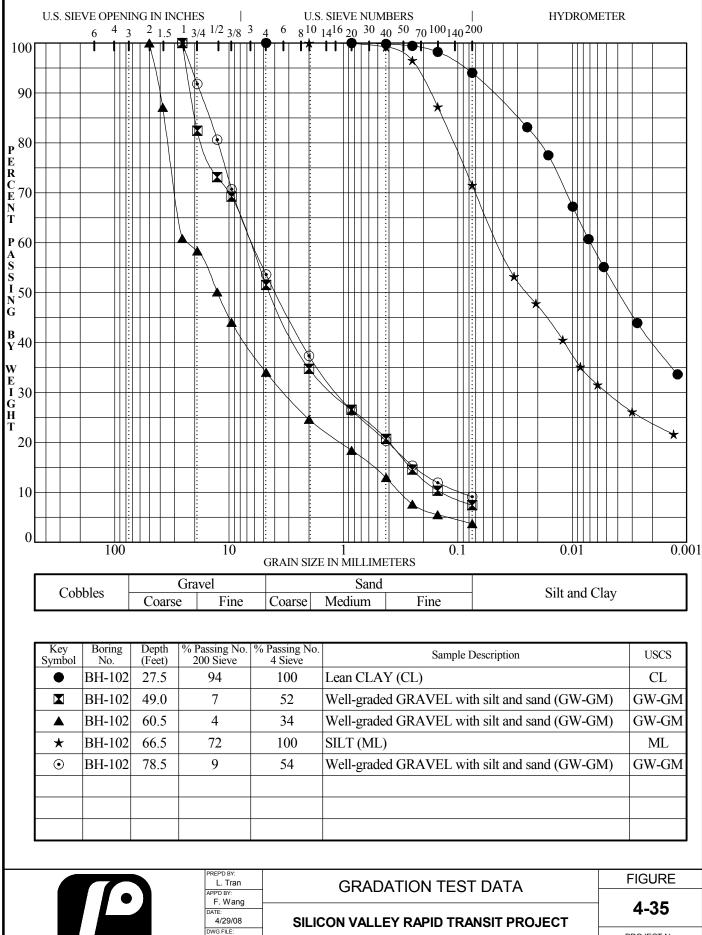

A	REP'D BY: L. Tran PP'D BY: F. Wang	GRADATION TEST DATA	FIGURE
D	ATE: 4/29/08	SILICON VALLEY RAPID TRANSIT PROJECT San Jose, California	4-28 PROJECT No.
			213213



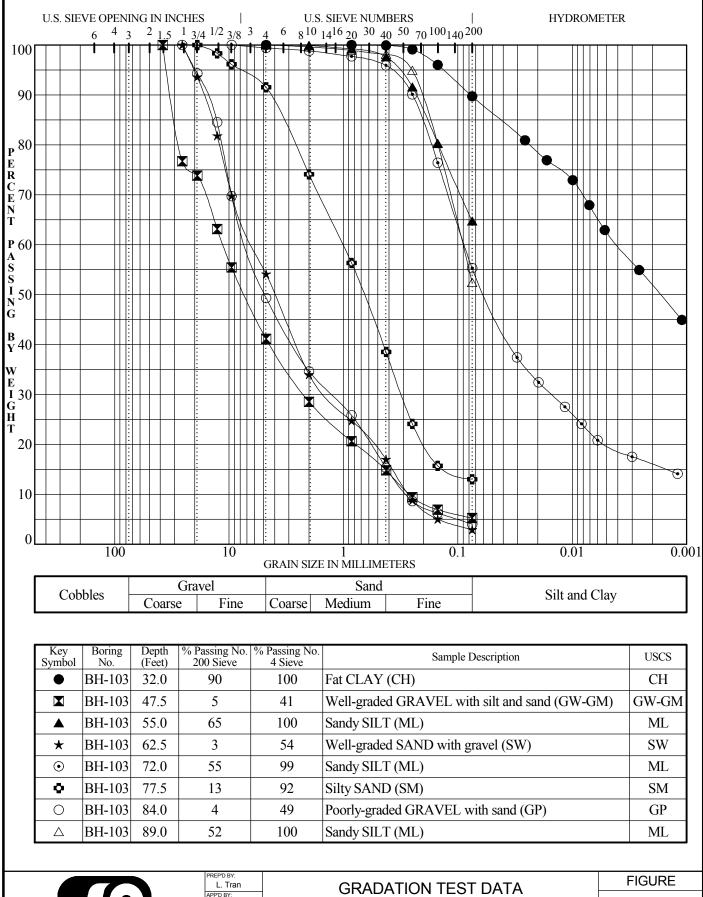

	BH-95	59.0	6	55	Poorly-graded SAND with silt and gravel (SP-SM)	SP-SM
*	BH-95	64.0	13	25	Silty GRAVEL (GM)	GM
\odot	BH-95	69.0	6	51	Poorly-graded GRAVEL with silt and sand (GP-GM)	GP-GM
0	BH-95	79.0	5	57	Well-graded SAND with silt and gravel (SW-SM)	SW-SM

PREP'D BY: L. Tran	GRADATION TEST DATA	FIGURE
APP'D BY: F. Wang	SIVADATION TEST DATA	4 20
DATE: 4/29/08	SILICON VALLEY RAPID TRANSIT PROJECT	4-29
DWG FILE:	San Jose, California	PROJECT No.
		213213





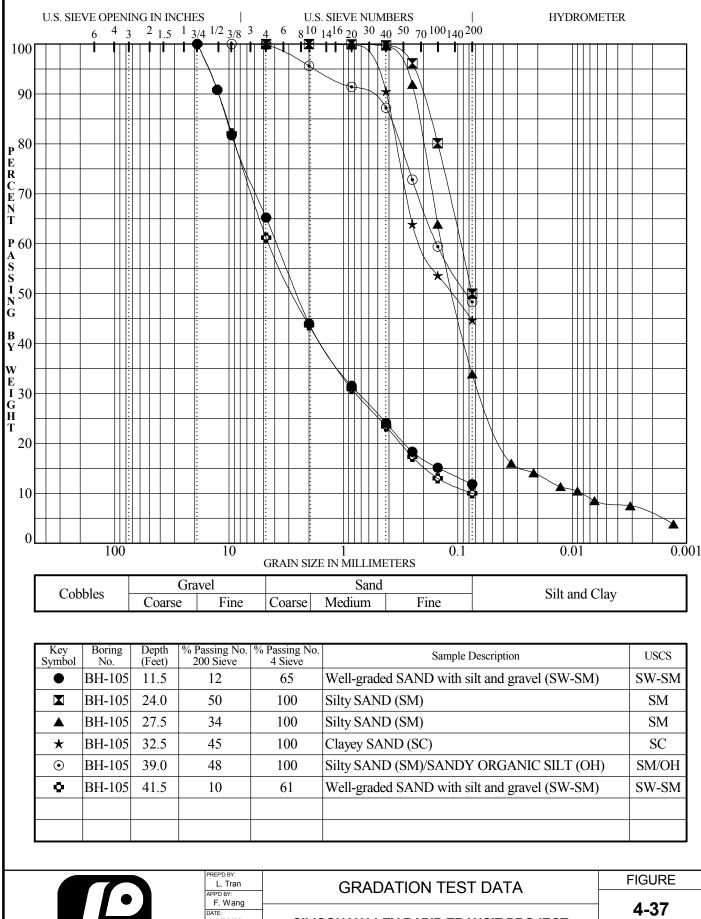
213213



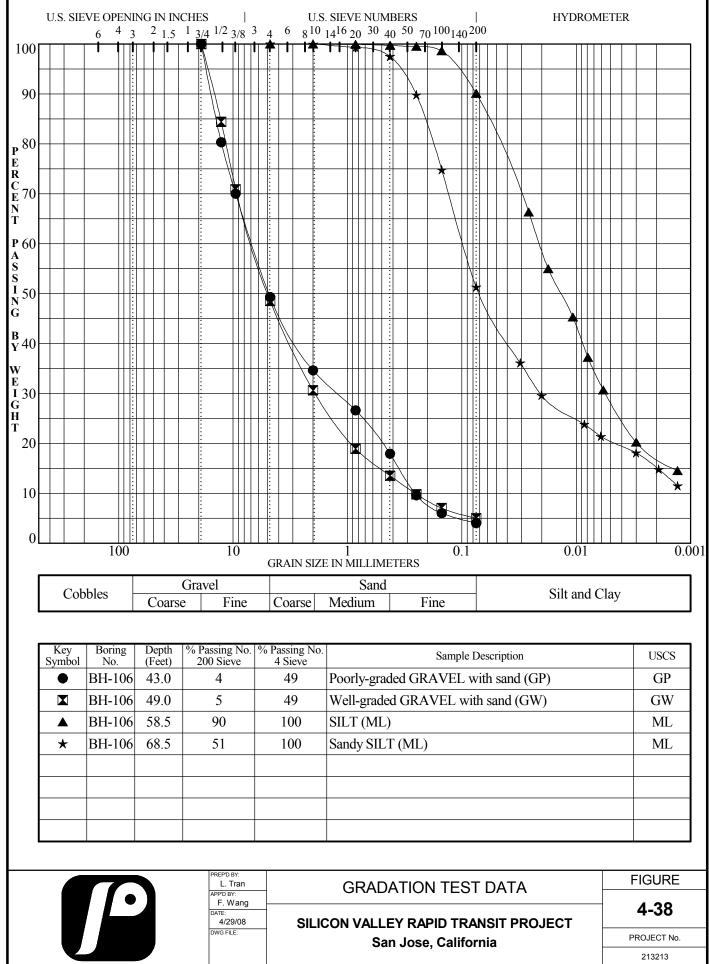
San Jose, California

GRADATION_B SVRT_PHASE 2_041808.GPJ SVRT-BART.GDT 4/29/08

PROJECT No. 213213



 PREPD BY:
 L. Tran
 GRADATION TEST DATA
 FIGURE


 APPD BY:
 F. Wang
 Date:
 4/29/08
 4-36

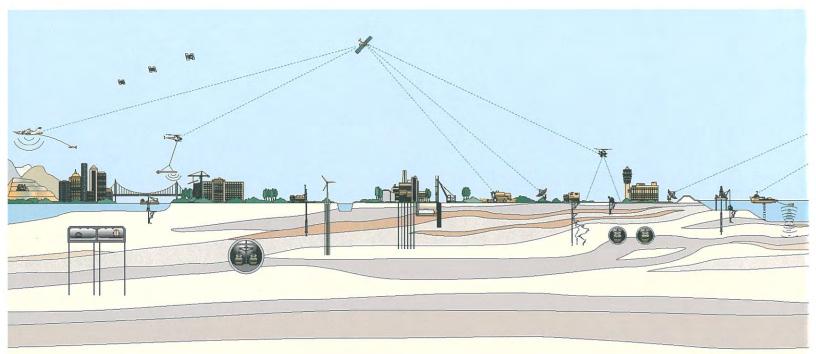
 DATE:
 4/29/08
 SILICON VALLEY RAPID TRANSIT PROJECT
 PROJECT No.

 DWG FILE:
 San Jose, California
 213213

ATE: 4/29/08 SILICON VALLEY RAPID TRANSIT PROJECT DWG FILE: PROJECT No. San Jose, California 213213

Appendix 5: Cyclic Triaxial Test Results

FUGRO WEST, INC.


APPENDIX 5 CYCLIC TRIAXIAL STRENGTH TEST RESULTS

GEOTECHNICAL EXPLORATION PROGRAM CENTRAL AREA GUIDEWAY

SILICON VALLEY RAPID TRANSIT (SVRT) PROJECT SAN JOSE, CALIFORNIA

Prepared for: HMM/Bechtel

JANUARY 2008 Fugro Project No. 1637.001

REPORT DOCKET

APPROVAL

This document is approved by the following:

Name	Title	Signature	Issue Date
Michael Paquette, P.E.	Project Engineer	Muhal Forgette	1/21/08
Edwin Woo, P.E., G.E.	Principal Engineer	Edwi P. Woo	1/21/08

REVISION HISTORY

Revision	Date	Change	Approval
0	January 21, 2008	Appendix 5 Cyclic Triaxial Strength Test Results.	MP

1000 Broadway, Suite 440 Oakland, California 94607 **Tel: (510) 268-0461** Fax: (510) 268-0545

January 21, 2008 Project No. 1637.001

HMM/Bechtel 3103 North First Street San Jose, California 95134

Attention: Mr. Thomas Hunt, P.E.

Subject: Appendix 5 – Cyclic Triaxial Test Results, Central Area Guideway of SVRT Project, San Jose, California

Dear Mr. Hunt:

Fugro is pleased to submit this copy of "Appendix 5 – Cyclic Triaxial Test Results," describing the test equipment, procedures and results for the Central Area Guideway of the SVRT Project in San Jose, California.

We appreciate this opportunity to be of continued service to HMM/Bechtel. Please contact Michael Paquette at (510) 267-4441 if you have any questions regarding the information presented in this appendix.

Sincerely,

FUGRO WEST, INC.

Michael Paquette, P.E. Project Engineer

Edwi J. Woo

Edwin P. Woo, P.E., G.E. Principal Engineer

MP/EW:rh

Copies Submitted: (PDF) Addressee

CONTENTS

		Pa	age
REP	ORT	DOCKET	1
1.0	INTF	RODUCTION	1
	1.1	Project Description	
	1.2	Geotechnical Exploration Program Overview	
	1.3	Laboratory Testing Program Overview	2
		1.3.2 Sample Recovery and Handling	
2.0	X-R/	AY TEST PROCEDURES AND RESULTS	
	2.1	Overview	3
	2.2	Procedure	
	2.3	Results and Limitations	3
3.0	CON	SOLIDATED UNDRAINED CYCLIC TRIAXIAL TEST PROCEDURES	4
	3.1	Introduction	4
	3.2	Consolidated Undrained Cyclic Triaxial Test Standards and Procedures	4
	3.3	Consolidated Undrained Cyclic Triaxial Test Results	
4.0	LIMI	TATIONS	5

FIGURES

Figure

X-ray of Sample No. 11, Boring B-90	A5-1
X-ray of Sample No. 17, Boring B-90	A5-2
X-ray of Sample No. 10, Boring B-91	A5-3
X-ray of Sample No. 19, Boring B-105	A5-4
Results of Consolidated Undrained Cyclic Triaxial Tests	A5-5a to A5-13b

'AY

1.0 INTRODUCTION

This appendix presents the results of the Cyclic Triaxial Compression tests conducted by the geotechnical laboratory of Fugro Consultants LP in Houston, Texas, (Fugro Consultants) as a part of the advanced laboratory-testing program for the Central Area Guideway portion of the Silicon Valley Rapid Transit (SVRT) Project.

1.1 **PROJECT DESCRIPTION**

The Santa Clara Valley Transportation Authority (VTA) intends to construct the SVRT Project in San Jose, California. This will be a 26.2-km (16.3-mile) extension of the Bay Area Rapid Transit (BART) heavy rail rapid transit system from the planned terminus at the end of the Warms Springs Extension in Fremont, to San Jose. The proposed alignment currently includes several new stations and vehicle storage and maintenance facilities. The alignment is composed of two major segments:

- 1) The "Northern Area" that will be approximately 11.5 miles of at-grade, elevated and cut-and-cover track from Warm Springs to San Jose; and
- 2) The "Central Area Guideway", a 5.1-mile-long tunnel, consisting of twin bored tunnels and cut-and-cover structures through downtown San Jose.

As currently planned, the Central Area Guideway includes at-grade and open cut track, cut-and-cover stations, and a cut-and-cover track crossover structure. The cut-and-cover stations and the crossover structures have a cumulative length of approximately 4,970 feet. The remaining 4.14 miles of the alignment will be twin 19.5-foot-diameter tunnels.

This investigation and report cover the 5.1-mile-long Central Area Guideway only.

1.2 GEOTECHNICAL EXPLORATION PROGRAM OVERVIEW

The joint venture of Hatch Mott MacDonald T & T, Inc., and Bechtel Infrastructure Corporation (HMM/Bechtel) is providing engineering design services for the Central Area Guideway of the SVRT Project to the VTA. HMM/Bechtel has subcontracted with a number of companies to conduct the geotechnical field exploration program for the project. HMM/Bechtel's primary subcontractors for the geotechnical exploration program include: Fugro, Parikh Consultants (Parikh) and Pitcher Drilling Company (Pitcher).

The three companies, Fugro, Parikh, and Pitcher, conducted the majority of the geotechnical field exploration program for the Central Area Guideway of the SVRT Project from October 2004 to March 2005. This supplementary geotechnical field investigation was performed between March 2007 and August 2007. The intent of the field investigation program was to obtain geotechnical data that would aid in the design and construction of the proposed tunnel and cut-and-cover structures.

In general, the geotechnical field investigations explored subsurface conditions along the proposed Central Area Guideway. The explorations were within the vicinity of the proposed Eastern and Western Portals, at the two proposed ventilation structures, and at the proposed stations, including Alum Rock Station, Downtown San Jose Station and Diridon/Arena Station. The geotechnical exploration program included:

- 2004 / 2005 Investigation
 - o 76 Rotary Wash Borings (by others); and
 - 146 CPTs (by Fugro).
- 2007 Investigation
 - o 18 Rotary Wash Borings (by others); and
 - o 22 CPTs (by Fugro).

Figure 3-1 in the main report provides a map of the exploration locations. These locations were selected by HMM/Bechtel based on the following considerations: 1) the requirements of the tunnel designer, 2) the location of existing geotechnical data, 3) reducing impacts on private property, and 4) the avoidance of existing underground and overhead utilities.

The two companies, Parikh and Pitcher, conducted the boring investigation program. The investigation included soil sampling and in-situ testing. Soil sampling consisted of Pitcher Barrel sampling, Shelby tube sampling, SPT sampling and California sampling. The in-situ testing conducted in the borings consisted of field vane shear testing, pressuremeter testing, downhole geophysical logging, and piezometer installation. For further details regarding the boring investigation program and results, please refer to the main report.

1.3 LABORATORY TESTING PROGRAM OVERVIEW

1.3.1 Overview of Consolidated Undrained Cyclic Triaxial Testing Program

Fugro Consultants' geotechnical laboratory conducted the Consolidated Undrained Cyclic Triaxial (CUCTX) laboratory-testing program for the Central Area Guideway of the SVRT Project. This laboratory program was conducted on samples selected by HMM/Bechtel and provided by Parikh from soil borings located along the tunnel segment. This appendix provides a detailed description for the CUCTX tests along with a summary of the interpreted parameters.

The scope of the advanced laboratory-testing program also included the x-raying of assigned soil samples. A discussion of the x-ray testing procedure is provided in Section 2.0 below, with x-ray images attached to this Appendix.

1.3.2 Sample Recovery and Handling

Parikh conducted soil sampling at intervals typically ranging from 5 to 10 feet in accordance with the project specifications. Upon sample recovery, undisturbed portions of the soil sample tubes were sealed and transported to Parikh's lab. For further details regarding sample recovery and handling, refer to the main report. Soil samples assigned for advanced laboratory testing were transported in wooden Shelby tube holders designed to maintain the tubes vertical orientation during transit to Fugro's laboratory in Oakland, California. The samples where then packed in specially fabricated, padded containers designed to minimize disturbance, and maintain an upright (vertical) orientation of the samples during shipping. The samples were shipped to Fugro Consultants' geotechnical laboratory in Houston, Texas, for testing.

2.0 X-RAY TEST PROCEDURES AND RESULTS

2.1 OVERVIEW

Fugro Consultants conducted x-ray tests on soil samples assigned by HMM/Bechtel, in general accordance with ASTM D4452, Standard Test Methods for X-Ray Radiography of Soil Samples. X-ray radiography provides a qualitative measure of the internal structure of the sample's content, as displayed by the varying shades of gray resulting from variations in the soil sample. These varying shades of gray enable one to evaluate items such as the following:

- Sample quality, as noted by signs of voids, drilling wash, separations in the soil caused by gas expansion, unusual changes in bedding planes or layering;
- The presence of inclusions in the sample, such as shells or calcareous nodules; and
- The presence of naturally occurring fissures, bedding planes, voids, layering, gravel, and silts seams.

Results of the x-ray tests are used to help select appropriate and relatively undisturbed soil specimen for the laboratory testing.

2.2 PROCEDURE

In accordance with ASTM D4452, x-rayed soil samples were viewed in a slightly darkened room. Information regarding the tested sample was recorded on the laboratory's tube log sheet. All pertinent project information, including project number, boring, sample, and depth, was recorded on the tube log sheet. Technicians use the x-ray photographs to select the location to cut the tubes to obtain the specimen for advanced testing.

2.3 **RESULTS AND LIMITATIONS**

The x-ray photographs are attached to this appendix. Interpretation of x-ray photographs involves some degree of uncertainty. The interpretation of the radiographs is

dependent upon the quality of the radiograph and the amount of experience the technician has in performing these interpretations.

3.0 CONSOLIDATED UNDRAINED CYCLIC TRIAXIAL TEST PROCEDURES

3.1 INTRODUCTION

The CUCTX tests were conducted in accordance with ASTM D 5311. In the CUCTX test, the sample is prepared and mounted in a triaxial cell similar to a consolidated-undrained triaxial cell. The sample is saturated using backpressure and then isotropically (equal axial and radial stress) consolidated to the assigned stress. The sample is then subjected to a sinusoidal varying axial load. Cyclic load, axial deformation and porewater pressure versus time are recorded.

3.2 CONSOLIDATED UNDRAINED CYCLIC TRIAXIAL TEST STANDARDS AND PROCEDURES

CUCTX tests were performed using an electro-hydraulic closed-loop loading system (MTS-793) manufactured by MTS Systems Corporation and a special control and data acquisition software developed by Fugro for cyclic triaxial testing. The test procedure followed the technical requirements of the ASTM Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil, Designation D 5311. The procedure for the CUCTX tests typically consists of the following steps:

- 1. *Cell Preparation*: Using the assigned confining pressure, strength estimates and specimen area, the proper load cell and pressure transducers are selected.
- 2. Specimen Preparation: The selected portions of the tubes were cut into segments with a mechanical hacksaw (18 teeth per inch). A wire saw was used to separate the soil from the surrounding tube in an effort to reduce potential disturbance upon extrusion. In addition, each tube was marked such that all test specimens had the same orientation when sheared. The sample was then extruded from the cut portion of the tube using a hydraulically actuated ram.

Test specimens were trimmed to an approximate 2-inch diameter by 4¼-inch height. After specimens were trimmed, they were mounted in the triaxial testing apparatus and aligned with the cell base with porous stones at each end. Each specimen had top, bottom and radial drainage boundaries during consolidation. Radial drainage was provided by spirally oriented, ¼ inch wide, Whatman No. 1 filter strips, placed at about ¼-inch spacing.

3. *Back Pressure Saturation*: Specimen saturation was achieved through back pressure by simultaneously increasing the chamber and back pressure. The pressure is applied incrementally to limit the stress applied to the sample.

- 4. *Consolidation*: The soil specimen is isotropically consolidated to the assigned stress. The samples are typically consolidated to an effective stress approximately equal to the estimated overburden pressure. Specimens were allowed to consolidate at the prescribed stresses for about 24 hours prior to cyclic loading.
- 5. Cyclic Loading: Upon completion of consolidation, a sinusoidal cyclical load was applied to each test specimen at a frequency of 1 hertz (Hz). The specimens were maintained in an undrained (no volume change) state during cyclic loading. The system collected 200 data points per channel (vertical displacement, vertical force, pore pressure, and cell pressure) for each loading cycle, independent of the loading frequency. Fugro's software is capable of ramping the axial force at a given rate, hold the load for a given period, and cycle at a given frequency using the MTS 793 controller.

Cyclic loading continued until failure occurred or 10% axial strain occurred. Failure could be readily defined if it occurred within the tested cycles; otherwise, failure was defined by data extrapolation. A special Excel worksheet was used to process the raw data files created by the data acquisition and control software.

3.3 CONSOLIDATED UNDRAINED CYCLIC TRIAXIAL TEST RESULTS

During consolidation and loading the necessary data (time, vertical and horizontal forces, shear deformations, pore pressures and transducer excitation voltage) were recorded using an automated data-acquisition system and electronically filed. Specialized Excel worksheets, along with a Visual Basic code (VBA) were used to reduce the data files into engineering units in tabular and graphical format. Figures A5-1 through A5-18 present the CUCTX test results.

Results such as moisture content, initial unit weight, soil type, vertical effective consolidation stress and confinement pressure are summarized in Table A15-1 "Summary of CUCTX Test Results."

4.0 LIMITATIONS

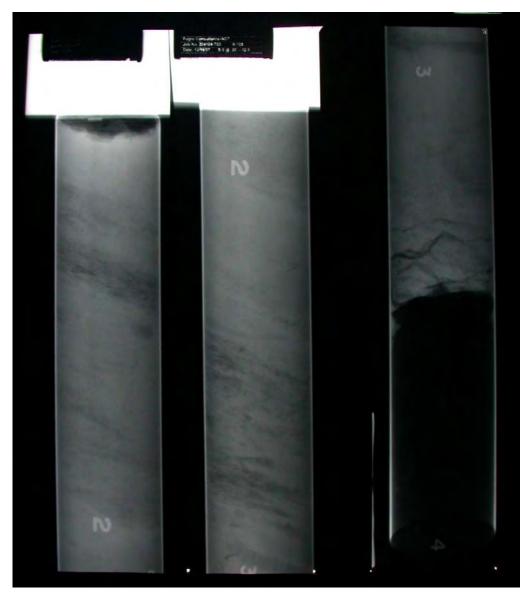
Our services consist of laboratory testing and data evaluations that are made in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either expressed or implied.

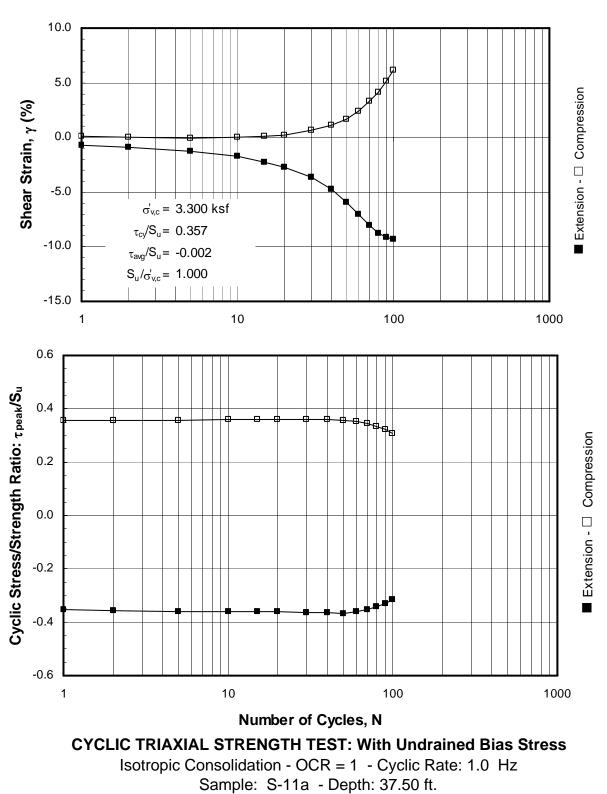
The test data provided in this appendix are from laboratory testing performed on samples from subsurface explorations by others. The explorations indicate subsurface conditions only at specific locations and times, and only to the depths penetrated. Variations may exist and conditions not observed or described in this report could be encountered during construction. Our laboratory tests results presented in this appendix are based on the standards and procedures indicated herein. HMM/Bechtel provided the laboratory test assignments.

This appendix has been prepared for the exclusive use of HMM/Bechtel and their consultants for specific application to the SVRT project as described herein. In the event that there are any changes in the ownership, nature, design, or location of the proposed project, or if any future additions are planned, the results contained in this appendix should not be considered valid unless: 1) the project changes are reviewed by Fugro, and 2) results presented in this appendix are modified or verified in writing. Reliance on this report by others must be at their risk unless we are consulted on the use or limitations. We cannot be responsible for the impacts of any changes in geotechnical standards, practices, or regulations subsequent to performance of services without our further consultation. We can neither vouch for the accuracy of information supplied by others, nor accept consequences for unconsulted use of segregated portions of this report.

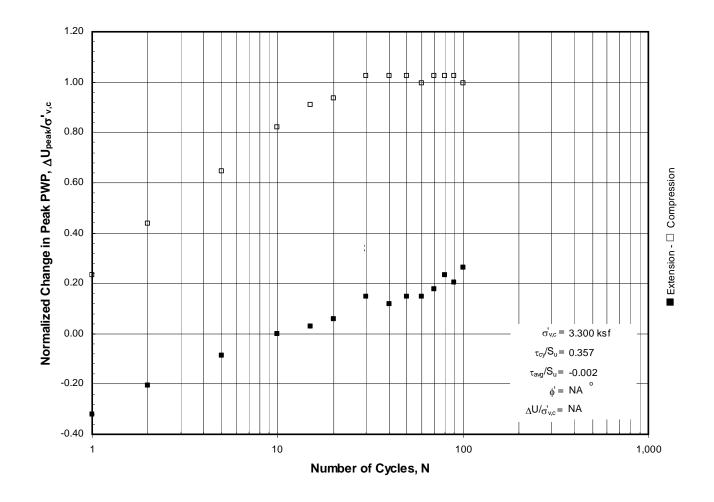
FIGURES

X-Ray of Sample No. 11, Boring B-90

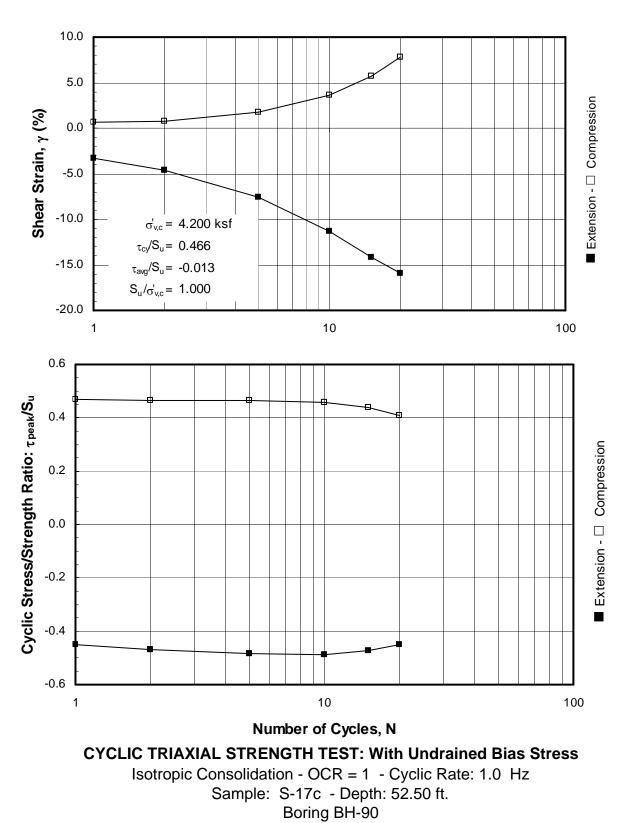

X-Ray of Sample No. 17, Boring B-90



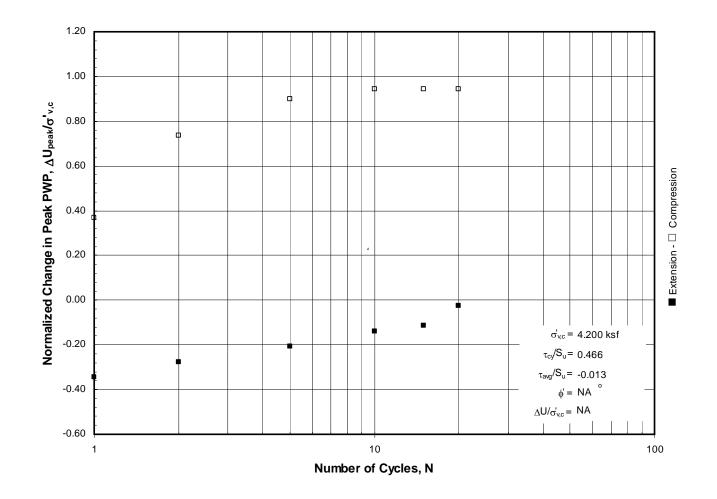
X-Ray of Sample No. 10, Boring B-91

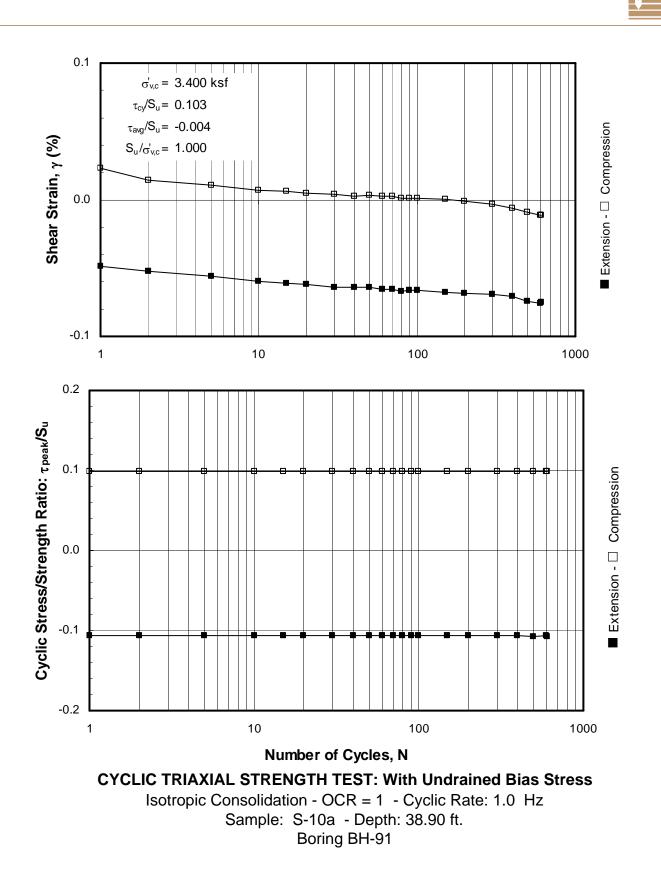


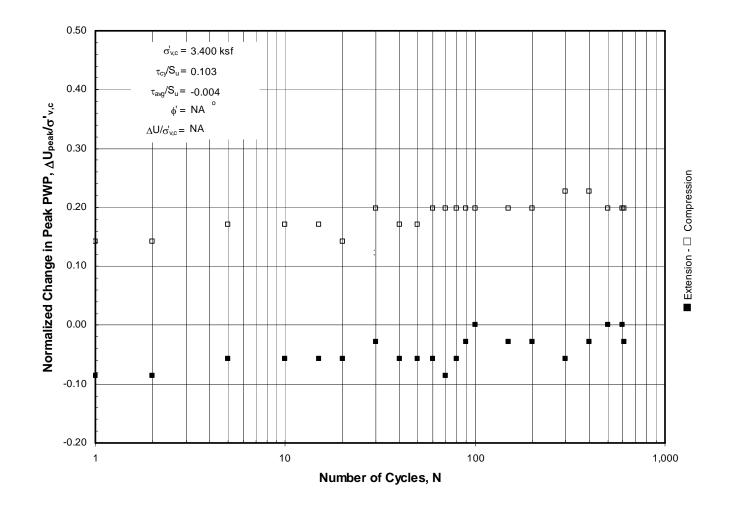
X-Ray of Sample No. 19, Boring B-105



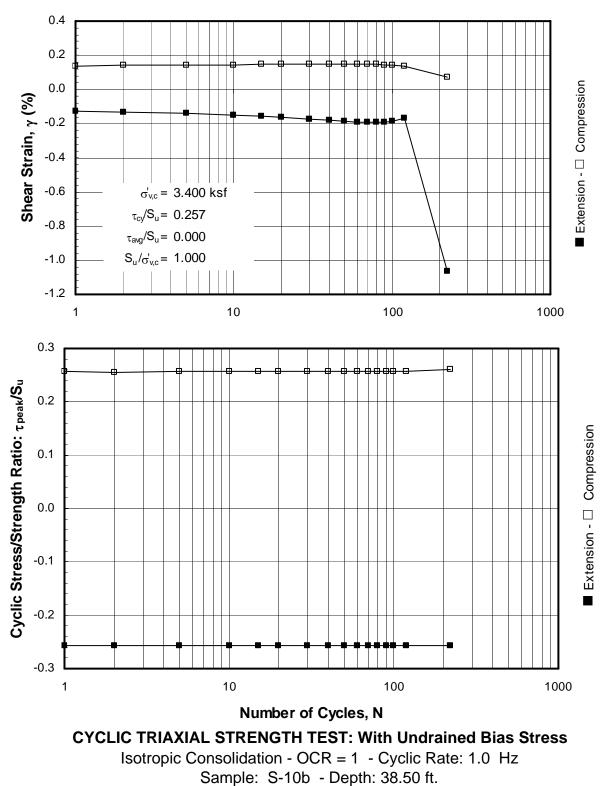
Boring BH-90



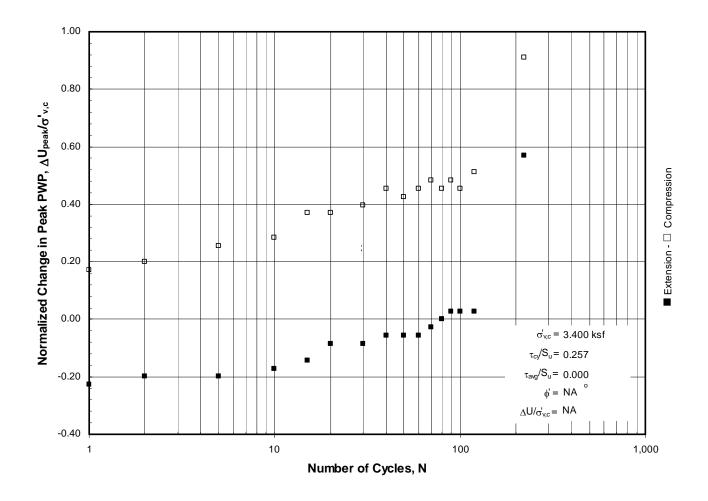

Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-11a - Depth: 37.50 ft. Boring BH-90

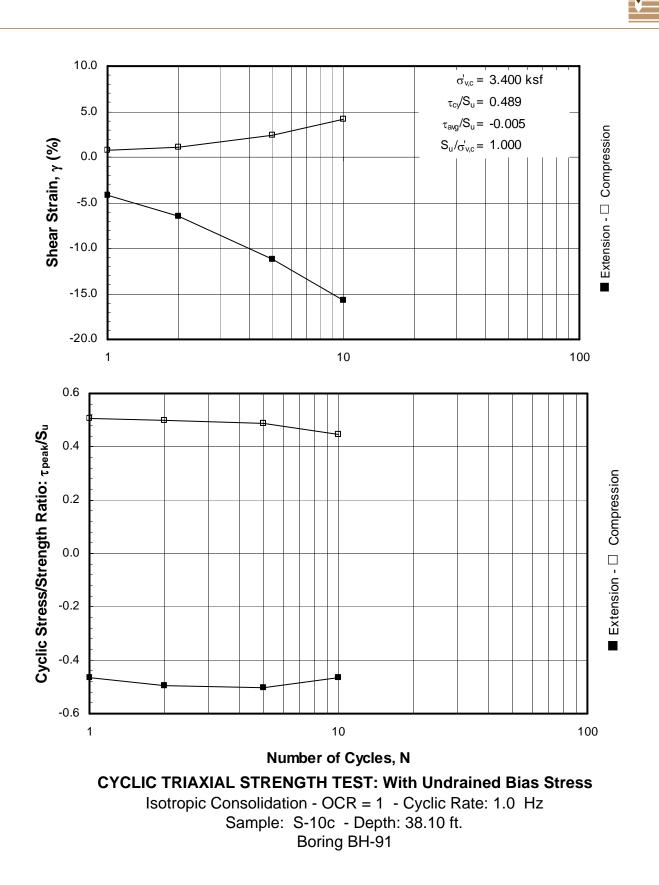


Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-17c - Depth: 52.50 ft. Boring BH-90

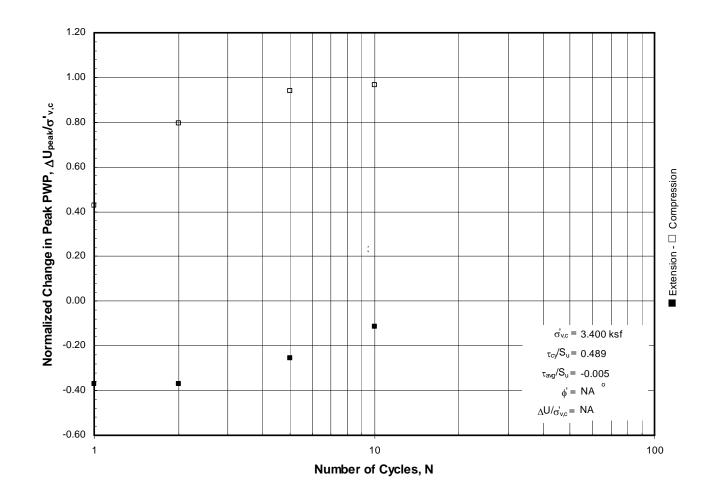


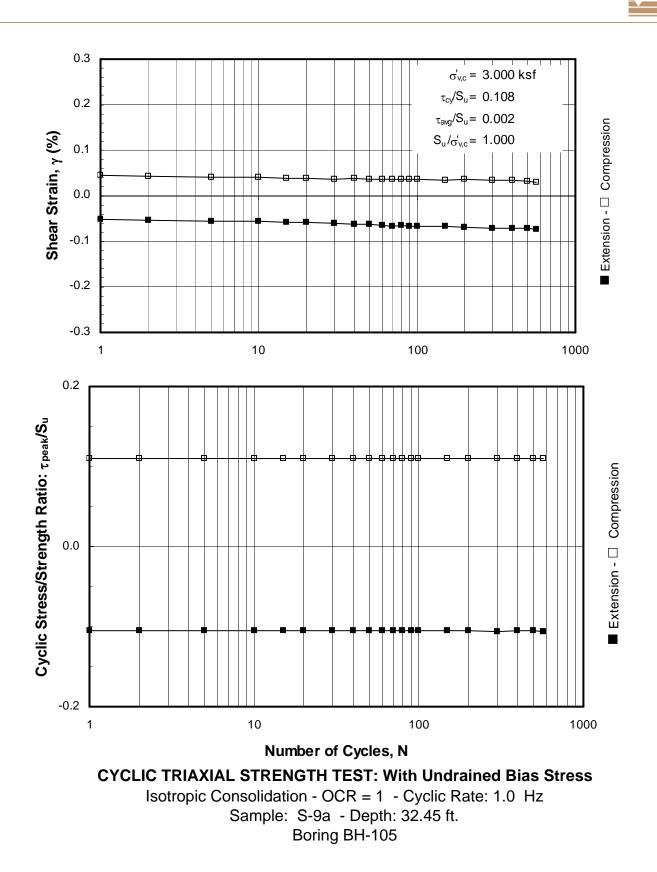
Central Area Guideway of SVRT Project San Jose, California


Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-10a - Depth: 38.90 ft. Boring BH-91

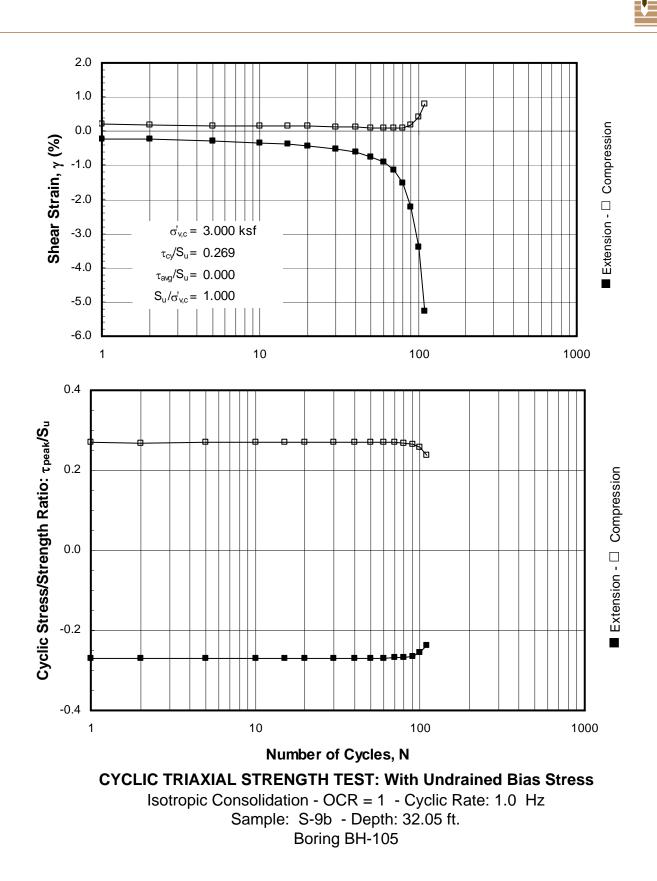

Boring BH-91

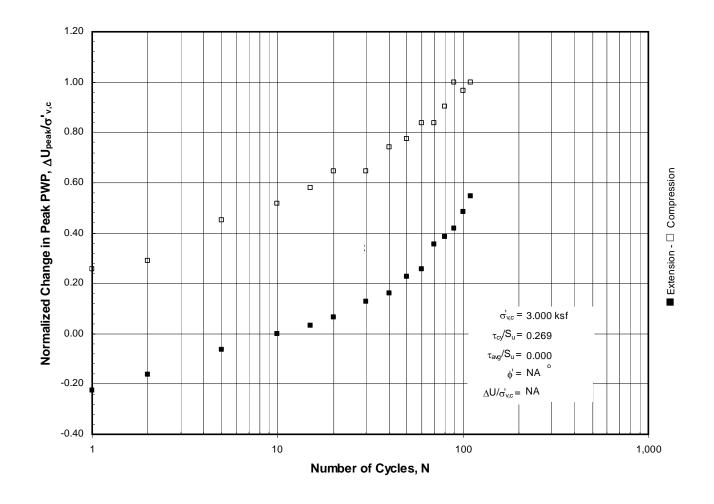
Central Area Guideway of SVRT Project San Jose, California

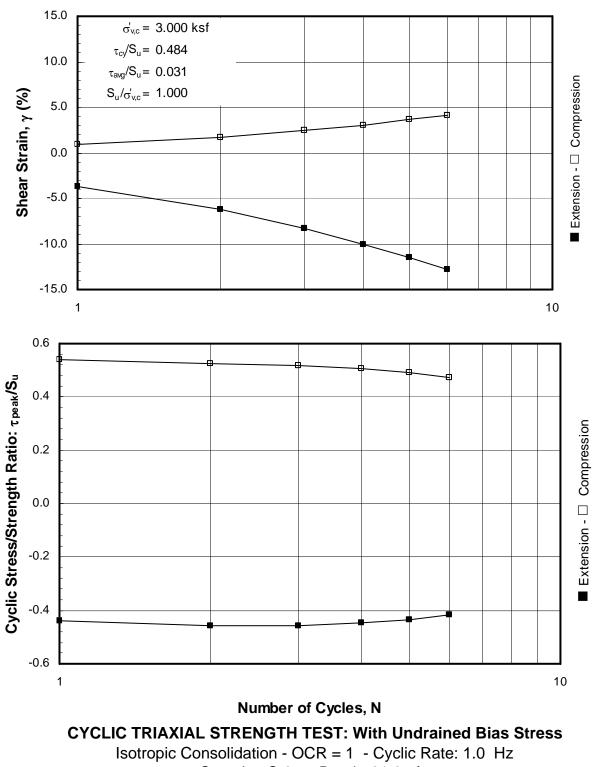



Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-10b - Depth: 38.50 ft. Boring BH-91

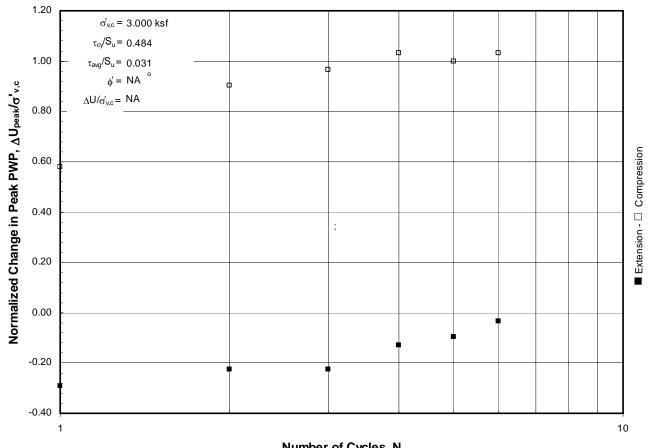



Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-10c - Depth: 38.10 ft. Boring BH-91




Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-9a - Depth: 32.45 ft. Boring BH-105

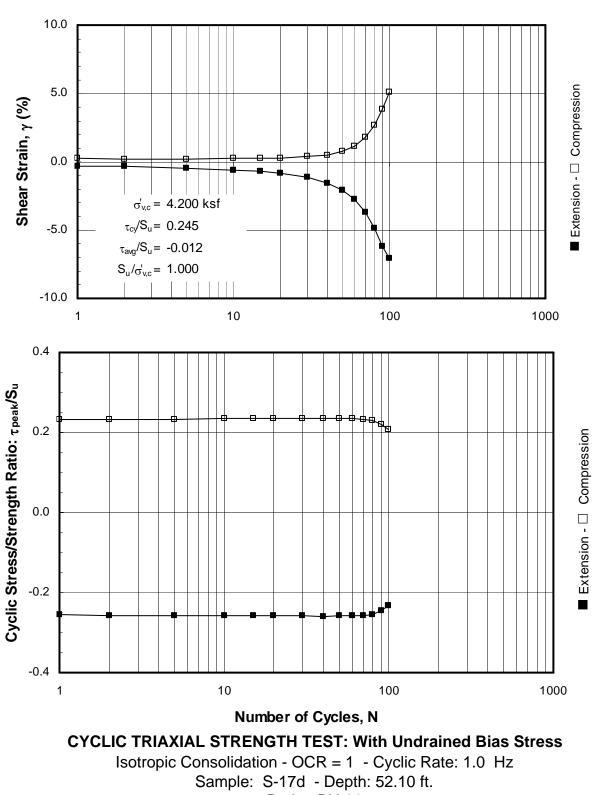
Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-9b - Depth: 32.05 ft. Boring BH-105



Sample: S-9c - Depth: 31.65 ft.

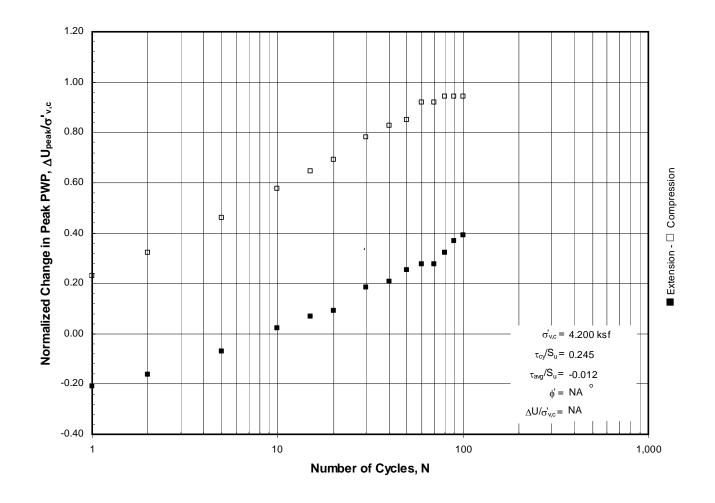
Boring BH-105

Central Area Guideway of SVRT Project San Jose, California



Number of Cycles, N

CYCLIC TRIAXIAL STRENGTH TEST: With Undrained Bias Stress


Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-9c - Depth: 31.65 ft. Boring BH-105

Boring BH-90

Central Area Guideway of SVRT Project San Jose, California

Isotropic Consolidation - OCR = 1 - Cyclic Rate: 1.0 Hz Sample: S-17d - Depth: 52.10 ft. Boring BH-90

LIQUID LIMIT, PL	ASTIC LI	MIT, AND	PLASTICIT	Y INDE	X: ASTN	I D 4318	
Project Number: 1637-001	T	est Spec. fror	n Eng. Property	v Test:	Вс	oring No.:	BH-90
Task Number:			řj	Spec.		mple No.:	
Project Name:			CU ta=0	· ·	Penetration/E		
Visual Identification: A gun (20)		1 4 4	1	and the second s		No.: 0	
	ne an	sala a a a a a a a a a a a a a a a a a a	<u>erry nou</u>	<u>Contener</u> P			
Signs of organic soil behavior: No;	100 Bolt Bolt Bolt Bolt Bolt Bolt Bolt Bolt	ongy PL; sign	s of oxidation;	organic fib	ers; black c	olor, humus	odor)
INITIAL VISUAL USCS GROUP SYMBOL (1)				TE	STING EQUIP	MENT USED	2
			Plastic Lim	nit:			Hand Rolled
SPECIMEN PREPARATION						Between	Glass Plates
Wet 🖉	vashed on #40	Sieve				Mechanical F	Rolling Device
Dry (Air) Dry	Sieved on # 40	Sieve	Liquid Lir	nit:			Manual
Dry (Oven) Mechanically Pushe	ed Through # 40) Sieve	Apparatu	s No. ()		Mechanica
Mixed on Glass Plate and Removed Medi	um Plus Sand I	Particles	Casagrand	de / ASTM			Metal
Mixing water 🔎 Distilled; Demineral	ized; or other		Grooving 1	Tool:			Plastic
AS-RECEIVED WATER CONTENT (OVE	N DRIED)						
Container No.			_			Flow Curve	
Mass Moist Soil + Container, M1 (g)					F		
Mass Dry Soil + Container, M2 (g)				(%	-		
Mass Container, M3 (g)			Average	int (
WATER CONTENT, w_{o} (%)				onte	-		
Circle Approximate Max. Grain Size in "Sample'	': 3" 1-1/2" 3/4"	3/8" 3/8" #4	#10 <#10	Water Content (%)	-		
	******			Vate	F		
PLASTIC LIMIT		1			-		
Container No.	3				L_+_+_+	╺╉╼╉╼╋╼╋╼╋╼╋	╶╻╶╻╶╻╶╽╶╽╶╽╶╽╶╽┥┥┥┥ ╡
Mass Moist Soil + Container, M1 (g)	<u>8.81</u>	<u>M.14</u>			10 N	15 2 ⁻	
Mass Dry Soil + Container, M2 (g)	7.44	1.76			NUI	mber of Blow	5
Mass Container, M3 (g)	1.24	1.27		Avera	ige		
WATER CONTENT, w (%)	212	515		2-1			
LIQUID LIMIT							
Container No.		2					
Mass Moist Soil + Container, M1 (g)	9.68	10.17			LINEA	REGRESSI	ON ANALYSIS
Mass Dry Soil + Container, M2 (g)	7.67	205			w at	N = 25 Blows	s
Mass Container, M3 (g)	1.21	1.2 1			Coef. of I	Determination,	r
WATER CONTENT, w (%)	31.4	31.3					
NUMBER OF BLOWS, N	21	aa			Ave	rage	
LIQUID LIMIT, ASTM SINGLE POINT	and a state of the second second second second second second second second second second second second second s	ananai in Anani in Litracenation			31		
Recommended range of Blow Count for Multiple Point I	viethod A:	*****					
15 to 25, 20 to 30, and 25 to 35. Recommended range of Blow Count for Single Point M	ethod B:		SUMMARY				
20 to 30.			TEST METHO		A B	We	
w_o or w = ((M1-M2) / (M2-M3)) \times 100			AS	-RECEIVE	D WATER C	ONTENT, w	AND AND AND AND AND AND AND AND AND AND
LL = Water Content at N=25 blows, from Flow Curve. LL by Single Point = $w \times (N / 25)^{0.121}$					L	IQUID LIMI	
PI = LL - PL					PL	ASTIC LIMI	T, PL 21
LI = (w _o - PL) / (LL - PL)						TICITY INDE	
NOTES: (1) USCS: Unified Soil Classification Syste	em.					JIDITY INDE	
(2) Wet = Wet Preparation Method, and Dry	= Dry Preparatio	n Method			NTS ABOVE		
REMARKS:			F	PLASTICI	Y CHART C	LASSIFICA	HUN
a li som	n.a		no la	h_{1}			11
Prepared By: VLH Date:	4-0	Dry Masse	s By: <u>16</u> 7-	14	Sp ∽⁄		y: KB1-24-08
Tested By: LR Date: -2	5-00	Calculate	ed By: <u>Cy</u>	·24·Q	5	Reviewed B	у:
207.1 (11/30/07)	Han	dLimits.xls, Ha	nd 1/21/2008		FUGR	O CONSULT	ANTS, INC.

Date Assigned: 10/22/2007	Al an Standy lean
	AND PLASTICITY INDEX: ASTM D 4318
	pec. from Eng. Property Test: Boring No.: BH-91
Task Number: X Yes;	
and the second	t/ CyCU ta=0 Penetration/Depth (ft): 38-9
Visual Identification:Sadk_G/	flw & pkt Test No.: of
	PL; signs of oxidation; organic fibers; black color, humus odor)
INITIAL VISUAL USCS GROUP SYMBOL (1):	TESTING EQUIPMENT USED
	Plastic Limit: Hand Rolled
SPECIMEN PREPARATION	Between Glass Plates
Wet Contract Washed on # 40 Sieve	Mechanical Rolling Device
Dry (Air) Dry Sieved on # 40 Sieve	Liquid Limit: Manual
Dry (Oven) Mechanically Pushed Through # 40 Siev	Apparatus No. () Mechanica
Mixed on Glass Plate and Removed Medium Plus Sand Partic	es Casagrande / ASTM Metal
Mixing water Distilled; Demineralized; or other	Grooving Tool: Plastic
AS-RECEIVED WATER CONTENT (OVEN DRIED)	
Container No.	Flow Curve
Mass Moist Soil + Container, M1 (g)	
Mass Dry Soil + Container, M2 (g)	
Mass Container, M3 (g)	Average
WATER CONTENT, w _o (%)	Average (%) 3/8" #4 #10 <#10
Circle Approximate Max. Grain Size in "Sample": 3" 1-1/2" 3/4" 3/8"	<u>3/8" #4 #10 <#10</u>
PLASTIC LIMIT	Ma
Container No. DIA	
Mass Moist Soil + Container, M1 (g) 8.	10 15 20 25 30 Number of Blows
Mass Dry Soil + Container, M2 (g) 0.90 0.8.	
Mass Container, M3 (g)	Average
WATER CONTENT, w (%)	19
Container No.	8(D)
Mass Moist Soil + Container, M1 (g)	
Mass Dry Soil + Container, M2 (g)	w at N = 25 Blows
Mass Container, M3 (g)	Coef. of Determination, r
WATER CONTENT, W (78)	
NUMBER OF BLOWS, N	Average
LIQUID LIMIT, ASTM SINGLE POINT	
Recommended range of Blow Count for Multiple Point Method A : 15 to 25, 20 to 30, and 25 to 35.	SUMMARY
Recommended range of Blow Count for Single Point Method B:	
20 to 30.	TEST METHOD (2) A B Wet Dry
w_{\circ} or $w = ((M1-M2) / (M2-M3)) \times 100$	AS-RECEIVED WATER CONTENT, w _o (%)
LL = Water Content at N=25 blows, from Flow Curve. LL by Single Point = w × (N / 25) $^{0.121}$	
PI = LL - PL	PLASTIC LIMIT, PL
$LI = (w_0 - PL) / (LL - PL)$	PLASTICITY INDEX, PI
NOTES: (1) USCS: Unified Soil Classification System.	LIQUIDITY INDEX, LI
(2) Wet = Wet Preparation Method, and Dry = Dry Preparation Method	PERCENTAGE POINTS ABOVE/BELOW A-LINE
REMARKS: Manbe NON-Plastic	PLASTICITY CHART CLASSIFICATION
* *	Checked By: PK 11-15-07
Prepared By: Date: Date: D	ry Masses By: CR IIIU Spot Checked By:
207.1 (10/01/07) HandLimits	Calculated By: N:19:07 Reviewed By: xls, Hand 10/23/2007 FUGRO CONSULTANTS, INC.

LIQUID LIMIT, PLAS	STIC LIMIT, AND	PLASTICITY IN	JEX: ASI	1 D 4318	
Project Number: 1637-001	Test Spec. fro	om Eng. Property Test:	В	oring No.:	BH-105
Task Number:	X Yes; Tr	immings; X Spec.		mple No.:	
Project Name:	Type Test: C	/CU ta=0	Penetration/	Depth (ft):	32.45
Visual Identification: CLDRGr	ny WISIY	M: Sa Plas.	Tes	tNo.: o)f
organics	7 1)			
Signs of organic soil behavior: 🛛 No;	Yes (spongy PL; sig	ns of oxidation; organi	c fibers; black	color, humus	odor)
INITIAL VISUAL USCS GROUP SYMBOL (1):			TESTING EQUI	PMENT USED	
		Plastic Limit:			Hand Rolled 🦾
SPECIMEN PREPARATION				Between	Glass Plates
Wet Vasł	ned on # 40 Sieve			Mechanical F	Rolling Device
	ved on # 40 Sieve	Liquid Limit:			Manual 🦾
Dry (Oven) Mechanically Pushed T		Apparatus No. ()		Mechanica
Mixed on Glass Plate and Removed Medium	businesses	Casagrande / AST	M		Metal
Mixing water Distilled; Demineralized		Grooving Tool:			Plastic 🧅
AS-RECEIVED WATER CONTENT (OVEN)				Flow Curve	
Container No.			ſ		
Mass Moist Soil + Container, M1 (g)			_		
Mass Dry Soil + Container, M2 (g)			t (%		
Mass Container, M3 (g) WATER CONTENT, w _o (%)		Average	ten .		
	4 4/0" 2/4" 2/9" 4	4 #10 <#10	. Cor		
Circle Approximate Max. Grain Size in "Sample": 3"	-1/2 3/4 3/8 3/8 #·	+ #10 <#10	Water Content (%)		
PLASTIC LIMIT			×		
Container No.	11 12		È_+-+-	┍╾┎╼┟╼┲╼┲╼┿	
Mass Moist Soil + Container, M1 (g) 🖇	1.24 8.14		10	15 24	0 25 30
Mass Dry Soil + Container, M2 (g)	102 645		NL	umber of Blow	S
Mass Container, M3 (g) 🥠	27 1.29	Av	verage		
WATER CONTENT, w (%)	21.2 24.0	21			
LIQUID LIMIT					
Container No.	9 10		gin nave and a second second second second second second second second second second second second second secon		
Mass Moist Soil + Container, M1 (g)	2.01 11.23		LINEA	RREGRESSI	ON ANALYSIS
Mass Dry Soil + Container, M2 (g)	1.24 8.29		w at	N = 25 Blows	s
Mass Container, M3 (g)	28 1.27		Coef. of	Determination,	rf
WATER CONTENT, w (%)	41.9 41.9				
NUMBER OF BLOWS, N	26 27		Ave	erage	
LIQUID LIMIT, ASTM SINGLE POINT			42		
Recommended range of Blow Count for Multiple Point Methods	od A:		7.9994.9999.9994.9994.9994.9994.9994.99	and a second second second second second second second second second second second second second second second	
15 to 25, 20 to 30, and 25 to 35. Recommended range of Blow Count for Single Point Method	I B·	SUMMARY			*
20 to 30.	LD.	TEST METHOD (2)	A B	L We	t CDry
w_{o} or w = ((M1-M2) / (M2-M3)) \times 100		AS-RECE	IVED WATER	CONTENT, w	
LL = Water Content at N=25 blows, from Flow Curve. LL by Single Point = w \times (N / 25) ^{0.121}				LIQUID LIMI	
LL by Single Point = $w \times (N / 25)^{-100}$ PI = LL - PL			P	LASTIC LIMI	
$LI = (w_o - PL) / (LL - PL)$			PLAS	TICITY INDE	х, рі <u>2</u> Т
NOTES: (1) USCS: Unified Soil Classification System.				UIDITY INDE	
(2) Wet = Wet Preparation Method, and Dry = D	ry Preparation Method	PERCENTAGE F			
REMARKS:		PLAST	ICITY CHART (CLASSIFICA	TION

Prepared By: A.C. Date: 1/-5-07 Dry Masses By: 07 118 Tested By: A.C. Date: 11-7-07 Calculated By: A.S. C.

207.1 (10/01/07)

HandLimits.xls, Hand 10/23/2007

Checked By: PK 11-8 Spot Checked By:

Reviewed By:

FUGRO CONSULTANTS, INC.

LIQUID	LIMIT, PLASTI	C LIMIT, AND	PLASTICITY IN	NDEX: ASTI	N D 4318		
Project Number:	1637-001	Test Spec. fro	m Eng. Property Tes	t: E	Boring No.:	BH-90	
Task Number:		X Yes; Tri	immings; X Spec	s, Sa	ample No.:	S-11a	
Project Name:	and a second second second second second second second second second second second second second second second	Type Test: Cy	/CU ta=0	Penetration	/Depth (ft):	32.5	
Visual Identification:	long my sill	4 sand	ton Equar	Tes	st No.:	of	
Signs of organic soil behav	/ior: No; Ye	es (spongy PL; sigi	ns of oxidation; orgai	nic fibers; black	color, humus	odor)	
INITIAL VISUAL USCS GROU	P SYMBOL (1):			TESTING EQU	PMENT USED)	
			Plastic Limit:			Hand Rolled	6
SPECIMEN PREPARATION					Betweer	n Glass Plates	5
Wet	Washed o	on # 40 Sieve			Mechanical	Rolling Devic	9
Dry (Air)	Dry Sieved o	on # 40 Sieve	Liquid Limit:			Manual	4
Dry (Oven) Med	hanically Pushed Throu	gh # 40 Sieve	Apparatus No.	. ()		Mechanical	
Mixed on Glass Plate and	Removed Medium Plus	Sand Particles	Casagrande / As	STM		Metal	
Mixing water Distilled;	Demineralized; or o	other	Grooving Tool:			Plastic	Low
S-RECEIVED WATER CC	NTENT (OVEN DRIE	D)					
(Container No.				Flow Curve		
Mass Moist Soil + Cont	ainer, M1 (g)			Ē.			
Mass Dry Soil + Cont				<u></u>			
	ainer, M3 (g)		Average	nt ('			
WATER CONT				nte			
Circle Approximate Max. Grain		<u> </u>	#10 <#10	ΰ .			
		99 - FRANK FRANK - FRA		Water Content (%)			
LASTIC LIMIT				>			
C	Container No. 3/	32		L	╏╾╡╾┥╶┥╶╿╌╿╌╿╸		+++++
Mass Moist Soil + Cont	ainer, M1 (g) 🔗 🤰	7 8.16		10	15 2		0
Mass Dry Soil + Cont	ainer, M2 (g) 7./5	5 7.02		N	umber of Blov	VS.	
Mass Cont	ainer, M3 (g) /,2	6 1.27	4	Average			
WATER CON	TENT, w (%) 19.0) 19,8		9			
IQUID LIMIT							
C	container No. 🦂	9 30					
Mass Moist Soil + Cont	ainer, M1 (g) 🛛 🔼	17/10.13		LINEA	R REGRESS	ION ANALYS	IS
Mass Dry Soil + Cont	ainer, M2 (g)	2 8.19		w at	: N = 25 Blow	/s	
	ainer, M3 (g) 1.2	7 1.28		Coef. of	Det e rmination	, r ²	
WATER CON	TENT, w (%) 22						
NUMBER OF	BLOWS, N	2 23		Ave	erage		
LIQUID LIMIT, ASTM SIN	GLE POINT			2.2	~		
commended range of Blow Count to 25, 20 to 30, and 25 to 35.	or Multiple Point Method A	:	SUMMARY				
commended range of Blow Count	or Single Point Method B:		TEST METHOD (2)	A B	U We	et CDry	
to 30.	~					townsourced	
or w = ((M1-M2) / (M2-M3)) × 10 = Water Content at N=25 blows, fr			AS-REU				, -
by Single Point = w \times (N / 25) $^{0.121}$							
= LL - PL							9
= (w _o - PL) / (LL - PL)					TICITY INDE		3
DTES: (1) USCS: Unified Soil C	-						
(2) Wet = Wet Preparation EMARKS: // みししの /し	n Method, and Dry = Dry Pre バルレー PA らっ	eparation Method		POINTS ABOV			
- reprint population	<u> </u>	den gen han der state andere				y: KB1- 17	.08
Prepared By: VL/+	Date://4-8	Dry Mass	es By: (17 1-16	S	pot Checked B		
Tested By:	Date: /-/5-08	Calculate		<u> </u>	Reviewed B		
	Duic. <u>11100</u>	-	1	<u> </u>			
207.1 (10/01/07)		HandLimits.xls, Ha	na 10/23/2007	FUG	RO CONSULT	ANTS, INC.	

PERCENT FINES (ASTM D 1140)

		DATE		PROJECT		PRO	DJECT		
6			22, 2007	NAME	·	NO.	NO.: 1637-001		
DATE: 1-29-38		Boring No.	Sample No.	Depth (ft)	Visual Identification (Color, Group Name & Symbol)	Initial Dry Mass of Soil (g)	Dry Mass of Soil After Washing & Shaking Over 75 μm Sieve	% Passing 75 μm Sieve	
S.		BH-90	S-17¢	530	Termingson aldone	30.85	5.80	81.2	
REVIEWED BY:									
REVIE									
CS · CS									
DATE:									
3Y:									
	0								
COM									
TE: ISLOS									
DATE: 1/287									
NC.	-								
TESTED BY:									
F	Ĺ	REMARKS					l.		

200

UGRO

DETERMINATION OF PERCENTAGE OF FINES (ASTM D 1140)

	4004205-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
BH-91 S-10a 389 v/ clayur sandsman 1375 40,4746.	assing m Sieve
CHECKED BY:	. b
B	

Tugro

DETERMINATION OF PERCENTAGE OF FINES (ASTM D 1140)

C	DATE	10/22/07	PROJECT NAME	CyCU ta=0	PRC NO.	DJECT : 163	7-001
PX DATE:	Boring No.	Sample No.	Depth (ft)	Material Description	Initial Dry Mass of Soil (g)	Dry Mass of Soil After Washing & Shaking Over 74 μ m Sieve	% Passing 74 μ m Sieve
	BH-105	S-9a	32.45	3; Sa DKG	75.68	46.90	38,0
DBY:						х че ^н	
CHECKED BY:				· · · · · · · · · · · · · · · · · · ·			
801							
DATE				· · · · · · · · · · · · · · · · · · ·			
COMPUTED BY							
COM				· · · · · · · · · · · · · · · · · · ·			
ATEX							
BY:				· · · · · · · · · · · · · · · · · · ·			
TESTED BY	REMARKS		i	· · · · · · · · · · · · · · · · · · ·			

UGRO

DETERMINATION OF PERCENTAGE OF FINES (ASTM D 1140)

80]	DATE	10/22/07	PROJECT NAME	CyCU ta=0	PRC NO.	DJECT : 163	7-001
DATE:)-18-08		Boring No.	Sample No.	Depth (ft)	Material Description	Initial Dry Mass of Soil (g)	Dry Mass of Soil After Washing & Shaking Over 74 μ m Sieve	% Passing 74 μ m Sieve
67		BH-90	S-11a	37.5	Cly Detty Dand, tan 's	30.97	12.04	4.75
ED BY:					· · · · · · · · · · · · · · · · · · ·			
CHECKED BY:								
.0%								
DATE:								
بر ت	1							
COMPUTED BY:	2				······			
COMP					· · · · · · · · · · · · · · · · · · ·			
TE: 172					· · · · · · · · · · · · · · · · · · ·			
DA	/							
X:								
TESTED BY:								
⊢	L	REMARKS	I					

Fugeo

8

Appendix 6: Large-Scale Direct Shear Test Results

Prepared for:

Hatch Mott Macdonald

3103 N. 1st St., Building B, Suite 200 San Jose, CA 95134

FINAL REPORT

PARTICLE-SIZE ANALYSIS, RELATIVE DENSITY, AND DIRECT SHEAR TESTING

SILICON VALLEY RAPID TRANSIT PROJECT

Prepared by:

SGI TESTING SERVICES, LLC

4405 International Blvd., Suite B-117 Norcross, GA 30093

Project Number SGI7047

18 January 2008

CAVEAT

The reported results apply only to the materials and test conditions used in the laboratory testing program. The results do not necessarily apply to other materials or test conditions. The test results should not be used in engineering analysis unless the test conditions model the anticipated field conditions. The testing was performed in accordance with general engineering testing standards and requirements. This testing report is submitted for the exclusive use of the client to whom it is addressed.

1. INTRODUCTION

SGI Testing Services, LLC (SGI) conducted a laboratory testing program to evaluate the particle-size distribution, relative density, and internal shear strength of four soil samples for the Silicon Valley Rapid Transit (SVRT) project. The sample preparation procedures and testing conditions used in the testing program were specified by Mr. Abhishek Jain of Hatch Mott Macdonald (HMM) to simulate anticipated field conditions. All of the tests were conducted at SGI located in Norcross, Georgia.

2. TEST MATERIALS

2.1 Soil Samples

Four types of soil materials were used in this testing program. Descriptions of the four materials are given below:

- Soil Sample MW-8A;
- Soil Sample MW-2B;
- Soil Sample MW-4A; and
- Soil Sample MW-6J.

Bulk samples of the four soil materials were provided to SGI by HMM.

2.2 Soil Processing and Index Property Testing

For each type of soil, the received bulk sample was first air-dried, mixed and separated into two portions. One portion of the air-dried soil sample was used for particle-size analysis in accordance with ASTM D 422, "*Particle-Size Analysis of Soils*". The results of the particle analysis are presented in Appendix A to this report. The other portion of soil sample was sieved by using a 1.25 in. sieve to remove the particles greater than 1.25 in. The remaining soil sample with all the particles passing through 1.25-in sieve, referred to as 1.25-in. minus material, was used for relative density testing in accordance with SGI7047/SGI08001

ASTM D 4253, "*Maximum Index Density and Unit Weight of Soils Using a Vibratory Table*", and ASTM D 4254, "*Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density*". The results of relative density tests for the four 1.25-in. minus materials are presented in Appendix B. The 1.25-in. minus materials of soil samples MW-8A, MW-2B, and MW-6J were subsequently used in direct shear testing.

3. DIRECT SHEAR TEST EQUIPMENT

The direct testing device used in this testing consisted an upper and lower shear box. The upper shear box measured 12 in. by 12 in. in plan and 3 in. in depth. The lower shear box measured 12 in. by 12 in. in plan and 3 in. in depth. Normal stresses were applied to the testing specimen through an air bladder system, and shear loads were applied to the test specimen through an automatically controlled motor system.

4. TEST METHOD AND PROCEDURES

The direct shear tests were performed in accordance with ASTM D 3080, "*Direct Shear Test of Soils under Consolidated Drained Conditions*". For each direct shear test, the test was set up in accordance with the following procedures and tested under the specific conditions as described below:

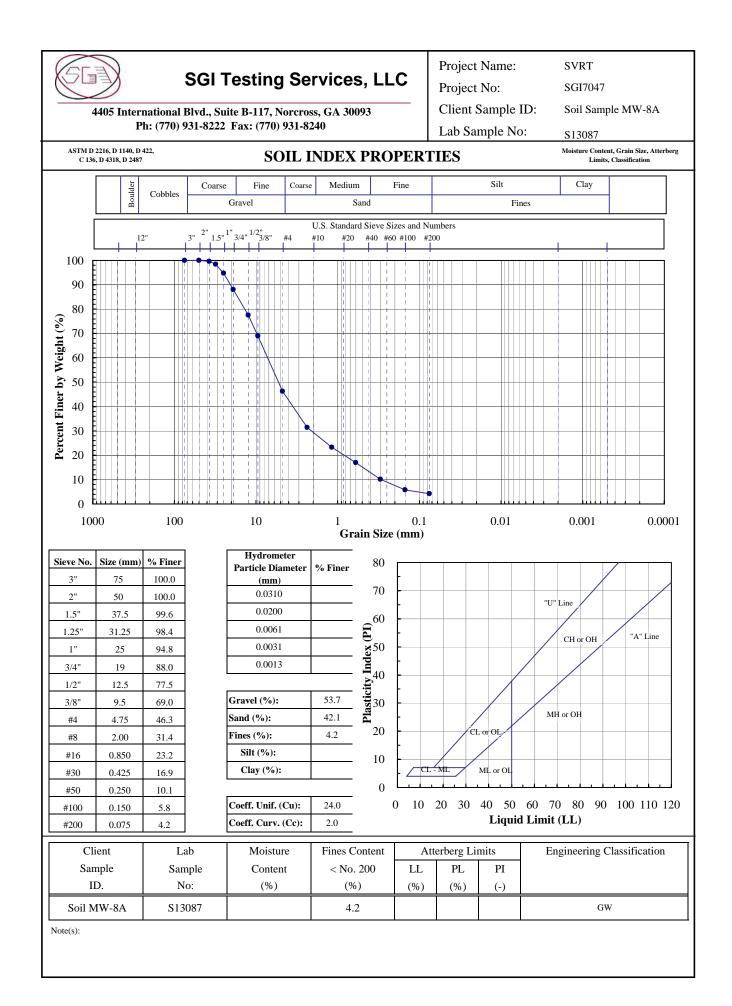
- 1.25-in. minus material was moisture-conditioned to approximately the specified moisture content, and compacted by hand tamping in 2 in. thick lifts within the lower and upper shear boxes, to form a 6 in. thick test specimen. The target dry unit weight, corresponding to the specified relative density, was achieved by compacting a pre-determined amount of soil into a fixed volume (12 in. x 12 in. x 6 in.);
- A specific normal stress was applied to top of the test specimen through an air bladder system; and

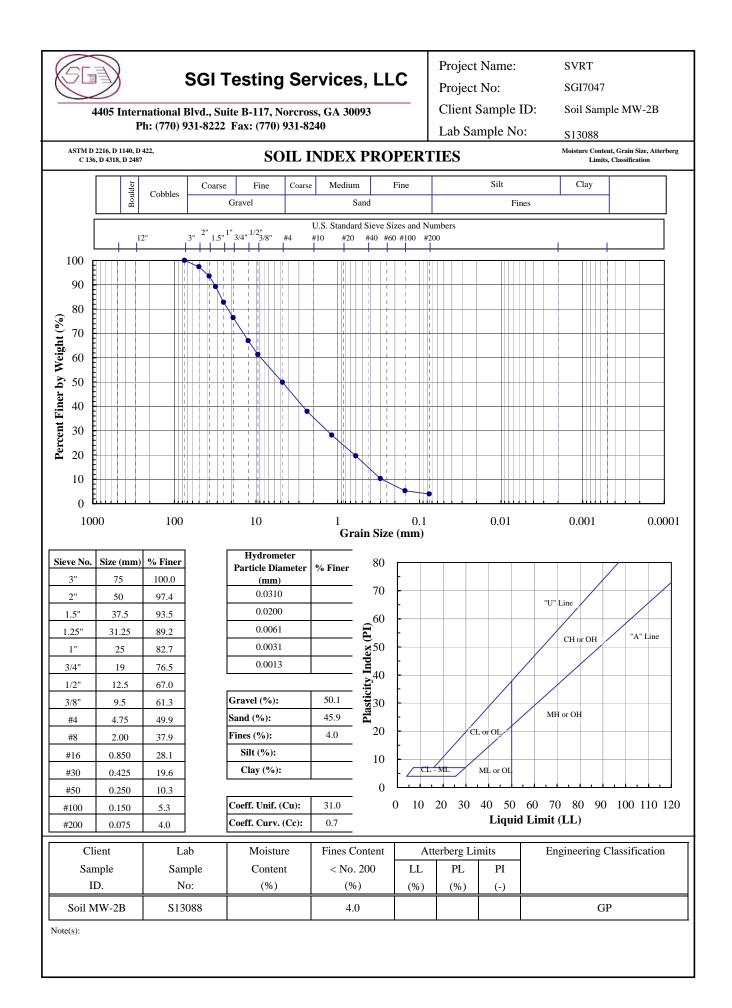
• After the application of the normal stress, the test specimen was sheared at a constant shear displacement rate of 0.04 in/min. Shearing was continued until a minimum total shear displacement of 2.5 in. was achieved.

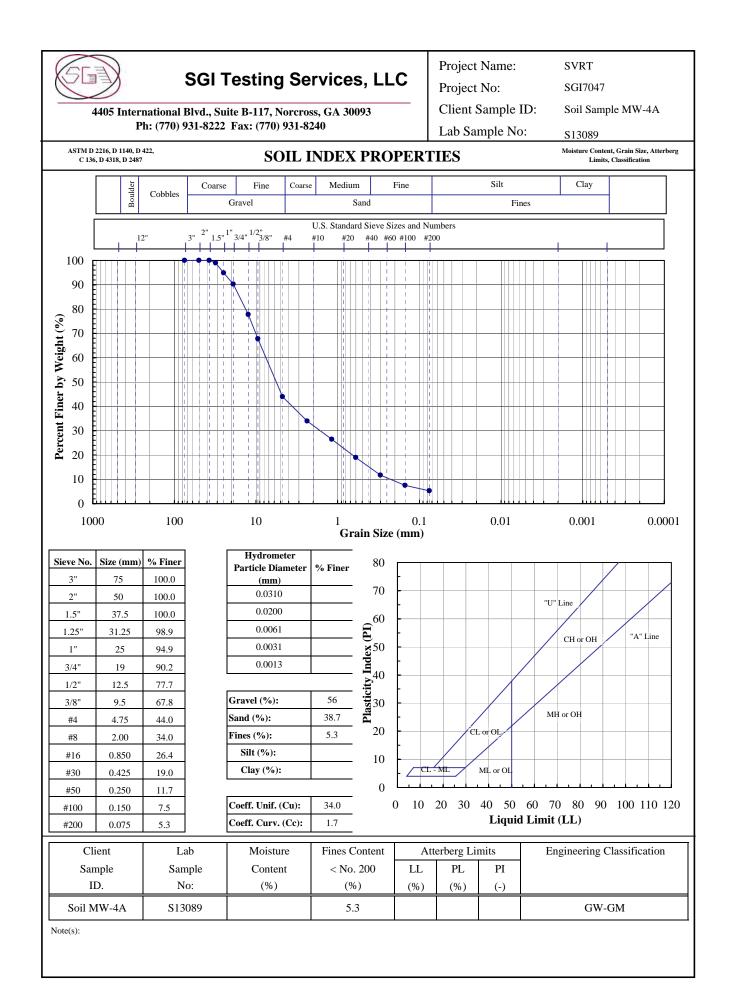
5. DIRECT SHEAR TEST RESULTS

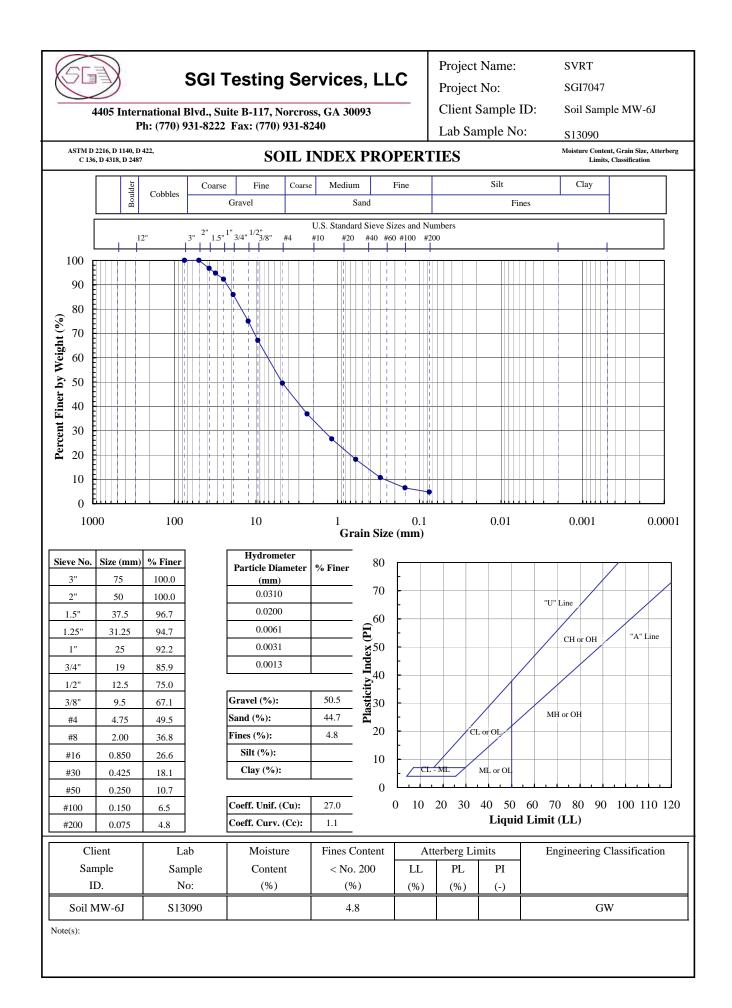
Five series of direct shear tests were performed in this testing program. For each test series, the test results are presented on a summary page in Appendix C. The summary page includes:

- Shear force versus displacement figure;
- Shear strength versus normal stress figure; and
- A table that summarizes test conditions, peak shear strength, and large displacement (LD) shear strength at the end of test.

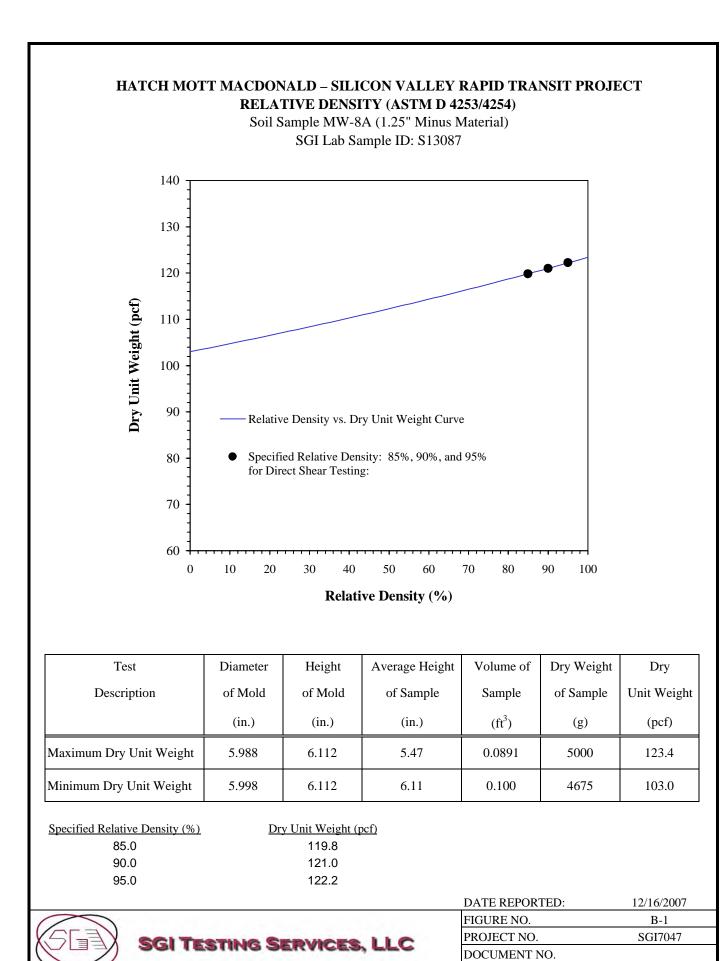

For each test series, the shear strength parameters of friction angle and cohesion were determined based on the best-fit straight line drawn through the test data points on a plot of shear strength versus normal stress, and reported on the summary page. Caution should be exercised in using these shear strength parameters for applications involving normal stresses outside the range of stresses covered by the test series.

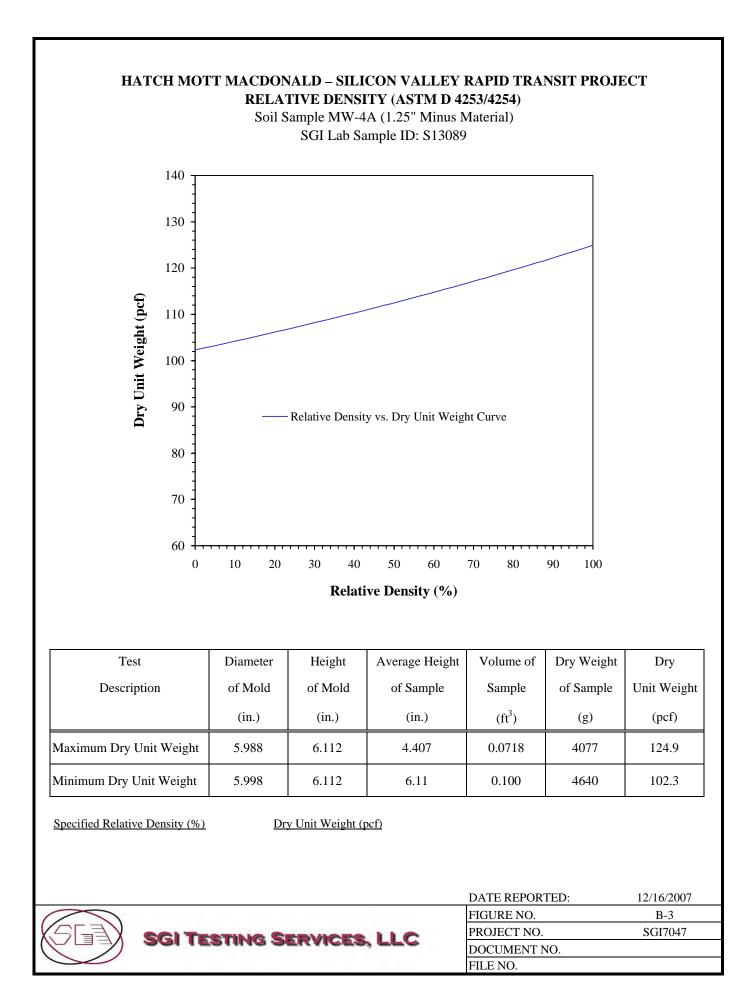

6. CLOSURE

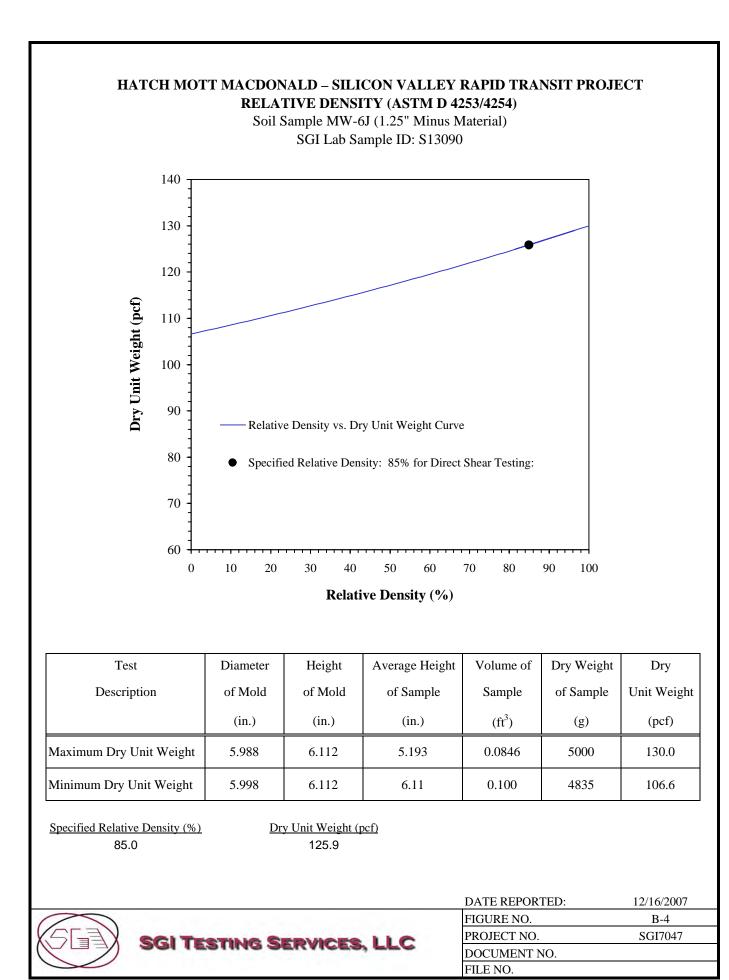

The reported test results apply only to the materials and test conditions used in the laboratory testing program. The test results do not necessarily apply to other materials or test conditions. The test results should not be used in engineering analysis unless the test conditions model the anticipated field conditions. The testing was performed in accordance with general engineering testing standards and requirements. This testing report is submitted for the exclusive use of HMM.


APPENDIX A

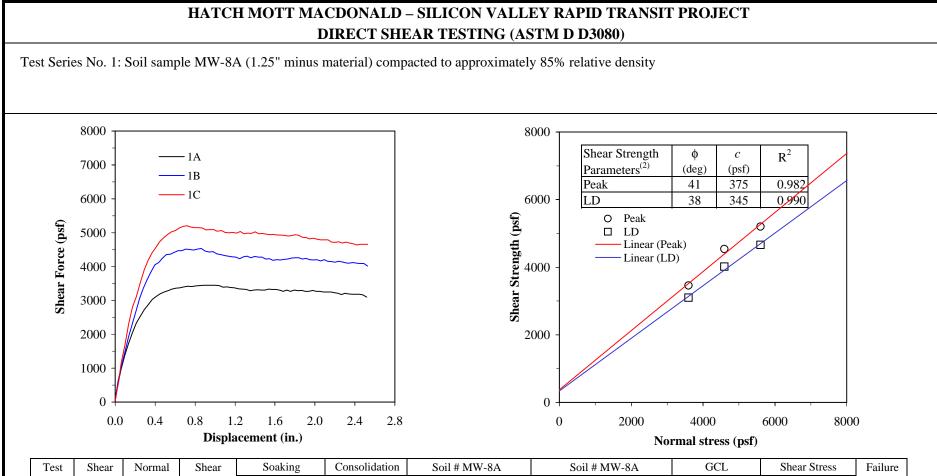
RESULTS OF PARTICLE SIZE ANALYSIS



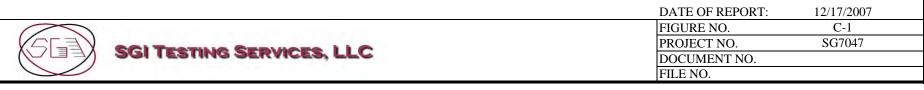

APPENDIX B

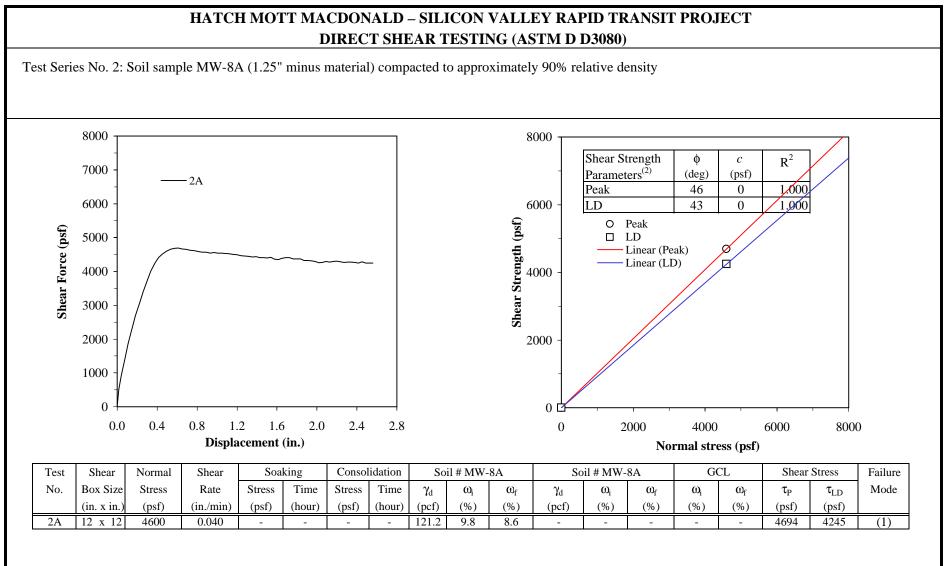

RELATIVE DENSITY TEST RESULTS

FILE NO.



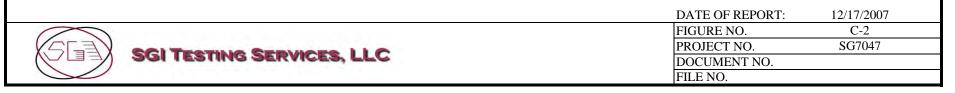
APPENDIX C

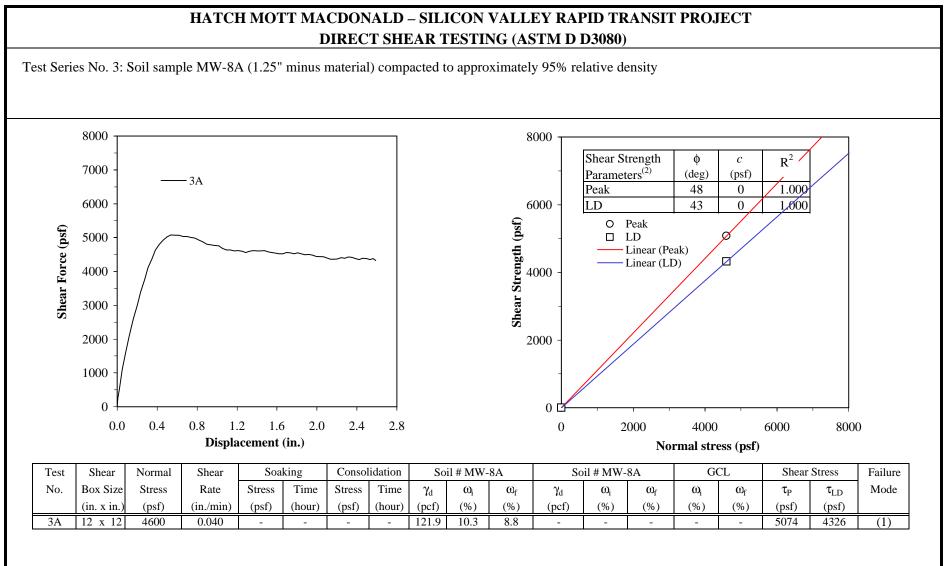

DIRECT SHEAR TEST RESULTS



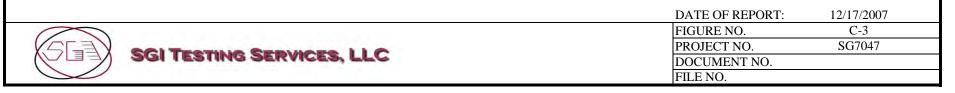
Test	Shear	Normal	Shear	Soaking		Consolidation		Soil # MW-8A			Soil # MW-8A			GCL		Shear Stress		Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	$\gamma_{\rm d}$	ω	$\omega_{\rm f}$	$\gamma_{\rm d}$	ω	$\omega_{\rm f}$	ω _i	$\omega_{\rm f}$	$\tau_{\rm P}$	$\tau_{\rm LD}$	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
1A	12 x 12	3600	0.040	-	-	-	-	120.1	9.7	8.9	-	-	-	-	-	3452	3100	(1)
1B	12 x 12	4600	0.040	-	-	-	-	119.5	10.3	8.5	-	-	-	-	-	4532	4015	(1)
1C	12 x 12	5600	0.040	-	-	-	-	120.2	9.6	7.9	-	-	-	-	-	5200	4656	(1)

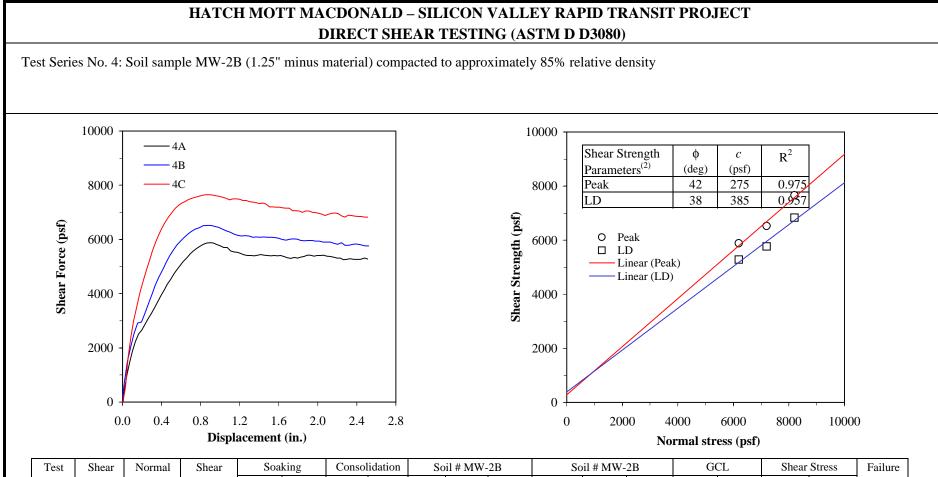
(1) Sliding (i.e., shear failure) was forced to occur on the plane between the upper and lower shear box.


(2) The reported total-stress parameters of friction angle and cohesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.



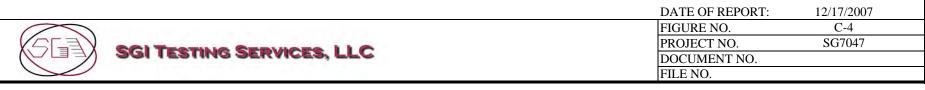
(1) Sliding (i.e., shear failure) was forced to occur on the plane between the upper and lower shear box.

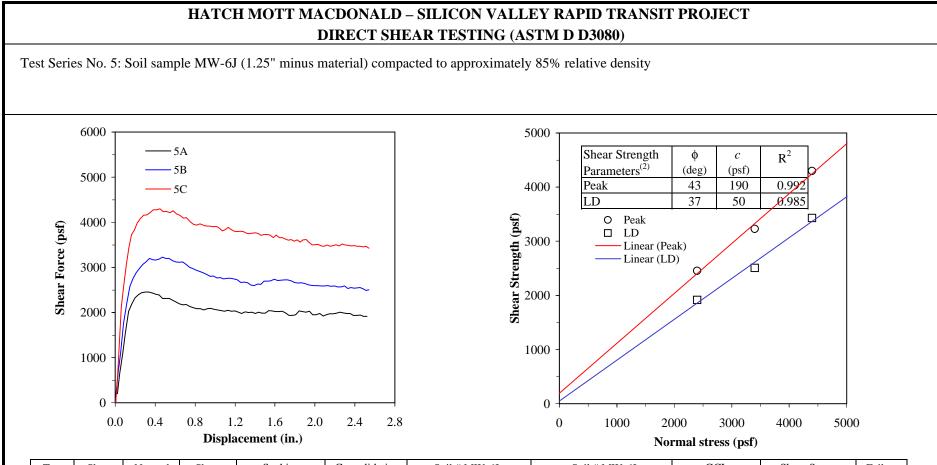

(2) The reported total-stress friction angle was determined by drawing a straight line from origin through the test data point. Caution should be exercised in using the friction angle for applications involving normal stresses other than the test normal stress.



(1) Sliding (i.e., shear failure) was forced to occur on the plane between the upper and lower shear box.

(2) The reported total-stress friction angle was determined by drawing a straight line from origin through the test data point. Caution should be exercised in using the friction angle for applications involving normal stresses other than the test normal stress.

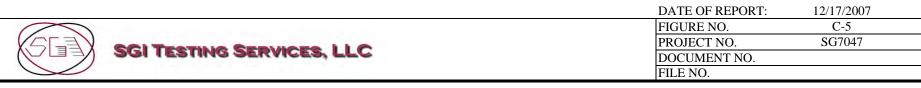




Test	Shear	Normal	Shear	Soaking		Consolidation		Soil # MW-2B			Soil # MW-2B			GCL		Shear Stress		Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	$\gamma_{\rm d}$	ω	$\omega_{\rm f}$	$\gamma_{\rm d}$	ω	$\omega_{\rm f}$	ω _i	$\omega_{\rm f}$	$\tau_{\rm P}$	$\tau_{\rm LD}$	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
4A	12 x 12	6200	0.040	-	-	-	-	125.6	10.1	8.9	-	-	-	-	-	5876	5278	(1)
4B	12 x 12	7200	0.040	-	-	-	-	126.2	9.6	8.2	-	-	-	-	-	6520	5767	(1)
4C	12 x 12	8200	0.040	-	-	-	-	125.4	10.3	7.6	-	-	-	-	-	7656	6826	(1)

(1) Sliding (i.e., shear failure) was forced to occur on the plane between the upper and lower shear box.

(2) The reported total-stress parameters of friction angle and cohesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.



Test	Shear	Normal	Shear	Soaking		Consolidation		Soil # MW-6J			Soil # MW-6J			GCL		Shear Stress		Failure
No.	Box Size	Stress	Rate	Stress	Time	Stress	Time	$\gamma_{\rm d}$	ω_{i}	$\omega_{\rm f}$	$\gamma_{ m d}$	ω	$\omega_{\rm f}$	ω _i	$\omega_{\rm f}$	$\tau_{\rm P}$	$ au_{LD}$	Mode
	(in. x in.)	(psf)	(in./min)	(psf)	(hour)	(psf)	(hour)	(pcf)	(%)	(%)	(pcf)	(%)	(%)	(%)	(%)	(psf)	(psf)	
5A	12 x 12	2400	0.040	-	-	-	-	125.2	10.6	8.6	-	-	-	-	-	2454	1916	(1)
5B	12 x 12	3400	0.040	-	-	-	-	125.7	10.2	8.9	-	-	-	-	-	3229	2507	(1)
5C	12 x 12	4400	0.040	-	-	-	-	126.2	9.7	8.1	-	-	-	-	-	4298	3425	(1)

(1) Sliding (i.e., shear failure) was forced to occur on the plane between the upper and lower shear box.

(2) The reported total-stress parameters of friction angle and cohesion were determined from a best-fit line drawn through the test data. Caution should be exercised in using these strength parameters for applications involving normal stresses outside the range of the stresses covered by the test series. The large-displacement (LD) shear strength was calculated using the shear force measured at the end of the test.

Appendix 7: Sticky Limit Test Results

ALASKA CALIFORNIA COLORADO FLORIDA MISSOURI OREGON WASHINGTON

January 18, 2008

Mr. Abhishek Jain Hatch Mott MacDonald 3103 North First Street Building B, Suite 200 San Jose, CA 95134

RE: BAY AREA RAPID TRANSIT (BART) EXTENSION STICKY LIMIT TESTING

Dear Mr. Jain:

In response to our telephone conversation on January 16, 2008, I have put together the following letter describing the procedures and methods used to perform the moisture content, liquid limit, plastic limit, and stick limit laboratory tests on samples provided to us by Hatch Mott MacDonald for the BART extension project.

On September 10, 2007, the Shannon & Wilson, Inc. (S&W) Seattle soils testing laboratory received 7 wooden core boxes containing 14 steel tube soil samples and 1 bag soil sample. It is our understanding that the samples were originally obtained by Hatch Mott MacDonald in 2004 and 2005, and that the tube samples were sealed with wax and stored vertically in a temperature-controlled room.

Upon receiving the samples, S&W laboratory personnel extruded the thin-walled tube samples using a hydraulic tube extruder. Following extrusion, the samples were classified in accordance with ASTM International (ASTM) Standard D 2488, "Description and Identification of Soils (Visual-Manual Procedure)." The tube samples were logged along the entire length of the sample by laboratory staff. Along with classifying the soil type, variations in stratigraphy and soil structure were also noted. Water contents were also determined from each sample in accordance with ASTM standard D 2216, "Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass." A specimen was taken from approximately the middle of each tube sample to perform the liquid, plastic, and sticky limit tests.

Mr. Abhishek Jain Hatch Mott MacDonald January 18, 2008 Page 2

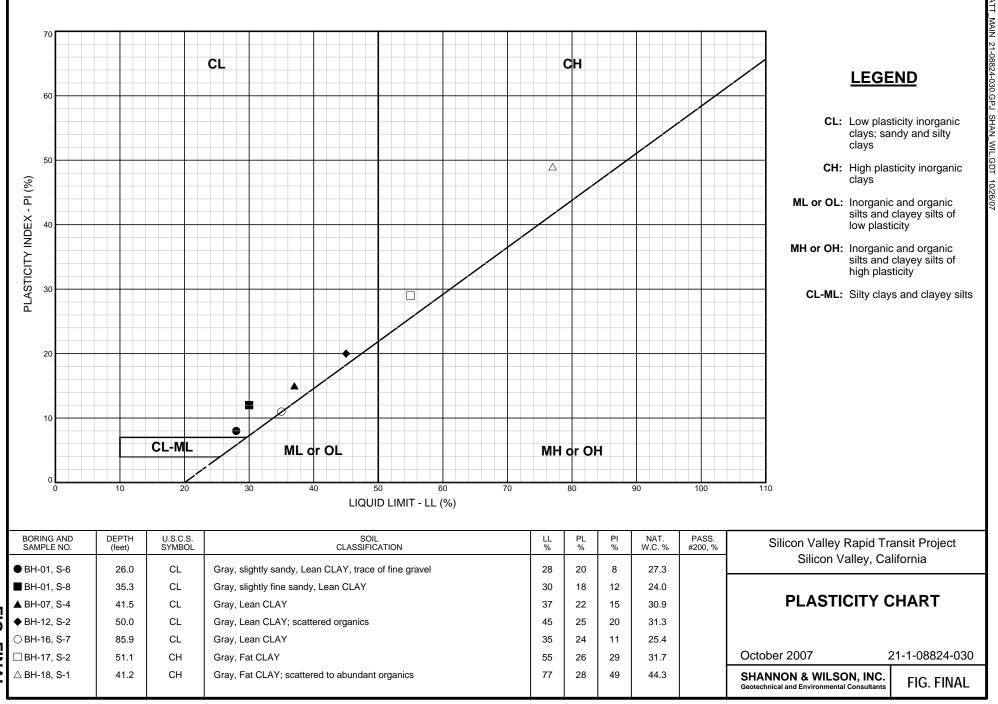
The plastic limit and liquid limit tests were both performed in accordance with ASTM standard 4318, "Liquid Limit, Plastic Limit, and Plasticity Index of Soils." The sticky limit was determined by following the procedure described in K.H. Head's Manual of Soil Laboratory Testing, Volume 1: Soil Classification and testing (1980). A description of the sticky limit procedure is presented below:

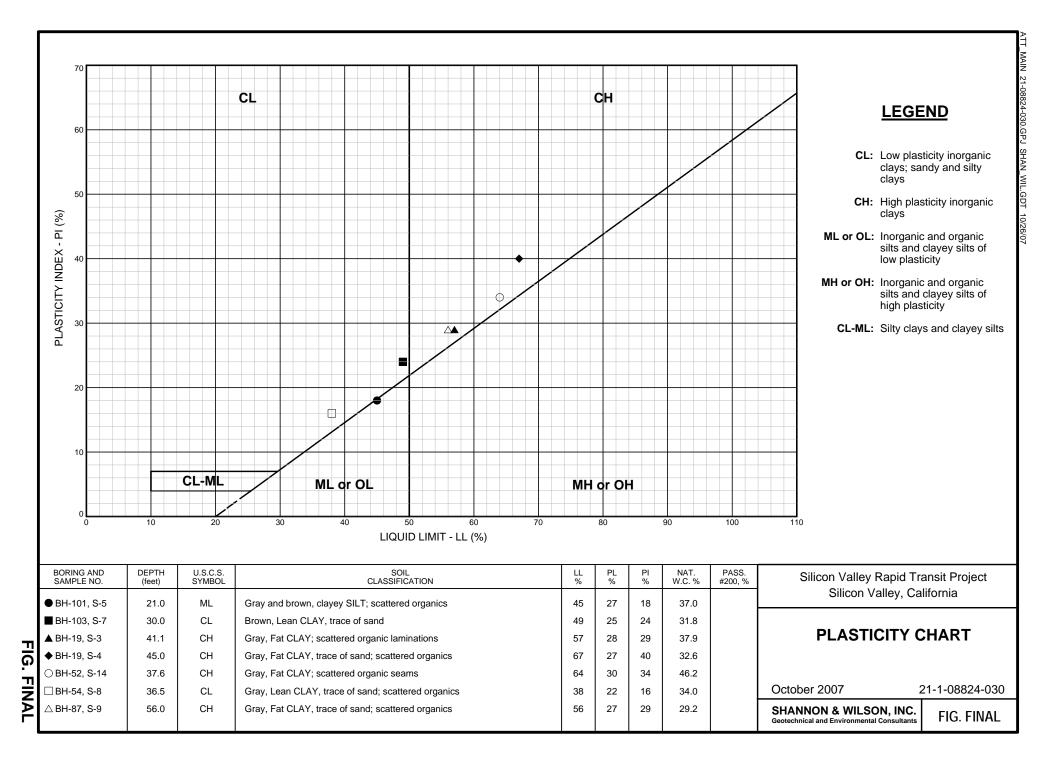
"Use a pat of clay which has been matured at a moisture content within the plastic range, such that it is 'sticky'- that is, the clay sticks to a clean, dry spatula blade. Allow the clay to dry gradually by exposure to the atmosphere, and at intervals draw the tool lightly over the surface of the clay-pat. When the tool no longer picks up any clay, measure the moisture content. Add a little water to the clay so that it becomes sticky again, and repeat the process once or twice more. If the measured moisture contents are within reasonable agreement (an overall range of 2%), calculate the average moisture content to the nearest 1% and report it as the sticky limit of the clay."

After completion of testing, a report was generated for each test in accordance with applicable ASTM standards and results were summarized in a table including visual description, water content, plastic limit, liquid limit, and sticky limit. All calculations, data entry, and reports were reviewed by the laboratory technical director.

Please contact me at (206) 632-8020 if you have any questions regarding any of the procedures used in our laboratory.

Sincerely,


SHANNON & WILSON, INC.


Andrew Caneday / Seattle Laboratory Technical Director

AJC/ajc

21-1-08824-003-L1.doc/wp/LKD

21-1-08824-003

SUMMARY OF LABORATORY TESTING

Silicon Valley Rapid Transit Project Job No. 213213 EC03

400 NORTH 34TH STREET + SUITE 100 PO. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

		Sample Recovery	Test Depth	Sample	USCS	Water Content					
Boring	Sample	(feet)	(feet)	Description	Symbol	(%)	LL	PL	PI	NP	SL
BH-01	6	25.0-26.7	26.0	Gray, slightly sandy, Lean CLAY, trace of fine gravel	CL	27.3	28	20	8		28
BH-01	8	35.0-37.5	35.3	Gray, slightly fine sandy, Lean CLAY	CL	24.0	30	18	12		28
BH-06	5	37.5-38.5	38.1	Brown, silty, fine to medium SAND, trace of gravel	SM	19.2	-	-	-	NP	
BH-07	4	40.0-41.7	41.5	Gray, Lean CLAY	CL	30.9	37	22	15		39
BH-12	2	50.0-52.2	50.0	Gray, Lean CLAY; scattered organics	CL	31.3	45	25	20		33
BH-16	7	85.0-86.8	85.9	Gray, Lean CLAY	CL	25.4	35	24	11		34
BH-17	2	50.0-51.9	51.1	Gray, Fat CLAY	СН	31.7	55	26	30		38
BH-18	1	40.0-42.5	41.2	Gray, Fat CLAY; scattered to abundant organics	СН	44.3	77	28	49		56
BH-19	3	40.0-42.0	41.1	Gray, Fat CLAY; scattered organic laminations	СН	37.9	57	28	30		49
BH-19	4	45.0-46.1	45.0	Gray, Fat CLAY, trace of sand; scattered organics	СН	32.6	67	27	40		44
BH-52	14	37.0-38.3	37.6	Gray, Fat CLAY; scattered organic seams	СН	46.2	64	30	33		53
BH-54	8	35.0-36.8	36.5	Gray, Lean CLAY, trace of sand; scattered organics	CL	34.0	38	22	16		36
BH-87	9	55.0-57.5	56.0	Gray, Fat CLAY, trace of sand; scattered organics	СН	29.2	56	27	28		45
BH-101	5	20.0-22.1	21.0	Gray and brown, clayey SILT; scattered organics	ML	37.0	45	27	18		37
BH-103	7	Bag Sample	30.0	Brown, Lean CLAY, trace of sand	CL	31.8	49	25	24		36

Notes:

The above results were obtained from samples stored for a period of 2-3 years. Moisture loss or other types of disturbance associated with storing samples for an extended period of time may affect test results.

LL = Liquid Limit

PL= Plastic Limit

PI = Plastic Index

NP = Non plastic

SL = Sticky Limit

ALASKA CALIFORNIA COLORADO FLORIDA MISSOURI OREGON WASHINGTON

March 10, 2008

Mr. Abhishek Jain Hatch Mott MacDonald 3103 North First Street Building B, Suite 200 San Jose, CA 95134

RE: 24965-PO-00011: SILICON VALLEY RAPID TRANSIT PROJECT (213213 EC03), LABORATORY TESTING

Dear Mr. Jain:

This letter presents the results of and describes the procedures and methods that we used to perform moisture content, liquid limit, plastic limit, and stick limit laboratory tests on samples provided to us by Hatch Mott MacDonald for the Silicon Valley Rapid Transit Project (SVRTP).

On February 5, 2008, the Shannon & Wilson, Inc. (S&W) Seattle soils testing laboratory received 17 soil samples. Samples were immediately stored in a humidity-controlled storage area. It is our understanding that the samples were originally obtained by Hatch Mott MacDonald in November 2007.

Upon receiving authorization to begin testing the samples on February 25, 2008, S&W laboratory personnel classified each sample in accordance with ASTM International (ASTM) Standard D 2488, "Description and Identification of Soils (Visual-Manual Procedure)." Water contents were determined from each sample in accordance with ASTM standard D 2216, "Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass." A representative specimen was taken from each sample to perform the liquid, plastic, and sticky limit tests.

The plastic limit and liquid limit tests were both performed in accordance with ASTM standard 4318, "Liquid Limit, Plastic Limit, and Plasticity Index of Soils." The sticky limit was determined by following the procedure described in K.H. Head's Manual of Soil Laboratory Testing, Volume 1: Soil Classification and testing (1980). Sticky limit tests were only

21-1-08824-033

Mr. Abhishek Jain Hatch Mott MacDonald March 10, 2008 Page 2

performed on soils having a Unified Soil Classification System (USCS) symbol of CH. A description of the sticky limit procedure is presented below:

"Use a pat of clay which has been matured at a moisture content within the plastic range, such that it is 'sticky'- that is, the clay sticks to a clean, dry spatula blade. Allow the clay to dry gradually by exposure to the atmosphere, and at intervals draw the tool lightly over the surface of the clay-pat. When the tool no longer picks up any clay, measure the moisture content. Add a little water to the clay so that it becomes sticky again, and repeat the process once or twice more. If the measured moisture contents are within reasonable agreement (an overall range of 2%), calculate the average moisture content to the nearest 1% and report it as the sticky limit of the clay."

After completion of testing, a report was generated for each test in accordance with applicable ASTM standards and results were summarized in a table including visual description, water content, plastic limit, liquid limit, and sticky limit. All calculations, data entry, and reports were reviewed by the laboratory technical director. The table summarizing the results and plots of the limit testing are enclosed.

Please contact me at (206) 632-8020 if you have any questions regarding any of the procedures used in our laboratory.

Sincerely,

SHANNON & WILSON, INC.

Andrew Caneday Seattle Laboratory Technical Director

AJC/twh:ajc

Enclosures: Summary of Laboratory Testing Figure 1 – Plasticity Chart (3 sheets)

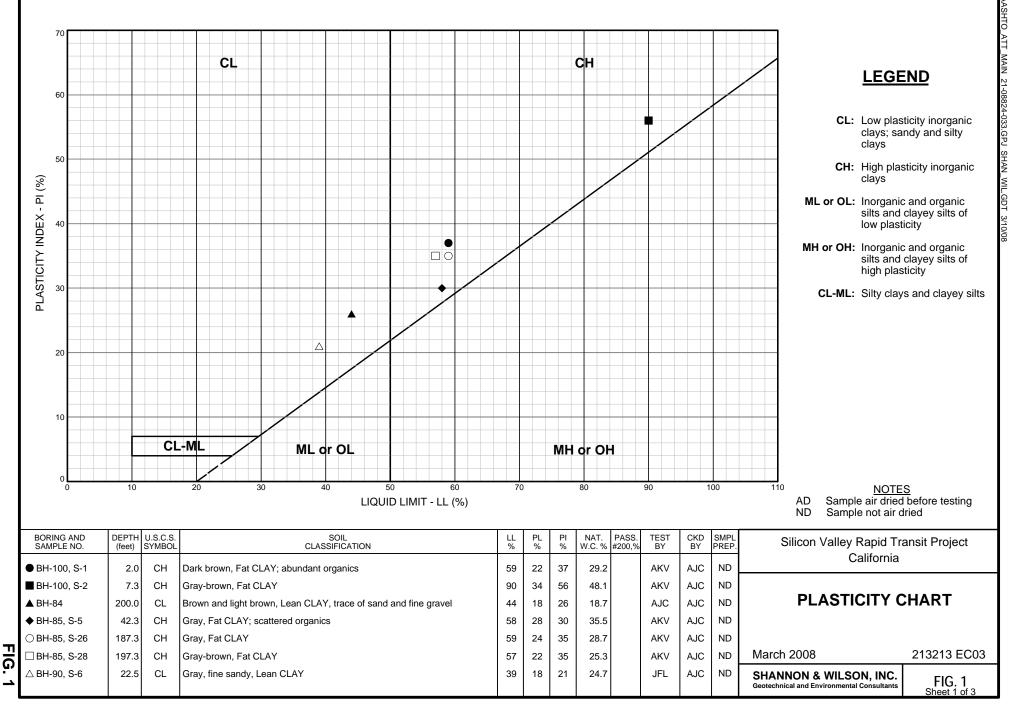
21-1-08824-033-L1.doc/wp/LKD

21-1-08824-033

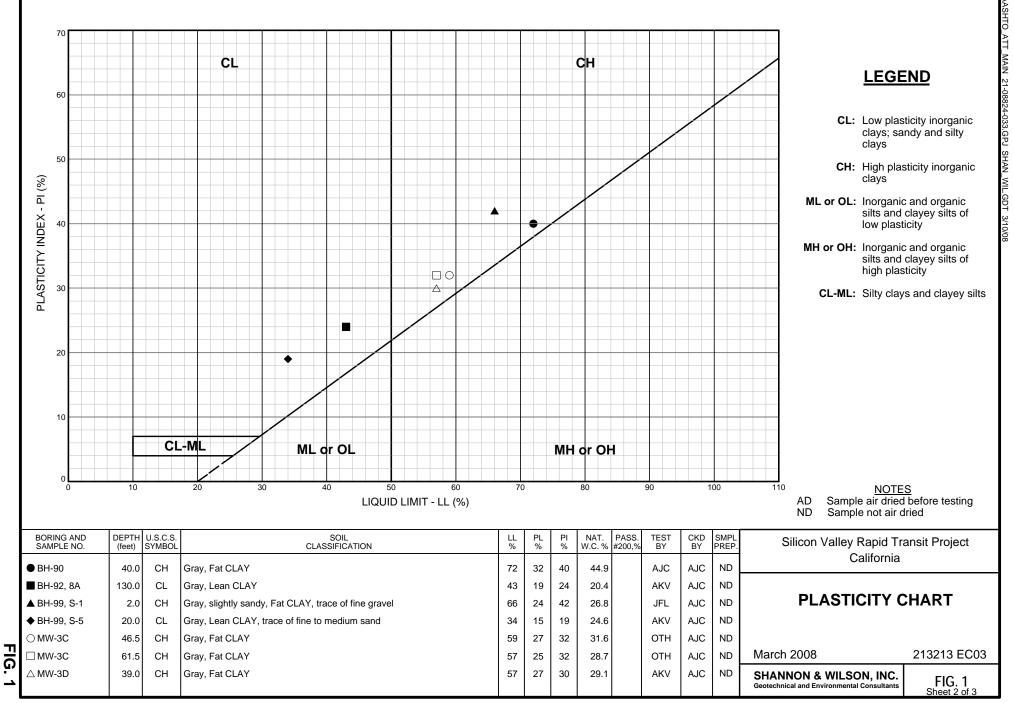
400 NORTH 34TH STREET • SUITE 100 P.O. BOX 300303 • SEATTLE, WASHINGTON 98103 206-632-8020 FAX 206-695-6777

SUMMARY OF LABORATORY TESTING

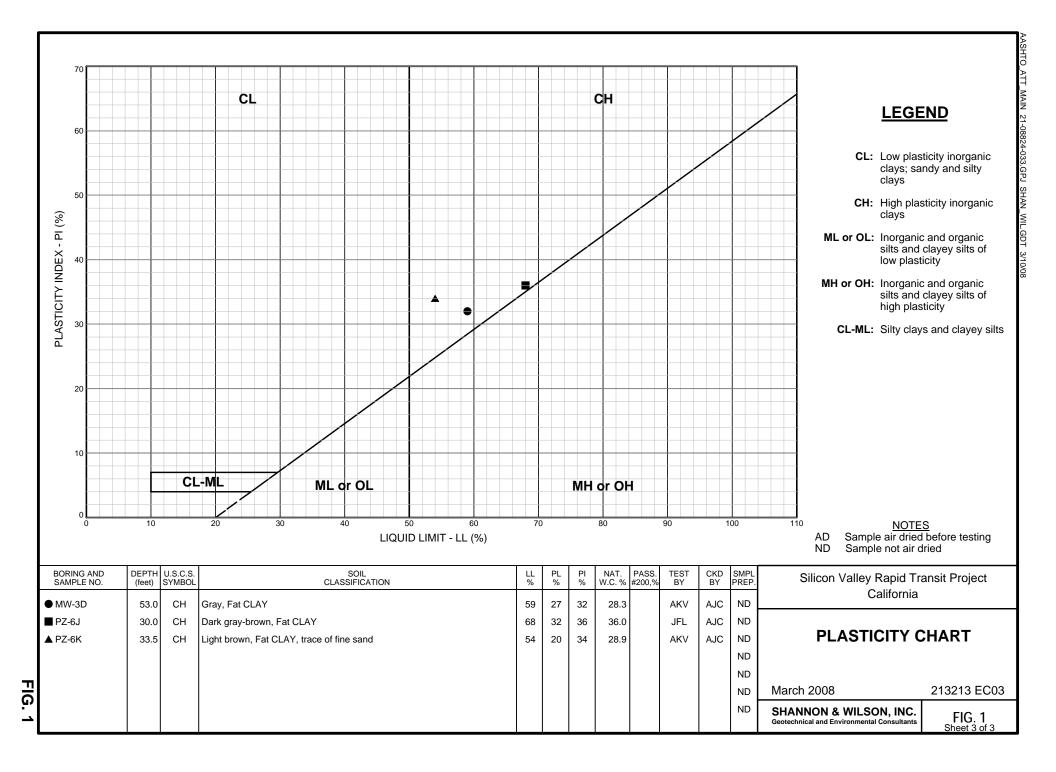
Silicon Valley Rapid Transit Project Job No. 213213 EC03 Purchase Order No. 24965-PO-00011


Water Test USCS Content Depth Sample Description PL SL Sample (feet) Symbol (%) LL PI Boring Brown and light brown, Lean CLAY, trace of sand and fine gravel 18.7 44 18 26 BH-84 200 CL 26 -BH-85 5 42.25 Gray, Fat CLAY; scattered organics CH 35.5 58 28 30 47 BH-85 26 187.25 Gray, Fat CLAY CH 28.7 59 24 35 37 Gray-brown, Fat CLAY BH-85 28 197.25 CH 25.3 57 22 34 38 Gray, fine sandy, Lean CLAY 6 22.5 39 18 BH-90 CL 24.7 21 -Gray, Fat CLAY 13 40 CH 32 40 47 BH-90 44.9 72 BH-92 8A 130 Gray, Lean CLAY CL 20.4 43 19 24 BH-99 1 2 Gray, slightly sandy, Fat CLAY, trace of fine gravel CH 26.8 66 24 42 36 5 20 18 BH-99 Gray, Lean CLAY, trace of fine to medium sand CL 24.6 34 15 -2 CH 29.2 22 38 38 BH-100 1 Dark brown, Fat CLAY; abundant organics 59 BH-100 2 7.25 Gray-brown, Fat CLAY CH 48.1 90 34 56 55 MW-3C 46.5 Gray, Fat CLAY CH 31.6 59 27 32 47 -MW-3C 61.5 Gray, Fat CLAY CH 28.7 57 25 32 42 -MW-3D 39 Gray, Fat CLAY CH 29.1 57 27 30 43 -MW-3D 53 Grav, Fat CLAY CH 28.3 59 27 32 43 -PZ-6J 30 Dark gray-brown, Fat CLAY CH 36.0 68 32 36 46 PZ-6K 33.5 Light brown, Fat CLAY, trace of fine sand CH 28.9 54 20 35 34

- LL = Liquid Limit
- PL= Plastic Limit slightly= 5-12% constituent


trace= <5% constituent

- PI = Plastic Index lower case = +12% constituent
- SL = Sticky Limit ALL CAPS= Major constituent


- Sticky Limit Test not performed on CL soils

_

_

Appendix 8: Direct Shear Test Results

COOPER TESTING LABORATORY

937 Commercial Street Palo Alto, California 94303 T: 650.213.8436 F: 650.213.8437 http://www.coopertestinglabs.com

Mr. Abhishek Jain, E.I.T. Geotechnical Professional Hatch Mott Macdonald

Re: SVRT Testing Program description

The following is a brief description of the testing program undertaken by Cooper Testing Labs for the SVRT project under your guidance.

1. Introduction

Cooper Testing Laboratories, Inc. (Cooper) conducted a laboratory testing program consisting of particle-size distribution, relative density, and direct shear tests for Silicon Valley Rapid Transit (SVRT) project. The tests were performed in general accordance with American Society of Testing and Materials (ASTM) standards. This memorandum describes the tests performed, and presents the test results.

2. Testing Program

Three (3) bulk soil samples, labeled as MW-2D, MW-6K and MW-4A, were provided to Cooper by the client. Cooper performed the following tests on these samples.

Particle-size Distribution

On each sample, Cooper performed particle-size distribution in accordance with ASTM D 422, "*Particle-Size Analysis of soils*". The particle-size distribution graphs for each specimen are shown on 'Particle Size Distribution Test Report'.

Relative Density Tests

The tests were performed in accordance with ASTM D 4253, "*Maximum Index Density and Unit Weight of Soils Using a Vibratory Table*", and ASTM D 4254, "*Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density*". The maximum density tests were performed on wet samples using an electro-magnetic vertically vibrating table (Method 1A), except for sample MW-6K that was run dry due to the high fines content. The minimum density tests were performed by either the soil-filled tube method (Method B) or the graduated cylinder method (Method C). The samples were reused for direct shear testing due to scarcity of samples provided.

The sample MW-6K contained 27 % (more than 15 %) particles passing the no. 200 sieve. ASTM recommends using a 'modified-proctor' procedure (ASTM D 1557) for such soils, however, this procedure could not be used due to scarcity of soil samples provided.

The results of maximum and minimum index density tests are provided on 'Minimum & Maximum Index unit Weight' reports for each sample.

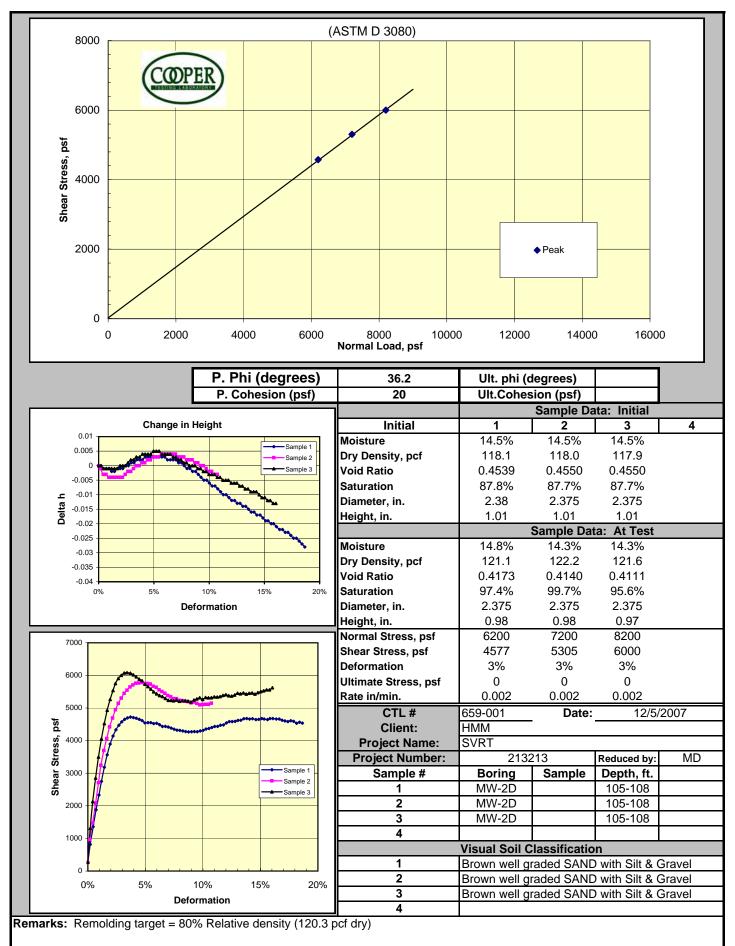
Direct Shear Tests

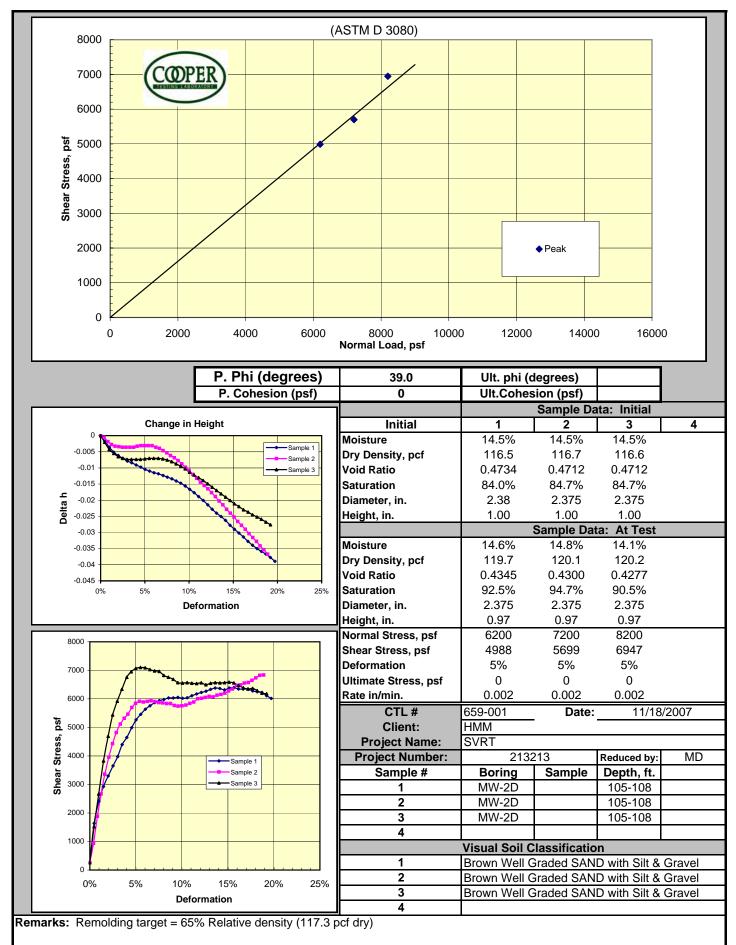
Three direct shear envelopes were developed for each of the samples. Each envelope was based on material being compacted to one of three relative densities (60%, 80%, and 95%). The tests were performed in accordance with ASTM D 3080, "*Direct Shear Test of Soils Under Consolidated Drained Conditions*". The client provided the normal pressures and relative densities. The samples were moisture conditioned and remolded by tamping in 1" layers according to the remolding targets. These remolding targets were calculated using the results of

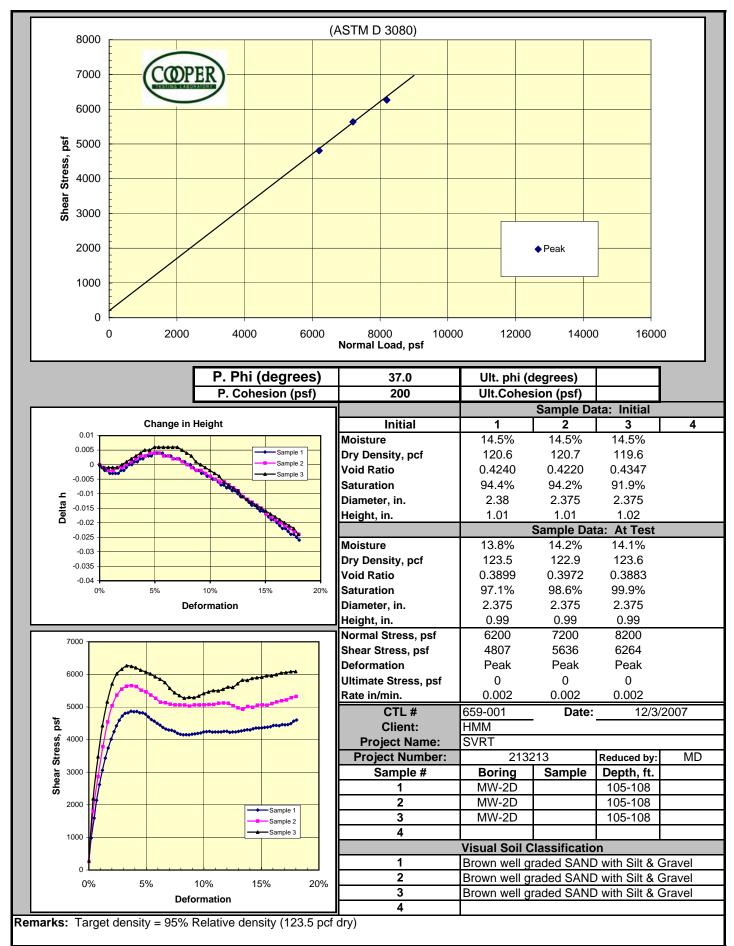
COOPER TESTING LABORATORY

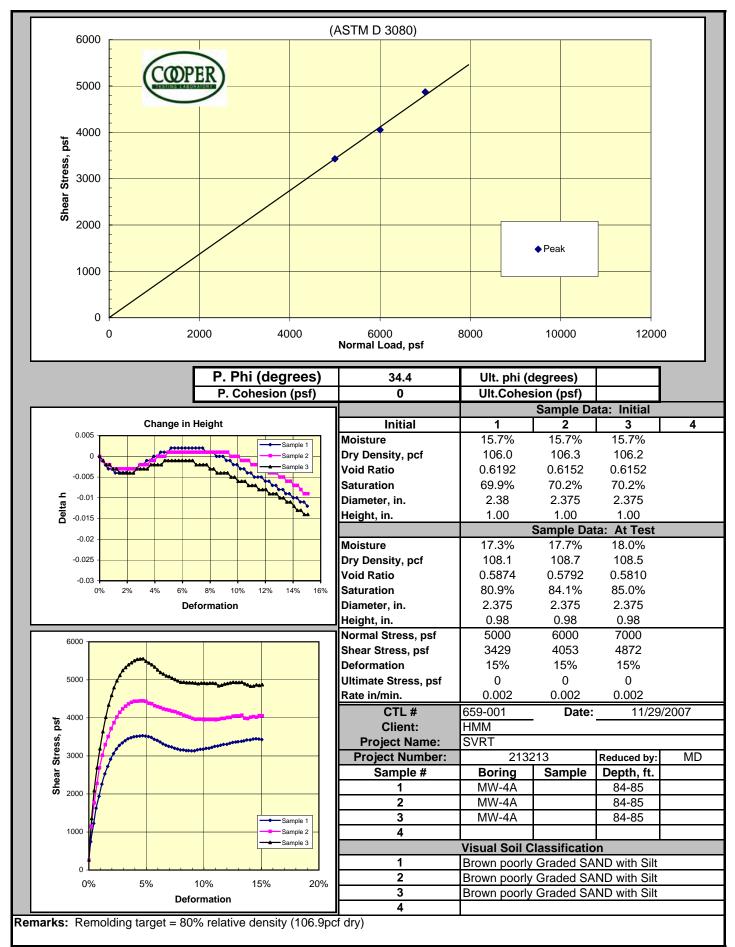
937 Commercial Street Palo Alto, California 94303 T: 650.213.8436 F: 650.213.8437 http://www.coopertestinglabs.com

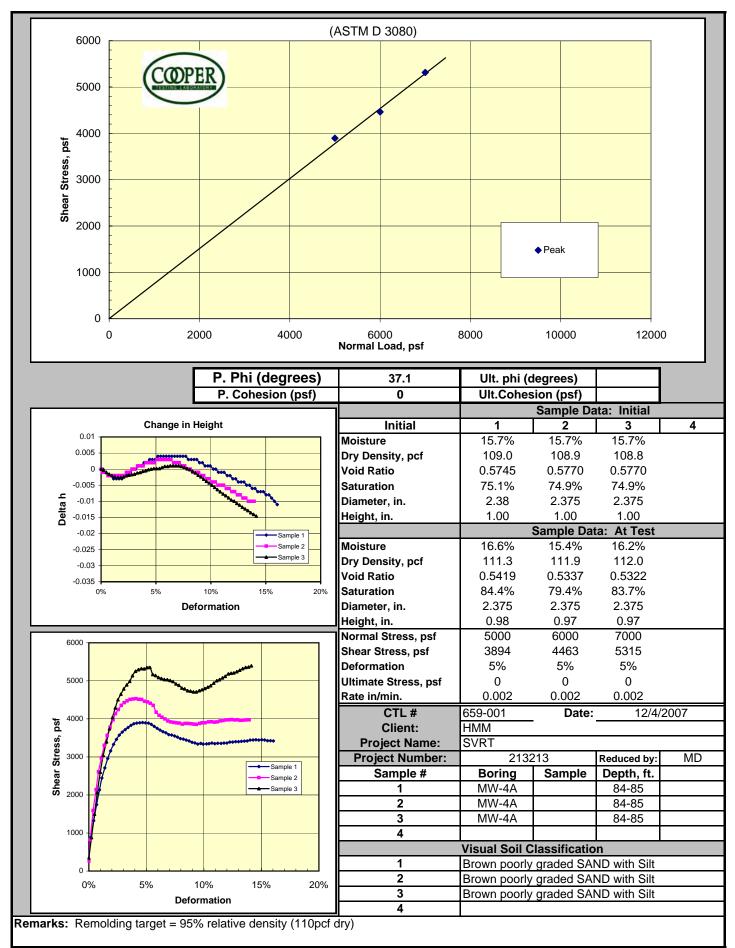
maximum and minimum relative density tests, and the target relative densities provided. The test results are presented on 'Direct Shear' test reports for each soil sample at a specific relative density. Each report includes plots of 1) shear stress vs. normal stress, 2) change in specimen height vs. deformation, and 3) shear stress vs. deformation. The spreadsheets of raw data have also been provided to the client. The shear strength parameters of friction angle and cohesion were determined based on the best-fit straight line drawn through the test data points on a plot of shear strength vs. normal stress. The report format allows the client to reinterpret the raw data using their engineering judgment.

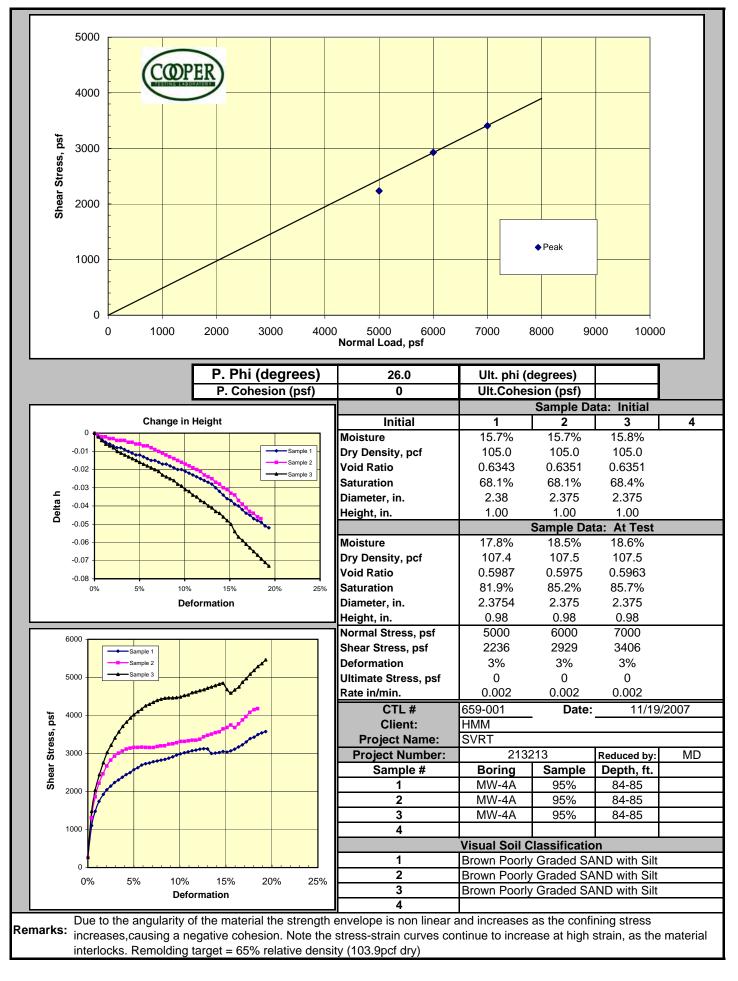

3. Direct Shear Test Limitations

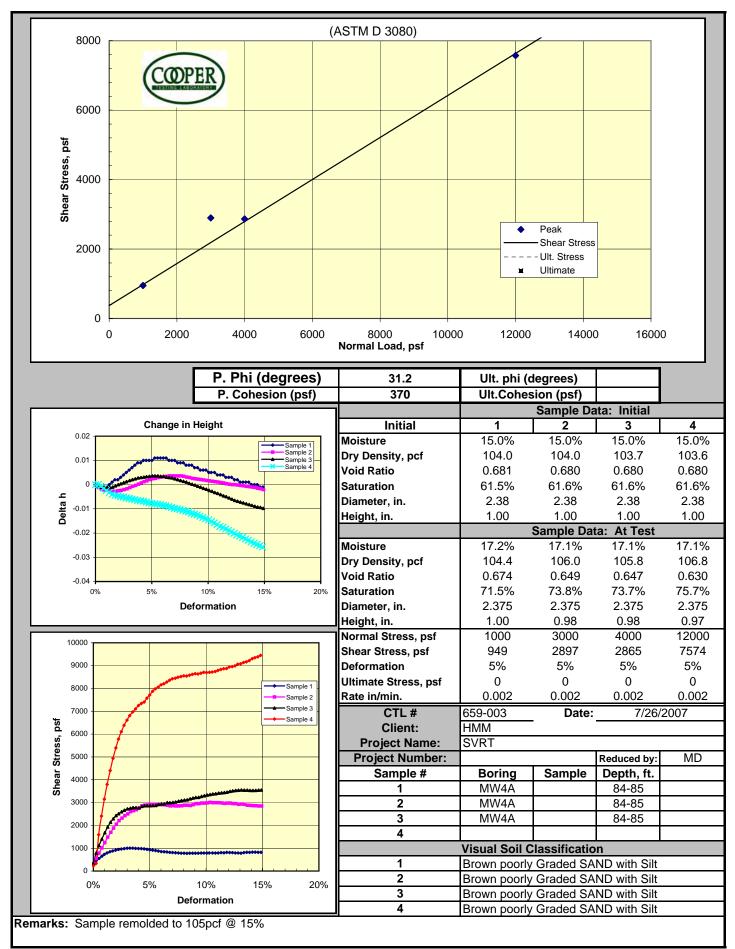

In general, direct shear tests can be problematic. In this test, the sample is forced to fail along a narrow predefined plane. Any gravel in this plane can cause strange behavior and higher shear loads to be observed during the test. Likewise, any variations in density that occur in this predefined shear plane can have a significant impact on the measured strength of any given point. It is also not uncommon for the top cap to tip during a test. This can affect both the shear load and the measured change in height of the sample. These problems can begin to overshadow differences due to the normal loads if the grouping of the normal loads is too tight

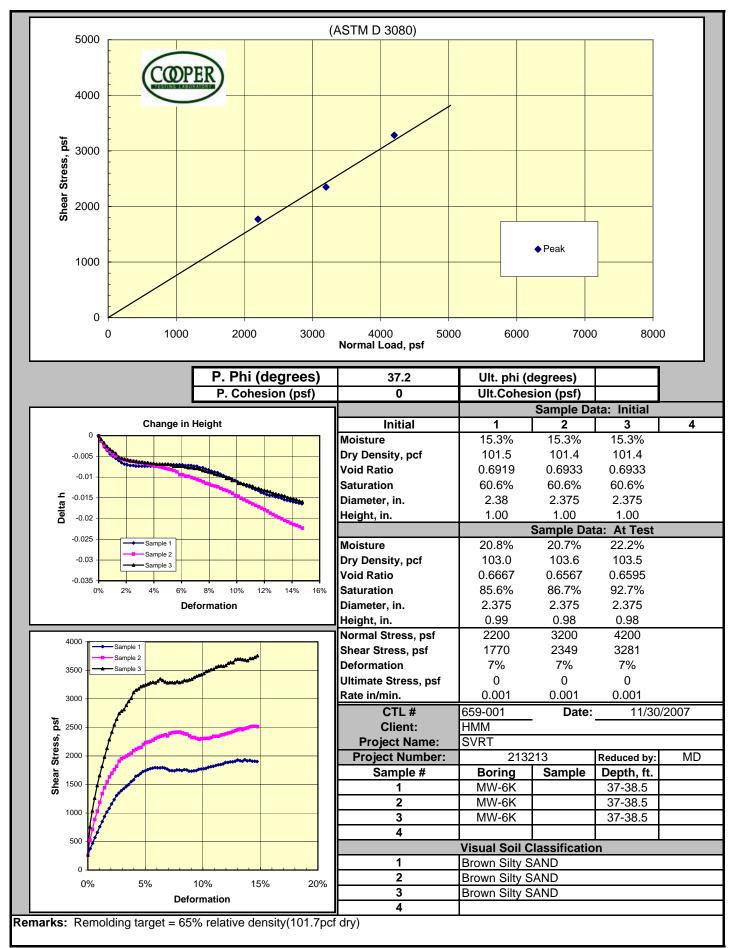

Please let me know if there are any questions,

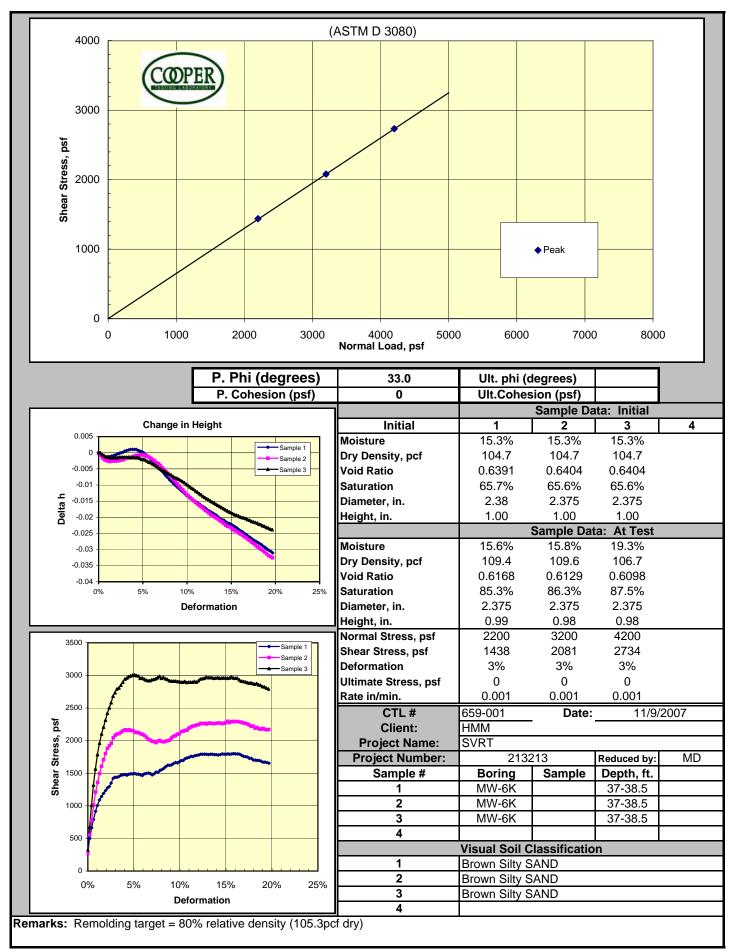

Best regards,

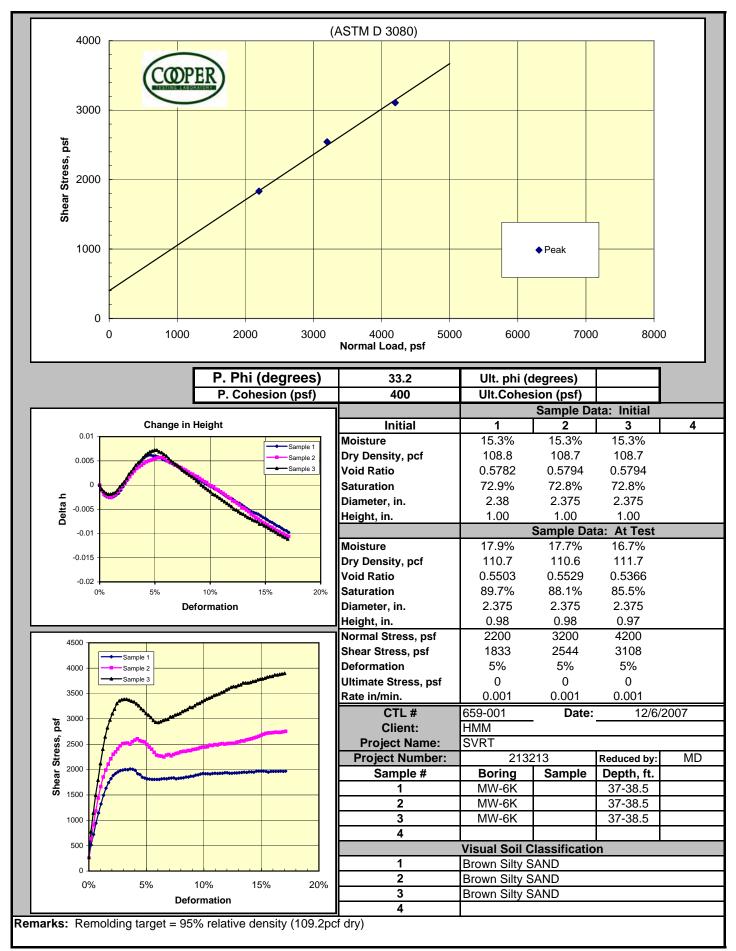

Peter Jacke Vice President Cooper testing Labs

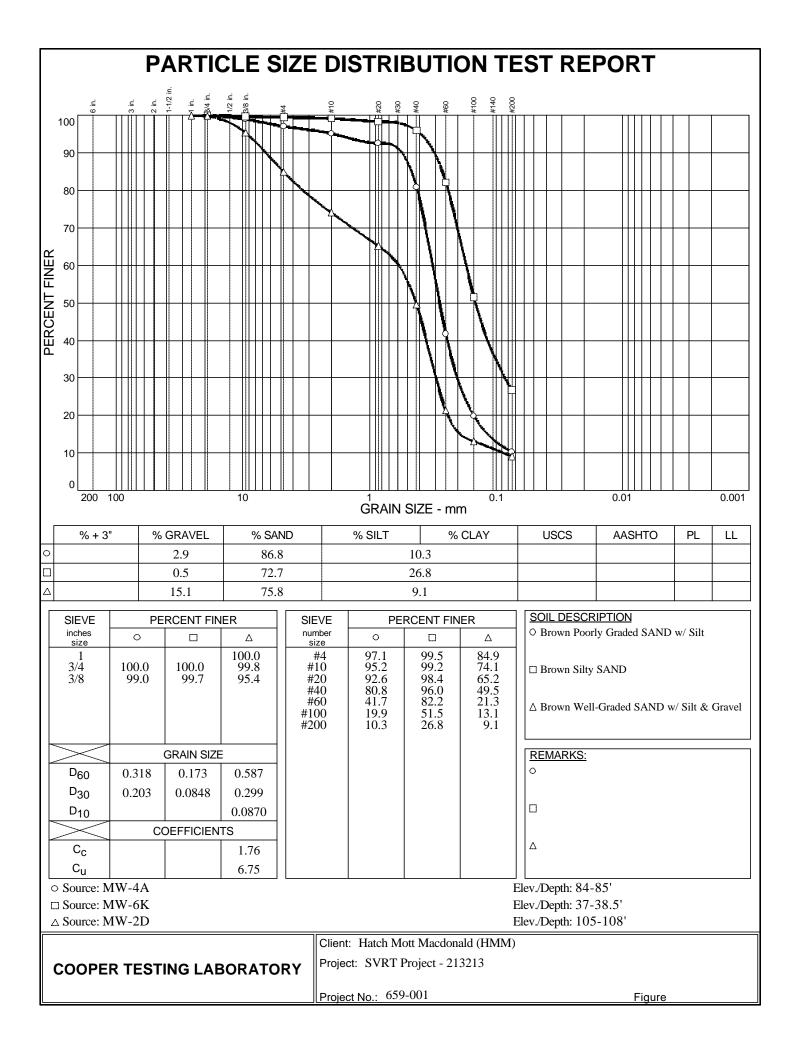












Minimum & Maximum Index Unit Weight ASTM D4254 & ASTM D4253							
CTL Job No.: 659-001			Boring			Date: 1(0/29/2007
Client: HMM/Bechtel	tel Joint Venture Sample:				Tested :		
Project Name: SVRT Project					Checked:		
	Project No:						
Visual Description: Brown Poorly Graded SAND w/ Silt							
INDEX UNIT WEIGHT TEST RESULTS							
Minimum Index Unit Wt., pcf 92.7							
	Maximum	Index Unit	Wt not	111.1			
	Maximum		. w., pci	111.1			
GRADATION TEST RESULTS							
		Gradation /	As Received				
	Sieve #	Wt. Retained	% Retained	% Finer			
	3"	0.0	0.0	100.0			
	1 1/2"	0.0	0.0	100.0			
	3/4"	0.0	0.0	100.0			
	1/2"	0.0	0.0	100.0			
	3/8"	0.2	1.0	99.0			
	#4	0.5	2.9	97.1			
					-		
		Testina	Remarks				
Minimu	ım Index Unit	-	_				
Test Method used:	Method B						
Size of mold used (ft ³):							
Remarks: Soil-filled Tube							
Maximu	Maximum Index Unit Weight:						
Test Method used:	Method 1B						
Size of mold used (ft ³):	0.1						
Remarks: Run using oven-dried material.							

Minimum & Maximum Index Unit Weight ASTM D4254 & ASTM D4253								
CTL Job No.: 659-001		-	Boring:	MW - 6K		Date:	11/2/2007	
Client: HMM/Bechtel Jo					Tested :			
Project Name: SVRT Project							DC	
Project No:								
Visual Description: Brown Silty SAND								
INDEX UNIT WEIGHT TEST RESULTS								
Minimum Index Unit Wt., pcf 88.4								
	Maximum	Index Unit	Wt., pcf	110.6				
GRADATION TEST RESULTS								
Gradation As Received								
	Sieve #	Wt. Retained	% Retained	% Finer				
	3"	0.0	-	-				
	1 1/2"	0.0	-	-				
	3/4"	0.0	-	-				
	1/2"	0.0	-	-				
	3/8"	0.0	0.0	100.0				
	#4	0.0	-	-				
		-	Remarks					
	Im Index Unit	-	1					
Test Method used: Size of mold used (ft ³):		nod C inder	•					
Size of mold used (it). Remarks:	Cyli		1					
Maxim	um Index Unit	Weight:						
Test Method used:	Method 1B							
Size of mold used (ft ³):								
Remarks: Not enough sample to run multiple trials								

Minimum & Maximum Index Unit Weight ASTM D4254 & ASTM D4253								
						Date: 10/29/2007		
Client: HMM/Bechtel Joint Venture Sample:					<u> </u>	Tested : PJ		
Project Name: SVRT Project Depth (ft.): 105-108 Checked: DC Project No:								
		-						
Visual Description: Brown Well-C	Visual Description: Brown Well-Graded SAND w/ Silt & Gravel							
	DEX UN	IT WEIG	HT TEST	RESUL	TS			
Minimum Index Unit Wt., pcf 105.8								
	Maximum	Index Unit	t Wt., pcf	124.6				
GRADATION TEST RESULTS								
	Gradation As Received							
	Sieve #	Wt. Retained	% Retained	% Finer				
	3"	0.0	0.0	100.0				
	1 1/2"	0.0	0.0	100.0				
	3/4"	0.0	0.2	99.8				
	1/2"	-	-	-				
	3/8"	0.9	4.6	95.4				
	#4	2.8	15.1	84.9				
		•			ı			
		Testing	Remarks					
Minimu	m Index Unit	-	-					
Test Method used:		hod B	-					
Size of mold used (ft ³):								
Remarks: Soil-filled Tube								
Maximum Index Unit Weight:								
Test Method used: Method 1B								
Size of mold used (ft ³): 0.1 Remarks: Run using oven-dried soil. Some Dust/Fines lost during compaction. Not								
enough sample to run multiple trials								

Appendix 9: Consolidation and Cyclic Shear Test Results

Memorandum

Date: November 1, 2007

To: Peter Chiu, Project Engineer Praad Geotechnical

From: Jonathan Stewart, Ph.D., P.E. and Eric Yee UCLA Civil & Environmental Engineering Department

RE: Draft report on results of cyclic simple shear (CSS) laboratory testing for SVRT project

Overview and Test Procedures

Suites of cyclic simple shear tests have been completed on three samples: BH-101 at 35 ft depth, BH-89 at 20 ft depth, and BH-85 at 50 ft depth. All of the samples were obtained using Shelby tubes. We do not know the date of sampling.

The procedure and equipment that was used in our testing program is summarized below:

- 1. Samples tubes were cut around their perimeter with a band saw.
- 2. A wire saw was used to cut the soil in the sample tube. By this process, a slice of the sample tube with soil approximately 4-6 cm in height was obtained.
- 3. Appropriate measurements were made to evaluate the water content and density of the soil in the cut section of sample tube.
- 4. As discussed further below, samples were soaked while still inside the cut Shelby tube section to increase saturation levels. This soaking took place for 24 to 48 hours. During the soaking phase the specimens were under the in situ vertical stresses corresponding to the sample depths (σ_v = 2,200 psf for BH101-35, 2,400 psf for BH89-20, and 3700 psf for BH85-50 ft).
- 5. Soils specimens were extracted from the cut section of Shelby tube by pushing them out with a static force acting on a plate just slightly smaller than the inside diameter of the tube. Specimens were then carefully trimmed by hand to a diameter of 7.1 cm.
- 6. A wire-reinforced membrane was carefully placed around the specimen, which was then positioned for placement in the simple shear apparatus. The purpose of the wire-reinforced membrane is to minimize lateral extension of the samples.
- 7. A vertical load was applied to the specimen matching the in situ vertical stress from the location of the sample depth. Those vertical stresses are indicated in Item (4) above.
- 8. Prescribed strain histories were applied to the specimens. Measured responses include horizontal displacements (used in the control algorithm), vertical load (which

remains constant), vertical displacement, and horizontal loads. Results are typically presented as shear stress versus shear strain and vertical strain versus shear strain.

All shear testing was performed using the Digitally Controlled Simple Shear (DCSS) device in the geotechnical laboratory at UCLA. Details on the physical characteristics and capabilities of the device are given in Duku et al. (2007).

Saturation of Specimens

Our understanding is that these samples have been handled previously by another laboratory. Some drying of sample BH101 was evident from saturation levels measured on specimens retrieved from the bottom of the sample tube that ranged from 78-92%. Saturations were much higher for the other specimens (BH89 and BH85).

Because field saturations are expected to be unity, we soaked the specimens for times ranging from 24 to 48 hours to increase saturation levels prior to simple shear testing. The need for this soaking had not been anticipated when the testing program was first discussed. The use of this soaking phase is a major factor in the relatively long time frame involved in completing the tests. The configuration under which the specimens were given access to water is depicted in Figure 1.

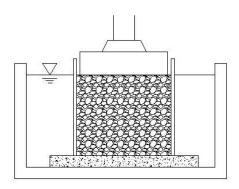


Figure 1. Configuration of specimen during soaking phase

As shown in Figure 1, during the soaking phase the soil specimen is within a cut section of the Shelby tube. It sits upon a pre-saturated porous stone and has an aluminum top cap with a diameter nearly matching the inside diameter of the Shelby tube. A vertical seating load is placed on the top cap matching the in situ vertical stress at the sample depth. The soaking was generally effective in raising the saturation for BH101, with little effect for the other samples.

Format of Results

Results of the simple shear tests are presented in three figures per sample. The results are presented in the following order: BH101-35 (Figures 2-4), BH89-20 (Figures 5-7), and BH85-50 (Figures 8-10). For each sample, CSS tests were performed on three specimens under the following conditions: monotonic fast test with $\dot{\gamma} = 1\%$ /sec, monotonic slow test with $\dot{\gamma} = 1\%/20$ min (0.0008%/sec), and cyclic test with strain rate of $\dot{\gamma} = 1\%$ /sec and full stress-strain cycles at strain amplitudes of approximately γ =0.05%, 0.10%, 0.15%, 0.2%, 0.3%, 0.5%, 1%, and 1.7%. One cycle was performed at each of those strain levels, followed by monotonic shear to the next strain level.

The first figure for each sample (Figures 2, 5, and 8) summarizes the monotonic test results and cyclic backbone curves. Those results are interpreted in the section below title: "Evaluation of Backbone Curve Results." The second figure for each sample (Figures 3, 6, and 9) shows the stress-strain cyclic loops obtained in the fast cyclic tests. The third figure for each sample (Figures 4, 7, and 10) shows shear moduli and damping values inferred from the cyclic loops. Also shown in the damping plots are estimates of damping versus shear strain calculated using the model of Darendeli (2001). An interpretation of the shear moduli and damping values is presented in the section below titled: "Interpretation of Shear Modulus and Damping Results."

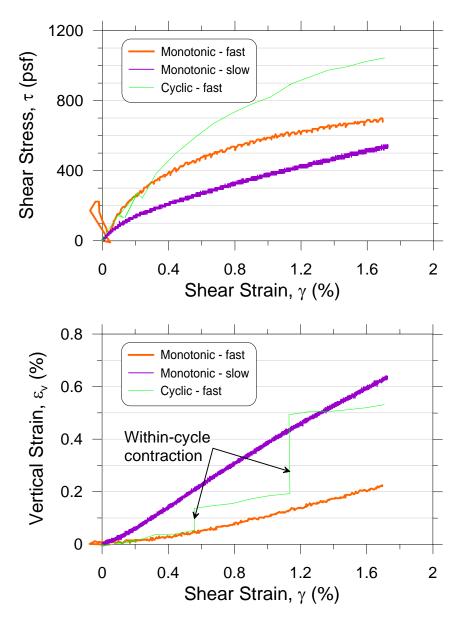


Figure 2. Variation of shear stress and vertical strain with shear strain for fast and slow monotonic CSS tests on specimens from sample BH101-35 ft

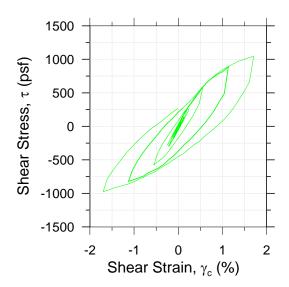


Figure 3. Cyclic stress-strain hysteresis curves for specimen from Sample BH-101-35ft.

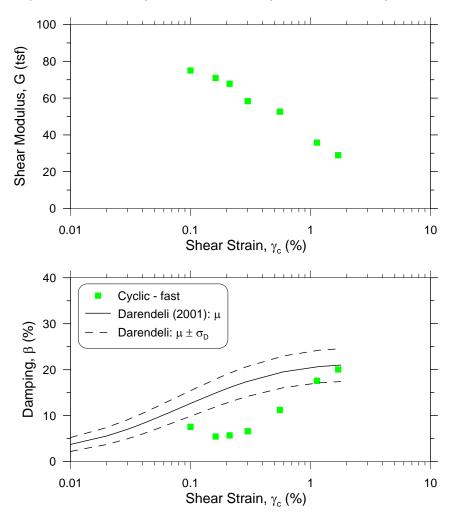


Figure 4. Shear modulus and damping ratio versus shear strain. Sample BH-101-35ft. Darendeli model prediction is for σ_v = 2,200 psf, PI=12, and OCR=2

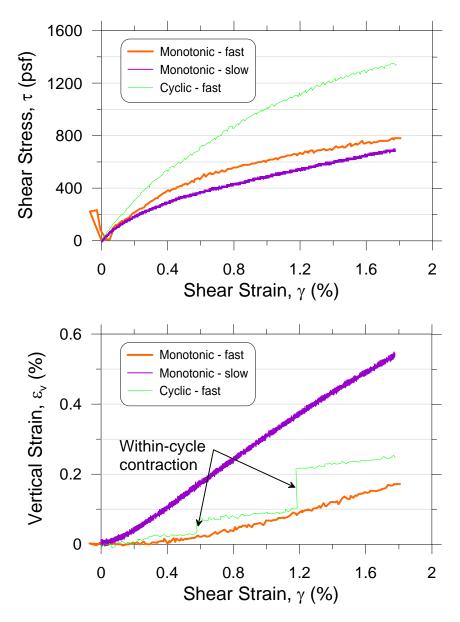


Figure 5. Variation of shear stress and vertical strain with shear strain for fast and slow monotonic CSS tests and fast cyclic test on specimens from sample BH89-20 ft

Figure 6. Cyclic stress-strain hysteresis curves for specimen from Sample BH-89, 20ft.

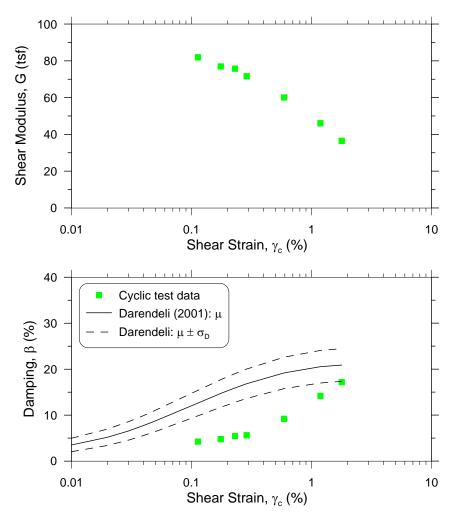


Figure 7. Shear modulus and damping ratio versus shear strain. Sample BH-89, 20ft. Darendeli model prediction is for σ_v = 2,400 psf, PI=16, and OCR=2

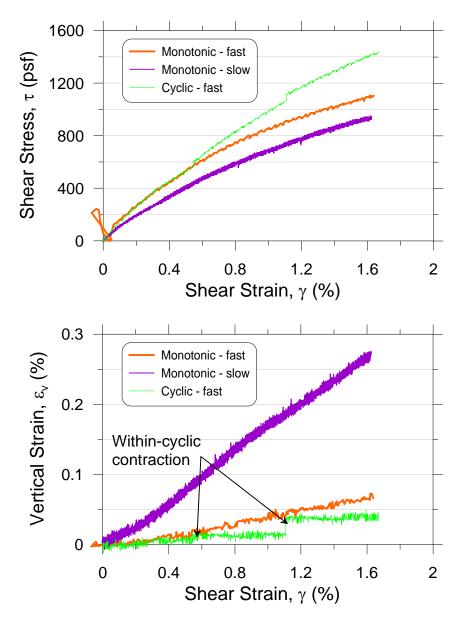


Figure 8. Variation of shear stress and vertical strain with shear strain for fast and slow monotonic CSS tests and fast cyclic test on specimens from sample BH85-50 ft

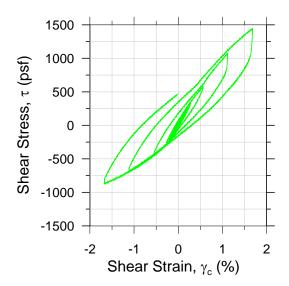


Figure 9. Cyclic stress-strain hysteresis curves for specimen from Sample BH-85, 50ft.

Figure 10. Shear modulus and damping ratio versus shear strain. Sample BH-85-50ft. Darendeli model prediction is for σ_v = 3,700 psf, PI=24, and OCR=2

Evaluation of Backbone Curve Results

One important point of comparison with respect to the backbone curves are differences between the slow and fast monotonic tests. Comparing shear stresses for shear strains of approximately 0.2, 0.5, 1.0, and 1.5%, the rate effects are found to be as indicated below:

- BH101: range of 35 to 92%, average 65%
- BH89: range of 18 to 28%, average 24%
- BH85: range of 18 to 37%, average 28%

For each specimen, testing was performed to a maximum strain of approximately 1.7% due to control difficulties that were encountered for larger strains. Although we did not reach a peak strength for the specimens, it is likely reasonable to take the rate effect for these samples as the values given above since at γ =1.7% we are well beyond the maximum strain anticipated for the SVRT project.

The fast cyclic test produces larger stresses than the fast monotonic tests, which may be due to strain hardening resulting from within-cycle specimen contraction, as shown in the bottom half of Figures 2, 5, and 8. Volumetric contraction of unsaturated soils subjected to cyclic loading, such as depicted in the bottom frame of the figures, is a well-known phenomenon (e.g., Whang et al., 2004).

The differences between the monotonic-fast and cyclic-fast results lead us to believe that separate specimens should be used to evaluate damping ratios and rate effects on shear strength. That is, if the fast monotonic test were omitted, the effect of strain rate could not be isolated from the effect of within-cycle contraction in comparing the monotonic-slow and cyclic-fast tests.

Interpretation of Shear Modulus and Damping Results

Figures 4, 7, and 10 show secant shear moduli and damping ratios calculated from the stressstrain loops. The results at small strains ($\leq 0.2\%$) for BH85 (Figure 10) have relatively high uncertainty due to a controller error that led to a relatively small number of data points being recorded to define the cyclic loops.

There are two points that should be made in connection with the shear moduli reported in these figures.

1. The moduli do not extend to the very small strains that would typically be associated with the maximum shear modulus, G_{max} . The lowest strain for which moduli are reported is γ =0.1%. Values of G_{max} should generally be taken from strain cycles at amplitudes of approximately γ =10⁻⁴%. The DCSS device is not well configured for very

small-strain testing, as would be required to evaluate a laboratory value of G_{max} . Alternative devices, such as described by Doroudian and Vucetic (1995) could be employed for such testing.

2. Allowing for typical levels of modulus reduction associated with the minimum tested strain level of 0.1% ($G/G_{max} \approx 0.5$ at $\gamma=0.1\%$), the inferred values of maximum shear modulus (denoted here $G_{max-inf}$) are approximately 150 tsf for BH101, 170 tsf (BH89) and 130 tsf (BH85). Based on the in situ measurement of shear wave velocity (Vs = 640 ft/s, 580 ft/s, and 760 ft/s for the respective samples), the "field" values of $G_{max} =$ 700 tsf, 570 tsf, and 990 tsf, respectively. Hence, the ratios of laboratory-to-field G_{max} are approximately 0.21, 0.30, and 0.13. This offset between laboratory and field estimates of G_{max} is well established in the literature. For example, Hueze et al. (2003) found the laboratory/field G_{max} ratios for three sites to typically be in the range of 0.1-0.5 for Pitcher barrel sample depths retrieved from 2-90 m depth. These offsets between laboratory and field moduli result from sample disturbance, possible lack of full K₀ lateral pressures for samples tested at the in situ vertical stress, and different strain rates in the laboratory and field tests.

As a result of the above points, the shear moduli reported in Figure 4, 7, and 10 are not expected to be representative of field conditions. They could be used to construct a modulus reduction (G/G_{max}) curve following appropriate extrapolation to G_{max} if that is desired. Additional testing could also be undertaken to measure G_{max} in the laboratory (this was not part of our scope).

In the lower part of Figures 4, 7, and 10, the damping data are compared to the predictions of the Darendeli (2001) model. The Darendeli model was used with the parameters given in the respective captions. The comparisons show that the Darendeli model predicts higher levels of damping than demonstrated by the data. It is possible that the reduced damping is related to suction effects increasing the inter-particle stresses beyond those represented by the seating load. That is, damping is known to decrease with confining pressure for granular and low-plasticity soils (e.g., Seed et al., 1986; Darendeli, 2001), so additional confinement from suction could decrease damping levels relative to what would have been measured in a fully saturated specimen.

References

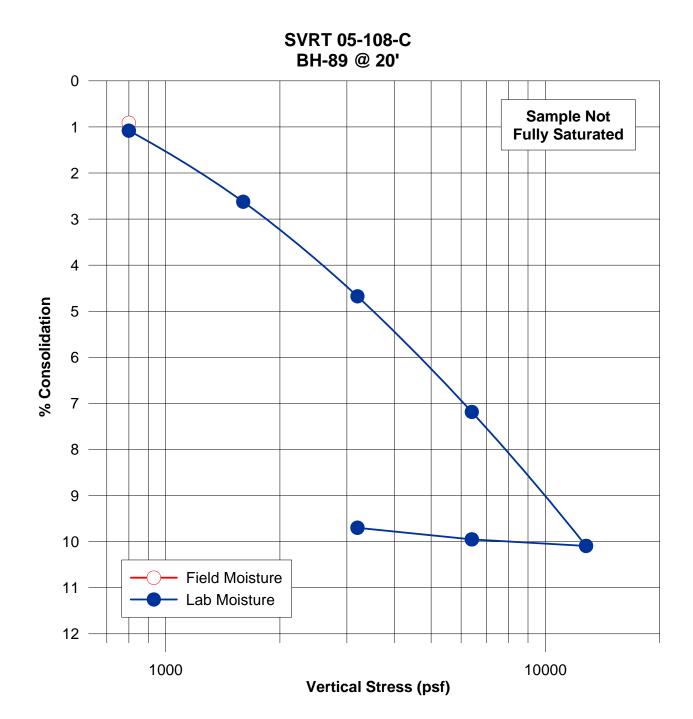
Darendeli, M. (2001). "Development of a new family of normalized modulus reduction and material damping curves." Ph.D. Dissertation, Dept. of Civil Engrg., Univ. of Texas, Austin.

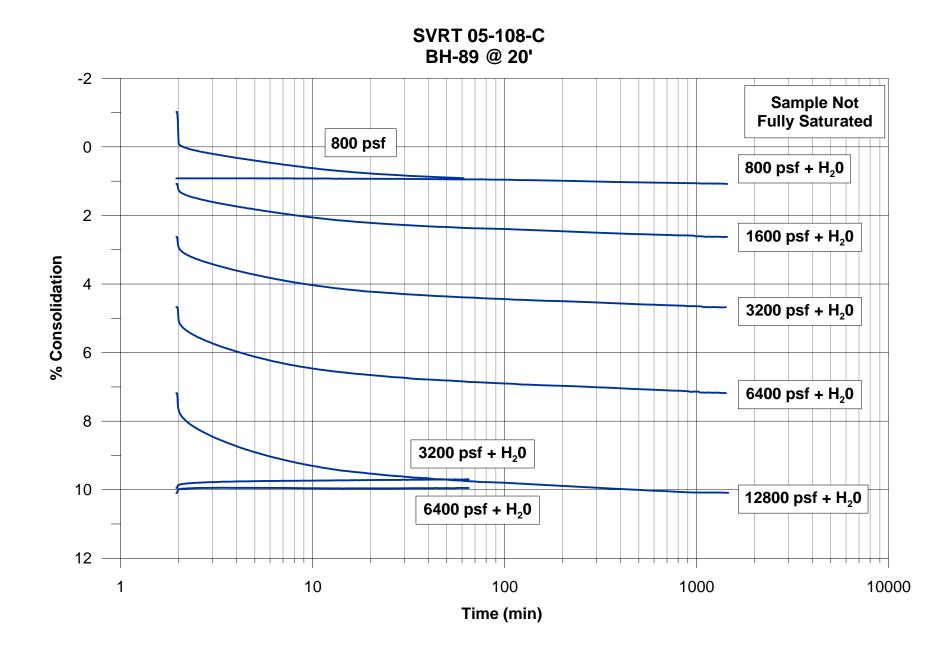
Doroudian, M. and M. Vucetic (1995). "A direct simple shear device for measuring small strain behavior," Geotech. Testing Journal, ASTM, 18 (1), 69-85.

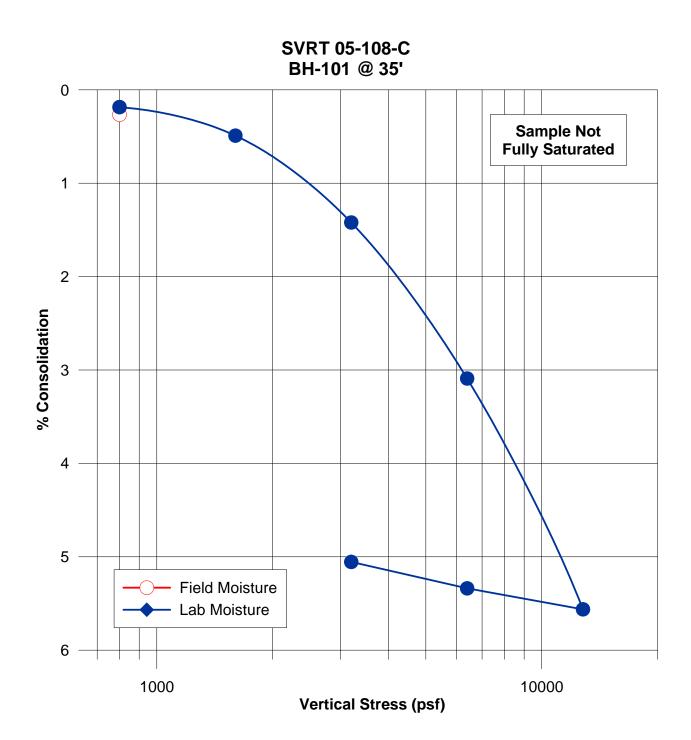
Duku, P.M., J.P. Stewart, D.H. Whang, R. Venugopal (2007). "Digitally controlled simple shear apparatus for dynamic soil testing," Geotech. Testing Journal, ASTM, 30 (5), 368-377.

Heuze, F., R. Archuleta, F. Bonilla, S. Day, M. Doroudian, A. Elgamal, S. Gonzales, M. Hoehler, T. Lai, D. Lavallee, B. Lawrence, P.-C. Liu, A. Martin, L. Matesic, B. Minster, R. Mellors, D. Oglesby, S. Park, M. Riemer, J. Steidl, F. Vernon, M. Vucetic, J. Wagoner, and Z. Yang (2003). "Estimating site-specific strong earthquake motions," Soil Dynamics and Earthquake Engineering, 24 (3), 199-223.

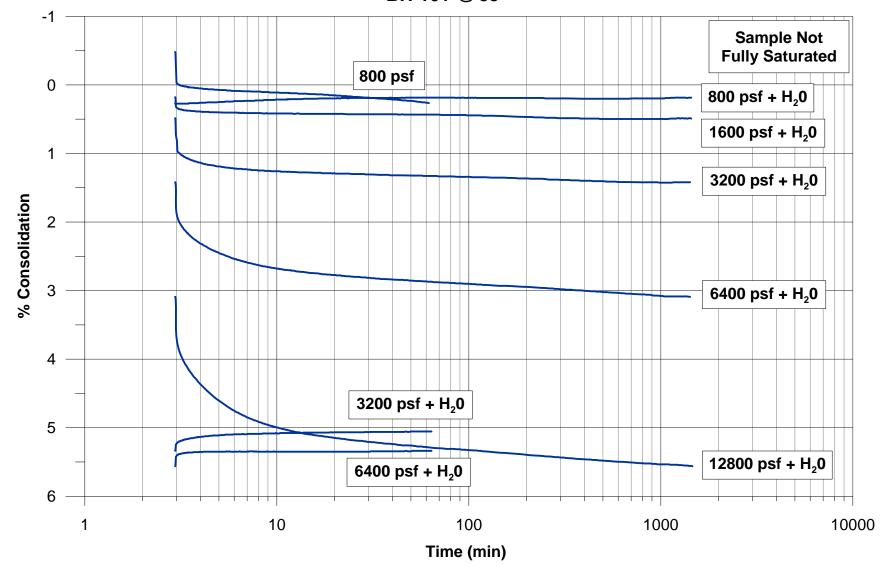
Whang, D.H., J.P. Stewart, and J.D. Bray (2004). "Effect of compaction conditions on the seismic compression of compacted fill soils," Geotechnical Testing Journal, ASTM, 27 (4), 371-379.

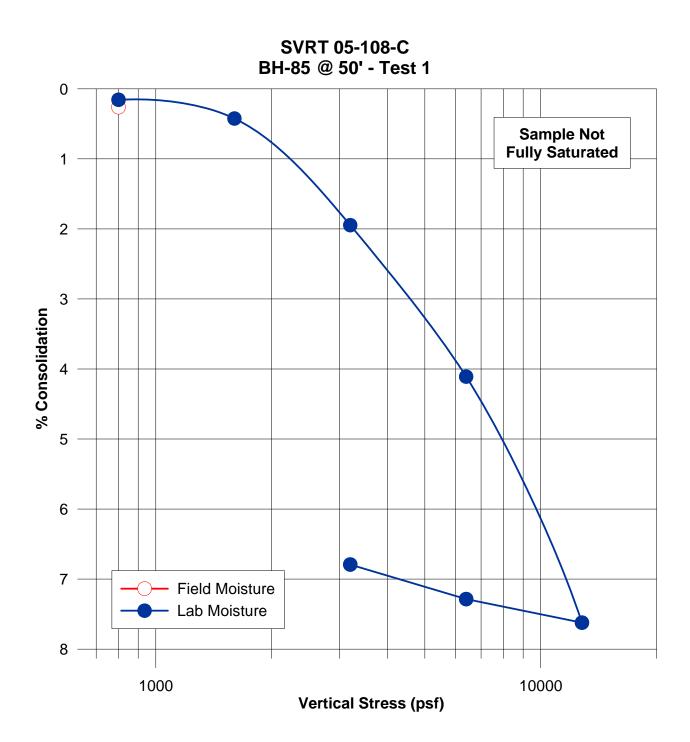

Seed, H.B., R.T. Wong, I.M. Idriss, and K. Tokimatsu (1986). "Moduli and damping factors for dynamic analysis of cohesionless soils," Journal of Geotechnical Engineering, 112 (11), 1016-1032.

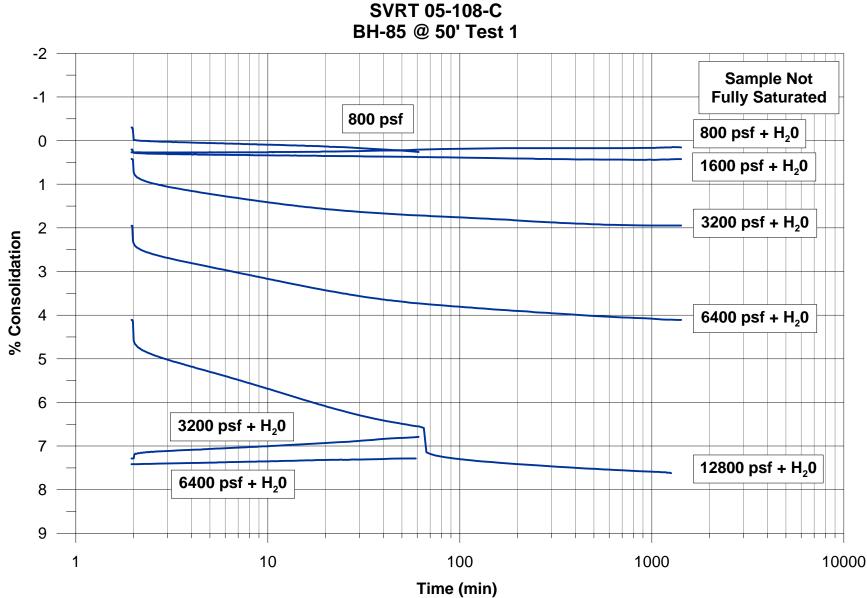

SVRT LABORATORY TESTS


September – October 2007

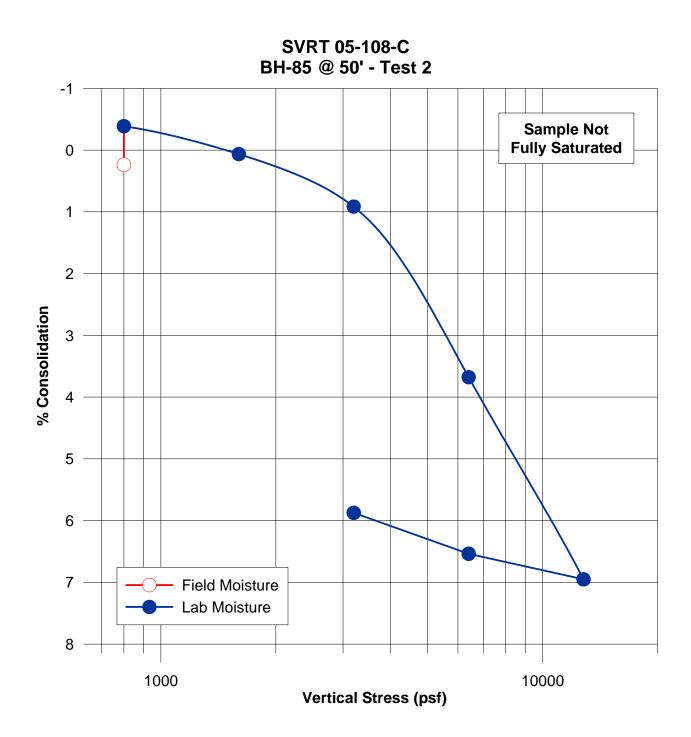
Consolidation and Atterberg Limits:

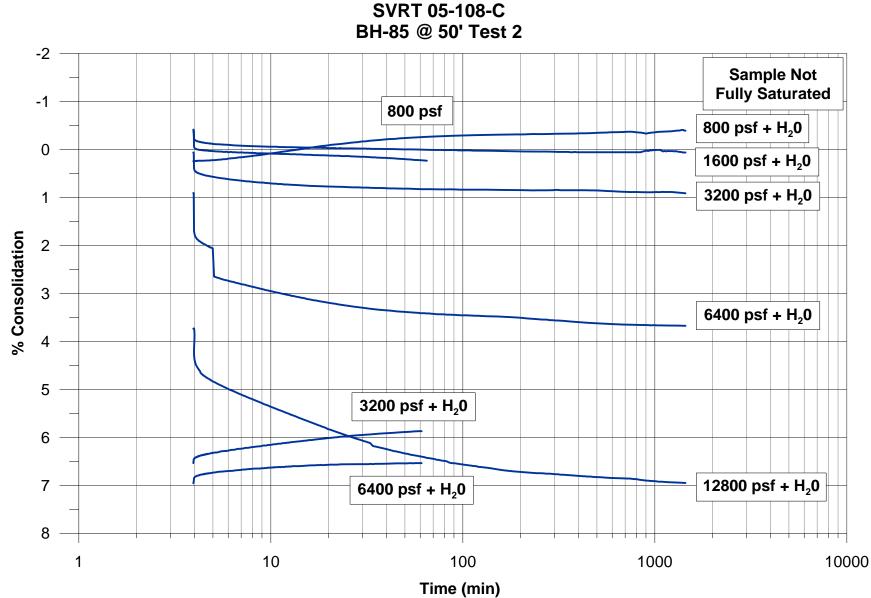

- ➢ BH-89 at 20 ft
- > BH-101 at 35 ft
- ➢ BH-85 at 50 ft
- ➢ BH-87 at 106 ft
- > BH-90 at 110 ft

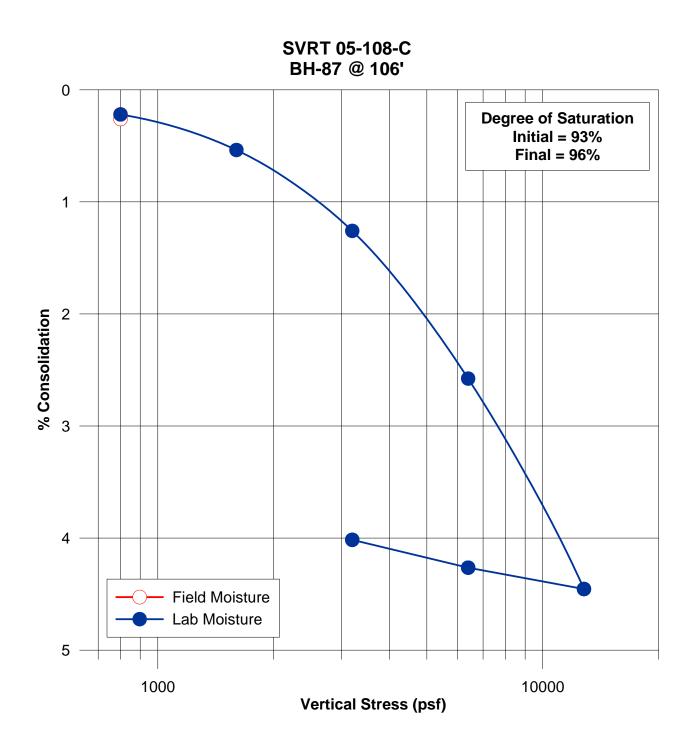


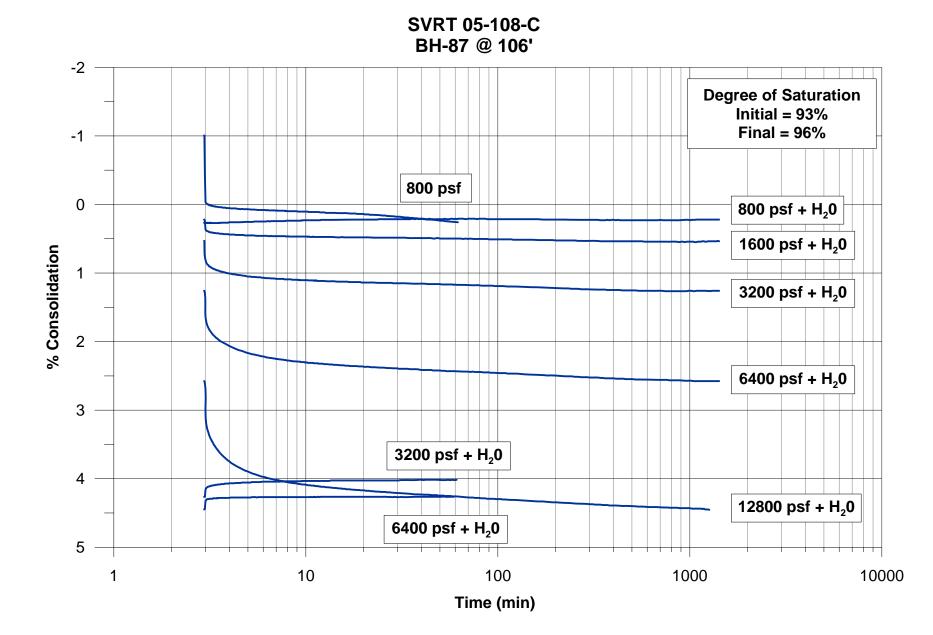


SVRT 05-108-C BH-101 @ 35'

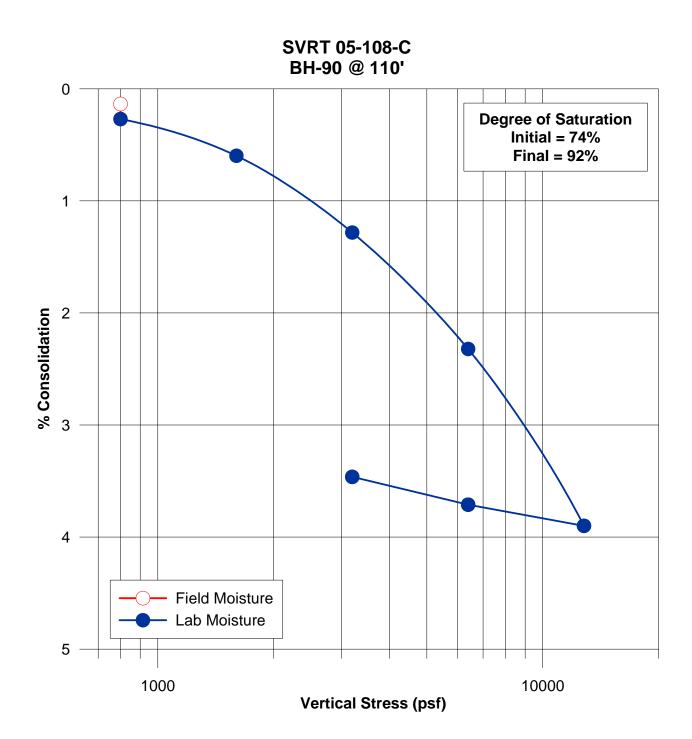


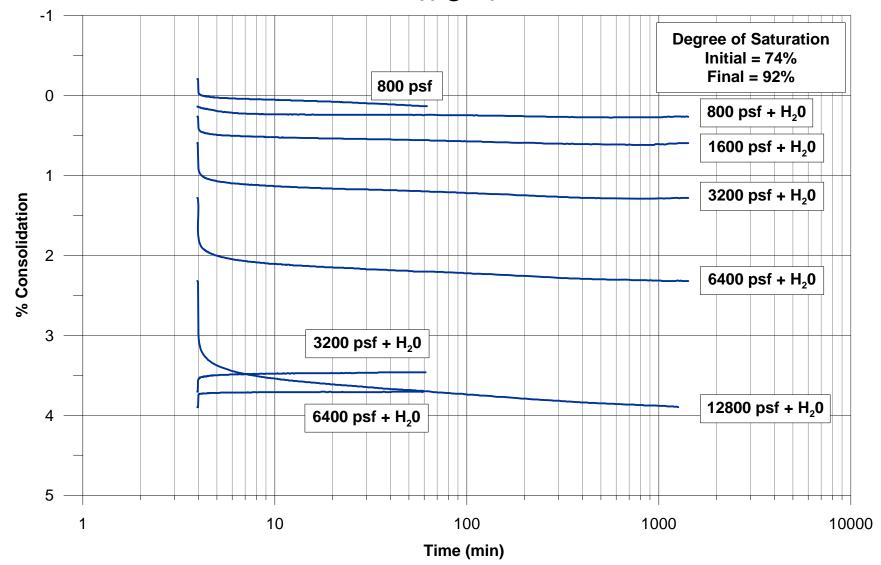

Note: Carbon stained pores observed in sample





Note: Carbon stained pores observed in sample





Praad Geotechnical, Inc. Sept – Oct 2007

SVRT 05-108-C BH-90 @ 110'

Praad Geotechnical, Inc. Sept – Oct 2007

SVRT 05-108-C

Maximum Past Pressure, σ'_p , Summary

Sample	σ' _p , psf		
BH-89 @ 20 ft	-		
BH-101 @ 35 ft	~ 3,700		
BH-85 @ 50 ft (1)	~ 3,200		
BH-85 @ 50 ft (2)	~ 3,800		
BH-87 @ 106 ft	-		
BH-90 @ 110 ft	-		

Atterberg Limit Summary

Sample		Parikh Lab		
	Liquid Limit, LL	Plastic Limit, PL	Plastic Index, Pl	Plastic Index, Pl
BH-89 @ 20 ft	29	19	10	16
BH-101 @ 35 ft	29	20	9	12
BH-85 @ 50 ft	49	24	25	24
BH-87 @ 106 ft	36	25	11	-
BH-90 @ 110 ft	28	22	6	-

Appendix 10: Dissolved Gas Sampling and Analysis Report

16 September 2008

Mr. Thomas Hunt SVRT Project 3103 North First Street Hynix Building B, 2nd Floor San Jose CA 95134-1927

RE: Report on Dissolved Gas Sampling and Analysis Locus Project No. 28006-0012

Dear Mr. Hunt:

Locus Technologies (Locus) recently completed sampling and analysis of 30 groundwater wells as requested by the HMM/Bechtel Silicon Valley Rapid Transit Project (SVRT) under Subcontract 24965-AE-029. This report documents the sampling and analyses, including field observations, laboratory results, and review of quality control information.

Summary of Sampling Activities

Locus collected groundwater samples from 12 Phase I groundwater wells specified by SVRT on 21-22 May 2008. Field activity logs, water sampling logs, and chain of custody records for this event are included in Attachment A. Field quality control samples collected during this round included a duplicate (sample ID 4767 collected from well MW-2F), a rinseate blank (sample ID 4769 collected after sampling TW-6A), and two travel blanks (sample IDs 4768 and "Trip BI"). Samples collected during this event were shipped to Bioremediation Consulting Inc (BCI) in Watertown, MA and Gusmer Enterprises, Inc (Gusmer) in Napa, CA.

On 22-23 July 2008, Locus collected groundwater samples from 18 Phase 2 groundwater wells specified by SVRT. Field activity logs, water sampling logs, and chain of custody records for this event are included in Attachment B. Field quality control samples collected during this round included two duplicates (sample ID 4783 collected from well MW-2G and sample ID 4785 collected from well MW-6D), two rinseate blanks (sample ID 4784 collected after sampling MW-3C and sample ID 4786 collected after sampling ST-11), and a travel blank (sample ID "Trip BI"). Samples collected during this event were shipped to BCI in Watertown, MA.

All samples were collected using low-flow purge methods in accordance with EPA Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers (2002). As required for the sample analysis, all samples were collected in bottles with zero headspace. Small bubbles were noted in some sample bottles prior to shipping, but these bubbles are attributed to dissolved gas accumulation.

Laboratory Analysis

Phase I groundwater samples were analyzed for methane, ethane, ethanethiol, argon, nitrogen, carbon monoxide, carbon dioxide, ammonia-nitrogen, sulfide, oxygen, hydrogen, and hydrogen sulfide. The complete analytical reports from BCI and Gusmer are presented in Attachment C.

N28-006 HMM-BECHTEL DISSOLVED GAS/HUNT - 2008-09-16 REPORT.DOC (16-Sep-08)

After review of the Phase 1 results, Phase 2 samples were analyzed for a limited list of dissolved gases including methane, nitrogen, carbon dioxide, and sulfide. The complete analytical reports from BCI are presented in Attachment D.

Quality Control Review

The duplicate samples for Phase 1 showed acceptable replicability, with the only significant percent differences occurring near the reporting limit for ethane (0.2 μ g/L in MW-2F and 0.3 μ g/L in 4767) and ammonia (<0.02 mg/L in MW-2F and 0.03 mg/L in 4767). Duplicate analyses were also performed in the laboratory on samples MW-3Dr and TW-2B. These duplicates also showed similar results. Some blank samples collected during Phase 1 showed low detections of methane, nitrogen, and carbon dioxide. However, the concentrations of these gases in the blank samples were much lower than those detected in the well samples. Therefore, these detections do not have any impact on the results. Hydrogen and oxygen were also detected in the blank samples. However, since both of these gases are inherent in every water sample, these results do not invalidate any of the sample results.

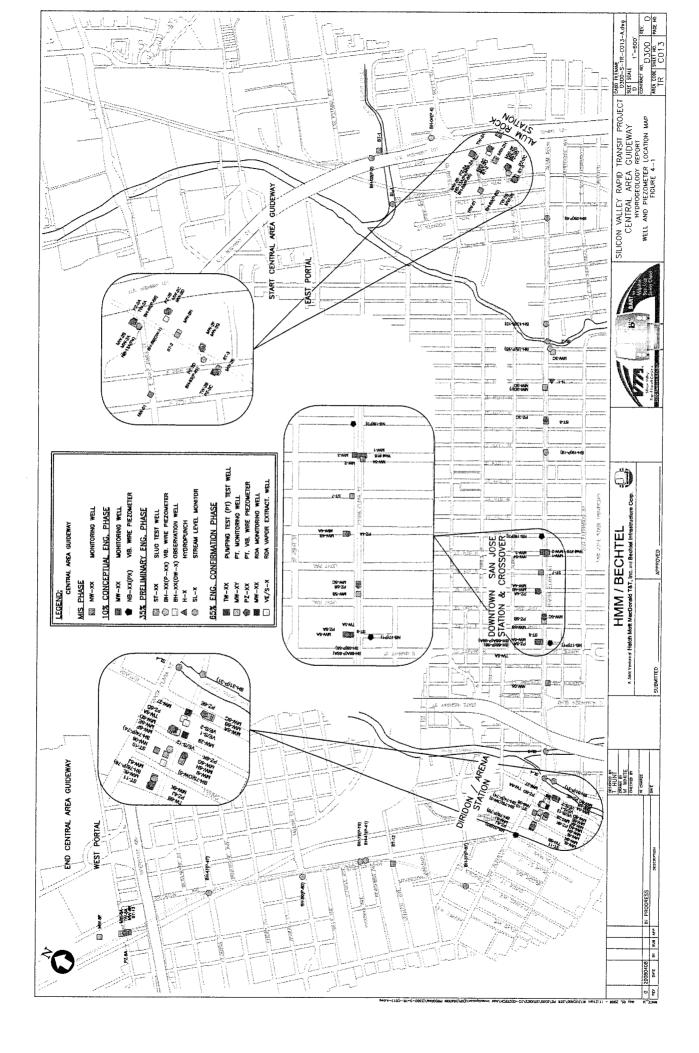
For the Phase 2 samples, the two duplicate pairs showed similar results for all analytes except sulfide, which had 57percent difference in the MW-2G duplicate and 70 percent difference in the MW-6D duplicate. Laboratory duplicate analyses performed on samples MW-4A and ST-8 showed similar results, but these samples were not analyzed for sulfide. Concentrations of methane and nitrogen were detected in the rinseate blanks and travel blanks. Most methane concentrations in the groundwater samples were higher than the concentrations in the blanks, indicating no significant quality control issue. However, nitrogen results in the groundwater samples were similar to concentrations found in the blank samples, which indicates that the nitrogen results should be considered with data qualifiers. A low carbon dioxide concentration was also detected in one of the blanks, but at a much lower concentration than detected in any of the groundwater samples. Sulfide was not detected in any of the blank samples.

Should you have questions, please do not hesitate to call.

Sincerely,

J. Wesley Hawthorne, P.E., P.G. Senior Project Manager

JWH/mmm


WELLS SELECTED FOR DISSOLVED GAS SAMPLING

	Well	Screen	4	Well Casing	Gas	Gas
Well	(ft	bgs)		Diameter	Sampling	Sampling
Number	Тор	Bottom	Hydrogeologic Unit	(inches)	Priority = 1	
East Portal to A	lum Roc	k Statio		÷		•
ST-1	67.5	72.5	Upper Aquifer ?	4		2
Alum Rock Stat	ion					
TW-2B	108	128		10		
MW-2C	98	108		2		2
MW-2E	110	120		2	1	
MW-2F	115	125		2	1	
MW-2G	63	73		2	1 	2
ST-2	77.5	87.5	Upper Aquifer	4		2
ST-3	59.5	79.5	Upper Aquifer	4		
NW-01	70	80	Upper Aquifer	6		2
Alum Rock Stati	1	1				
MW-3C	68	78		2		2
MW-3D(r)	60	70		2	- 1. I.	
ST-5	55	65	Upper Aquifer	4		
MW-1	64	74	Upper Aquifer	2		2
Crossover & Dov		1	Station			
TW-5A	78	93		10		
MW-4A	80	90		2		2
MW-5A	115	125		2		
MW-5B	73	97		2		2
ST-7	67.5	72.5	Upper Aquifer	4		2
ST-8	76.25	86.25	Upper Aquifer	4		2
	1		ridon/Arena Station			
NW-05	80	90	Upper Aquifer	6		2
Diridon/Arena S		0.5				
TW-6A	72	87		10		
TW-6B	106	116		10		
MW-6D	76	86		2		2
MW-6J	103	113	Τ.ΥΑ	2		-
ST-10	68	73	Upper Aquifer	4		2
ST-11	79.5	84.5	Upper Aquifer	4		2
NW-06 Diridon/Arena Si	90	100	Upper Aquifer	6		2
				4		
ST-12	64.5	69	Upper Aquifer	4		2
West Portal	55	75		10		Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Sa
TW-8A	<u>55</u>	75	Champalin Carfori I	10		_
ST-13	21	31	Channel in Confining Layer	4		2
Total	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			51	12	18

Gas sampling priority:

1 - Gas detected during drilling/sampling/pumping/slug testing at this location and depth. Require sampling.

2 - Gas not previously detected, but well screen is similar to tunnelling depth (e.g., 60 to 100 ft bgs). Recommend sampling.

ATTACHMENT A

Field Log, Water Sampling Log, and Chain of Custody Forms

Phase I Sampling

.

I\28-006 HMM-BECHTEL DISSOLVED GAS\HUNT - 2008-09-16 REPORT.DOC (15-Sep-08)

	Conductivity	(SII)	1.67	869	1160	1010	1060	1000	761	1407	1337	1307	0101	1042	546	714
Oxidation-	Reduction	Potential	386.9	393.2	3811	358.0	358.0	1.000	244./	171.2	52.3	1307	C CL1	112.2	٤.00	66.2
Dissolved	Oxygen	(% saturation)	52.2	47.6	47.2	34.4	30.2	1.7.2	11.2	34.4	30.2	29.4	10.7	7.00	20.02	20.8
Dissolved	Oxygen	(mg/L)	4.98	4.45	4.01	2.98	2.62	1 27	10.1	2.92	2.58	2.8	181	1 77	1./4	1.97
		Hd	7.04	6.96	7.04	7.25	7.21	661	10.0	7.23	7.39	7.37	7.11	7 50	NC.1	7.17
	Temperature	(°C)	17.6	18.7	19.9	24.8	24.6	25.5		23.4	21.1	21.3	18.5	10.7	1/1	20.9
Purge	Volume	(gal)	1	2.5	2	1.5	1.5	2	5	C.2	2	1.5	2.5	25	2	2
Purge	Duration	(min)	10	25	20	15	15	20	30	C7	20	15	25	25		70
		Sample Time	7:20	8:35	9:40	10:50	12:05	13:10	14:20	14.20	15:15	15:55	8:45	9:50	10.40	10:40
		ate	21-May	21-May	21-May	21-May	21-May	21-May	71-Mav	21 24	21-May	21-May	22-May	22-May	77 M	22-INIAY
	- - 	Well	1 W-6B	MW-6J	ST-3	MW-3Dr	ST-5	TW-6A	MW-JF		1 W-2B	M W-ZE	TW-5A	MW-5A	TW 0 A	1-70-11

WELL SAMPLING SUMMARY PHASE 1 GROUNDWATER SAMPLING

I:\28-006 HIMM-Bechtel Dissolved Gas\sampling info 2008-05-21.xls

DAILY FIELD ACTIVITY LOG TECHNOLOGIES Santa Clara VTA Project No.: 28006-08-0001 Project Name: Date: Well Sampling clear Sunny H, Castro Gr. Logged by: Field Activity: Page: Weather: DAILY ACTIVITIES AND EVENTS TIME 0600 Prepud & loaded truck for low flow sompling. 0700 Arrived onsite at TW-6B. Set up equipment for purses Met with Tom Hunt from VTA. 0725 Sampled TW-6B. 0800 AT MW-65, Set up equipment for low flow purge. 0840 Sampled MW-65. 0900 AT ST-3. Met with Officer Bryan & Traffic control Fic for traffic control. Set up equipment for low flow purge. 0945 Sampled ST-3. 1005 AT MW-30(1). Set up traffic control. 1025 Set up equipment for low flow purge. 1055 Sampled MW-3D(r). 1120 AT ST-5. Set up traffic control. Set up equipment for low flow purse. 1140 Sampled ST-5, Traffic control Finc, & Officer Bryan 1210 comments/Remarks:

DAILY FIELD ACTIVITY LOG TECHNOLOGIES Santa Clara VTA Project No .: 28006-08-0001 Project Name: 5-21-08 Date: Well Sampling H. Cestro Sr. Logged by: Field Activity: of Page: Veather: DAILY ACTIVITIES AND EVENTS TIME W-GA, Set up equipment for low flow purse 1240 (RBTAKEN 4769) Sampled TW-6A. 1315 W-2F. Set up equipment for low this purge. 1345 Sampled MW-2F. (DUPTAKEN 4767) 1425 W-2B. Set up equipment for ow Show Dirge. 1445 Sampled TW-2B. 1520 MW-2E, Satup equipment for low then purge. 1530 Sampled MW-ZE. Tred Onsite. AT TW-54. Set up equipment 0800 Dure. Sampled TW-5A. 2850 MW-SA. Set up equipment for purge. 2915 Sampled MW-5A. 9955 Setup equipment for purge. W-84 1010 15 0 m purge water onsite just SE OF TW-84 W/ Re. am Cor office. 5 omments/Remarks:

	OCUS TECHN	IOLOGIES WA	TER SA	AMPLING LO	G	
WELL\SAMPLE DESIGNATIO SAMPLE SOURCEA AMBJENT CONDITIONS(ON_ <i>TW-6B</i> Clear & Sunny		SITE: DATE PROJECT# SAMPLER	S.C. VTA 5-2/-0 28006-08-0001 H.CASTRO/ T.Murp	& phy	-
GRAB SAMPLETINE ORMA	TION (use notes set	<u>sion for melerread</u> ir	ig flow rate	vol. purged etc.)		
GRABISAMPLE METHOD WATER LEVELINFORMA	CONTINUOUS EUMPICXCLIN TION	IPUMPER YES IC YES NO- EASURINGPOINT	TOC	pHimeter MenerikeADing INSTRUMENTIUS	TELOWIRATI	E
W.H.BEFORE PURGE WIMEOR 80% RECOVERY MONITORING WELL PURG	TIMEW W		NG WELL	TIME DATE PURGE METHOD	E	
PURGE DEVICE I D. <u>Low flo</u> WELL DEPTH <u>1/6</u> SCREENED INTERVAL PURGE VOLUME CALCULAT	DI	AMETER		#CASING VOLUME	S (PROTOCOL)_	
		TUAL AMOUNT PUR	GED	pH INS	TRUMENT Low	flow cell
тіме темр. 720 /7.65	cond. pH 72.1 7.04	PURGE WATEF Slightly		f	ORP 8-6,9	DO 52.2% 4.987015/2
WATER SAMPLING INFOR	RMAHON	MONITORI	NG WELL	SAMPLE METHOL	D	
SAMPLING DEVICE ID <u>Tubi</u>	ing SA IO. VOLUME	MONITORI MPLING TIME 73 ANALYSIS Gottle 1,31	Z <u>S</u> LAB	APPROXIMATE DE DATE 5-21 PRESERVATION	PTH OF GRAB	N/A ATION
SAMPLING DEVICE ID <u>Tubi</u>	ing SA NO. VOLUME	MPLING TIME 72 ANALYSIS Gottle 1,31	Z <u>S</u> LAB	APPROXIMATE DE DATE 5-21	PTH OF GRAB	
SAMPLING DEVICE IDTubi BOTTLE TYPE N DECONTAMINATION INFC PURGE DEVICE ID.	ing SA NO. VOLUME (_See DRMATION HOSE REEL	MPLING TIME 72 ANALYSIS Gottle 1,37 SAMPLINGI	Z <u>5</u> LAB LAB	APPROXIMATE DE DATE 5-21 PRESERVATION	PTH OF GRAB	
SAMPLING DEVICE IDTubi BOTTLE TYPE N DECONTAMINATION INFO PURGE DEVICE ID PREVIOUSLY USED IN WELL SITE DECON METHOD/STEAMTIM RINSEATE SAMPLES	ing SA NO. VOLUME (_See DRMATION HOSE REEL HOSE REEL	MPLING TIME 72 ANALYSIS 60H/e 1,31 SAMPLINGI PREVIOUSI SITEL		APPROXIMATE DE DATE 5-21 PRESERVATION	PTH OF GRAB 	
SAMPLING DEVICE IDTubi BOTTLE TYPE N DECONTAMINATION INFO PURGE DEVICE ID PREVIOUSLY USED IN WELL SITE DECONIMETHOD/STEAMITIM RINSEATE SAMPLE SHIPMENT: TRAV	ing SA NO. VOLUME (See DRMATION HOSE REEL HOSE REEL SI NO. ID	MPLING TIME 72 ANALYSIS 60H/e 1/31 SAMPLINGI PREVIOUSI SITEL DECONIME RINSEATES NO ID 4768		APPROXIMATE DE DATE 5-21 PRESERVATION MELL MELL YES INO TID E_YES X NO	PTH OF GRAB	

-

	ATER SA	AMPLING LOG
WELLISAMPLE DESIGNATION <u>MW-65</u> SAMPLE SOURCE <u>A</u> AMBIENT CONDITIONS <u>Clear & Sunny</u>	DATE PROJECT#	S.C. VTA <u>5-21-08</u> 28006-08-0001 H.CASTRO/ T.Murphy
GRAB SAMPLETINFORMATION (Use notes section for meter read	ling, flow rate	, vol. purged etc.)
GRABISAMPLE CONTINUOUSIRUMPER YES METHOD: PUMP CYCLING YES NO WATER LEVEL INFORMATION MEASURING POIN		INSTRUMENT USED SJET
WILBEFORE PURGE TIME WILAFTER PURGE WILFOR 80% RECOVERY	E	DATE
MONITORING WELL PURGE INFORMATION MONITO	RING WELL	PURGE METHODE
PURGE DEVICE I.D. Low flow pump WELL DEPTH 1/3' DIAMETER 2'' SCREENED INTERVAL PUMP SETTING PURGE VOLUME CALCULATION		#CASING VOLUMES (PROTOCOL)
TIME PURGE BEGINS ACTUAL AMOUNT PU	RGED	pH INSTRUMENT Low flow cell
	ER APPEARAN	
WATER SAMPLING INFORMATION MONITO	RING WELL	SAMPLE METHOD D
		APPROXIMATE DEPTH OF GRAB N/A
SAMPLING DEVICE ID <u>Tubing</u> SAMPLING TIME <u>8</u> BOTTLE TYPE NO. VOLUME ANALYSIS SEE BOTTLE	-40 LAB	DATE <u>5-21-08</u> PRESERVATION FILTRATION
BOTTLE TYPE NO. VOLUME ANALYSIS	-40 LAB	DATE_5-21-08
BOTTLE TYPE NO. VOLUME ANALYSIS SEE BOTTLE DECONTAMINATION INFORMATION PURGE DEVICE ID REVIOUSLY USED IN WELL SITE	LAB LAB LIST SDEVICE IDS SLY/USED ININ	DATE 5-21-08 PRESERVATION FILTRATION
BOTTLE TYPE NO. VOLUME ANALYSIS CSEE BOTTLE DECONTAMINATION INFORMATION RURGE DEVICE ID PREVIOUSEY USED IN WELL SITE DECON METHOD/SJEAM TIME DECON METHOD/SJEAM TIME	LAB LAB LIST SDEVICE IDS SINAUSED INN SINAUSED INN ETHOD/STEA	DATE 5-21-08 PRESERVATION FILTRATION
BOTTLE TYPE NO. VOLUME ANALYSIS CSEE BOTTLE DECONTAMINATION INFORMATION: PURGE DEVICEID: THOSE REEL SAMPLIN: PREVIOUSEY USED IN WELL SITE DECON METHOD/SITE AM TIME DECON METHOD/SITE AM TIME DECON METHOD/SITE AM TIME	LAB LAB LIST SDEVICE IDS SINAUSED INN SINAUSED INN ETHOD/STEA	DATE 5-21-08 PRESERVATION FILTRATION
BOTTLE TYPE NO. VOLUME ANALYSIS SEE BOTTLE DECONTAMINATION INFORMATION PREVIOUSLY USED IN WELL SITE	LAB LAB LIST SDEVICE IDS SIDY USED IN SIDY USED IN SIDY USED IN SAMPLES SAMPLES	DATE 5-21-08 PRESERVATION FILTRATION FILTRATION MELLE FILTRATION ILTRATION FILTRA

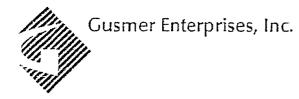
	LOCUS TECI	HNOLOGIES WA	ATER SA	AMPLING LOG	<u>.</u>
WELL\SAMPLE DESIGNAT SAMPLE SOURCE <u>A</u> AMBIENT CONDITIONS			DATE PROJECT#	S.C. VTA <u>5-2/-08</u> 28006-08-0001 H.CASTRO/ T.Murphy	
GRABISAMPLENNEORM	ATIONE (Use notes)	section for meter reading	ig, flow rate	volspurged etc.)	
METHOD WATER LEVELINFORM		UNC YES NO MEASURING POINT	510C	DHImeter: METERIREADING INSTRUMENTIUSED::SJ:14	
W/E BEFORE PURGE	TIME 2			DATE: TIME	
MONITORING WELL PU	RGE INFORMATIO	N MONITOR	NG WELL	PURGE METHOD E	
PURGE DEVICE I.D. Low 1 WELL DEPTH 79,51 SCREENED INTERVAL PURGE VOLUME CALCUL		DIAMETER 4" PUMP SETTING		#CASING VOLUMES (PROTOCO)L)
TIME PURGE BEGINS		ACTUAL AMOUNT PUR	GED	pH INSTRUMENT_L	ow flow cell
тіме темр. <u>940 19,96</u>	cond. pH 1160 7,0	PURGE WATER	C		00 47,29,5 4,0/mg/L
WATER SAMPLING INF	ORMATION	MONITORI	NG WELL	SAMPLE METHOD D	
SAMPLING DEVICE ID <u>T⊔</u> BOTTLE TYPE	NO. VOLUME	SAMPLING TIME <u>94</u> ANALYSIS De GoHle II.	<u>'5</u> LAB	APPROXIMATE DEPTH OF GRAN DATE 5-2/-08 PRESERVATION FIL	B <u>N/A</u>
DECONTAMINATION IN					
RURGE DEVICE ID PREVIOUSLY USED IN WE SITE DECON METHOD/STEAM RINSEATE SAMPLE			Y USED IN V HOD/STEAN		
QA/QC INFORMATION					
				EYES_X_NO_ID ER-LAB SPLITYES_X_NO_I	

LOCUS TECHNOLOGIES V	VATER SAMPLING LOG
WELLISAMPLE DESIGNATION MW-3D(r) SAMPLE SOURCE A AMBIENT CONDITIONS <u>Clear & Sunny</u>	SITE: S.C. VTA DATE 5-21-08 PROJECT# 28006-08-0001 SAMPLER H.CASTRO/ T.Murphy
GRABISAMPLE INFORMATIONE (Use notest section for meterica	ding flow rate, vol. purged etc.)
GRAB SAMPLE CONTINUOUSPUMPER YES METHOD PUMPCYCLING YES NO WATER LEVELINFORMATION MEASURING POIN	METER READING
W.L. BEFORE PURGE	TIME
PURGE DEVICE I.D. Low flow pump WELL DEPTH DIAMETER2'' SCREENED INTERVAL PUMP SETTING PURGE VOLUME CALCULATION	·
TIME PURGE BEGINS ACTUAL AMOUNT PL	JRGEDpH INSTRUMENT_Low flow cell
	rerappearance/odor ORP DO / hochor JSP,9 J4,4% 2,98m=/2
WATER SAMPLING INFORMATION MONITO	DRING WELL SAMPLE METHOD D
SAMPLING DEVICE ID <u>Tubing</u> SAMPLING TIME <u>10</u> BOTTLE TYPE NO. VOLUME ANALYSIS (See bottle 10	LAB PRESERVATION FILTRATION
	G DEVICE ID SEX USED IN WELL
RINSEATE SAMPLE IN YES NO TID	
QA/QC INFORMATION	
IN SAMPLE SHIPMENT: TRAVEL BLANK <u>X</u> YE <u>S</u> NO ID <u>4768</u> DUPLICATE <u>YES</u> NO ID <u>F</u> FIELD BLANK <u>YES</u> XN NOTES	

LOC	CUS TECHNOLOGIES WA	TER SAME	PLING LOG	
WELL\SAMPLE DESIGNATION SAMPLE SOURCE A AMBIENT CONDITIONSClear	r & Sunny	PROJECT# 280 SAMPLER H.CA	5-2/-08 06-08-0001 ASTRO/ T.Murphy	
GRABISAMPLETINFORMATIO	NE (Use moles section for meter reading	ng, filow rate, vol-	purged etc:)	
WATER LEVELINFORMATIO	ICONTINUOUSIPUMPER MES. IRUMPICYCLING YES NO MEASURINGIPOINT	TOC INS	RUMENT USED SJ-1	
		DAT	TIME	
MONITORING WELL PURGE I	INFORMATION MONITOR	NG WELL PUR	GE METHOD E	
PURGE DEVICE I.D. <u>Low flow pu</u> WELL DEPTH_ <u>65</u> SCREENED INTERVAL PURGE VOLUME CALCULATION_	DIAMETER 4	#CAS	SING VOLUMES (PROTOC	OL)
TIME PURGE BEGINS	ACTUAL AMOUNT PUR	GED	pH INSTRUMENT	Low flow cell
TIME TEMP. CON 1205 24.6° 106		APPEARANCE/C	DDOR ORP 358.9	DO <i>30,23</i> 0, 262,mg/2
			PLE METHOD D	
WATER SAMPLING INFORMA SAMPLING DEVICE ID <u>Tubing</u> BOTTLE TYPE NO.	SAMPLING TIME 12/ VOLUME ANALYSIS	APPF DATE LAB PI	ROXIMATE DEPTH OF GR	AB <u>N/A</u> ILTRATION
DECONTAMINATION INFORM	ATION			
PURGE DEVICE ID PREVIOUSLY USED IN WELL SITE DECONIMETHOD/STEAM TIME RINSEATE SAMPLE	HOSE REEL SAMPLING I PREVIOUSL	DEVICE ID Y USED IN WEIL HOD/STEAMETIM		
RINSEATE SAMPLEN SEYES	ANON HDU ZZE RINSEATES	AMPLE	NO ID	
QA/QC INFORMATION				
	BLANK <u>X</u> YE <u>S</u> NO ID <u>4768</u> C			
DUPLICATEYES_7NO_ID_ NOTES	FIELD BLANKYES_XNO	ID INTER-LA	B SPLIIYES_X_NO	ID

SAMPLING LOG
S.C. VTA <u>5-2/-08</u> CT# 28006-08-0001 R H.CASTRO/ T.Murphy
ate; volvpurged; etc;)
DHImeter METERIREADING INSTRUMENT/USED:SJ=1 TIME DATE
L PURGE METHOD E
#CASING VOLUMES (PROTOCOL)
pH INSTRUMENT Low flow cell
RANCE/ODOR ORP DO cht is doir 244.7 17.29 1.37 mg/L
L SAMPLE METHOD D
APPROXIMATE DEPTH OF GRAB <u>N/A</u> DATE <u>5-21-08</u> PRESERVATION FILTRATION
YKEYES_X_NO_ID NTER-LAB SPLITYES_X_NO_ID

LOCUS TECHNOLOG	GIES WATER SAMPLING LOG	
WELLISAMPLE DESIGNATION <u>MW-2F</u> SAMPLE SOURCE <u>A</u> AMBIENT CONDITIONS <u>Clear & Sunny</u>	SITE: S.C. VTA DATE S-2/-08 PROJECT# 28006-08-0001 SAMPLER H.CASTRO/ T.Murphy	
GRABISAMPLE INFORMATION (Use notes section for	neter reading flow rate, vol-purged etc.)	
GRAB SAMPLE CONTINUOUS PUMPER METHOD PUMP CYCLING YE WATER LEVEL INFORMATION MEASURI	NGIPOINT TOC INSTRUMENT USED SJ-1	
WILLBEFORE PURGE WILLAFTER WILLEOR 80% RECOVERY WILLETIME C MONITORING WELL PURGE INFORMATION	PURGE	
PURGE DEVICE I.D. Low flow pump WELL DEPTH 120' SCREENED INTERVAL PUMP SETT PURGE VOLUME CALCULATION PUMP SETT	2 "/ #CASING VOLUMES (PROTOCOL	-)
TIME PURGE BEGINS ACTUAL AM	OUNT PURGEDPH INSTRUMENT_Lo	<u>w flow cell</u>
TIME TEMP. COND. pH PU 1420 23.42 1407 7.23	RGE WATER APPEARANCE/ODOR ORP Cloring offer 171.2	DO 34,470 2,92 mg/L
WATER SAMPLING INFORMATION	MONITORING WELL SAMPLE METHOD D	
	APPROXIMATE DEPTH OF GRAB TIME 1425 DATE 5-21-08 YSIS LAB PRESERVATION FILT	N/A TRATION
(See 60	Hle Tist)	
PREVIOUSLY USED IN WELL	SAMPLING DEVICE ID REVIOUSIY USED IN WELL	
DECONIMETHOD/SUEAMUME	DECON METHOD/STEAM TIME	
QA/QC INFORMATION		
N SAMPLE SHIPMENT: TRAVEL BLANK X YES NO I DUPLICATE X YES NO ID 4767 FIELD BLANK Y NOTES		
COUP	TAKEN)	


	LOCUS TECH	INOLOGIES W	ATER SA	AMPLING LOG	
WELL\SAMPLE DESIGNAT SAMPLE SOURCE A AMBIENT CONDITIONS	Clear & Sunny		SAMPLER	S.C. VTA 5-2/-08 28006-08-0001 H.CASTRO/T.Murphy	
GRABISAMPLEINFORM	IATION: (Use) notes:	section for meterareadi	ng <u>htiow</u> rate	vol purged etcr)	
GRAB SAMPLE METHOD WATER LEVELINFORM	SEEDE RUMP GYC	LINGERENYESEERENDER		MELERIKEADING	distant in the second second second second second
WIE(BEFORE PURGE) WIEFOR:80% RECOVERY MONITORING WELL PU			ING WELL	DATE	IME
PURGE DEVICE I.D <u>Low f</u> WELL DEPTH <u>128</u> SCREENED INTERVAL PURGE VOLUME CALCULA		DIAMETER PUMP SETTING		#CASING VOLUMES (PRO	
TIME PURGE BEGINS		ACTUAL AMOUNT PUR	GED	pH INSTRUMI	ENT_Low flow cell
TIME TEMP. 1515 21.12	COND. pH				
WATER SAMPLING INFO	ORMATION	MONITOR	NG WELL	SAMPLE METHOD	D
	in and the second second second second second second second second second second second second second second s	· · · · · · ·		APPROXIMATE DEPTH O	
SAMPLING DEVICE ID <u>Tu</u> BOTTLE TYPE	NO. VOLUME	ANALYSIS		DATE 5-21-05 PRESERVATION	1
BOTTLE TYPE	NO. VOLUME	ANALYSIS			1
SAMPLING DEVICE IDTU BOTTLE TYPE DECONTAMINATION INF PURGE DEVICEID REVIOUSLY USED IN WEI SITE DECON METHOD/STEAMST RINSEATE SAMPLE	NO. VOLUME	ANALYSIS		PRESERVATION	FILTRATION
BOTTLE TYPE DECONTAMINATION INF PURGE DEVICE ID PREVIOUSLY USED IN WEI	NO. VOLUME	ANALYSIS		PRESERVATION	FILTRATION

L	OCUS TEC	HNOLOGIES	NATER S	AMPLING LOO	3	
WELLISAMPLE DESIGNATIONS SAMPLE SOURCE A SURCE A SURCE A SURCE A SURCE A SAMPLE IN FORMA	Clear & Sunny		SAMPLER	5-21-0 28006-08-0001 H.CASTRO/ T.Murph	ıy	wyman zazat fez
GRABISAMPLE METHOD: WATER LEVELINEORMA		DUSIRUMPER YE DUNG YES IN	S NO	DHIMETER METER/READING		
WILBEFORE PURGE WILFOR 80% RECOVERY MONITORING WELL PUR	GE INFORMATIC			DATE PURGE METHOD_	E	
PURGE DEVICE I.D. <u>Low flo</u> WELL DEPTH <u>120</u> SCREENED INTERVAL PURGE VOLUME CALCULAT	 ION	DIAMETER 2'		#CASING VOLUMES		
	COND. pt 397 73		IER APPEARAI	NCE/ODOR		DO 29,455 80 mg/2
WATER SAMPLING INFOR SAMPLING DEVICE ID <u>Tubin</u> BOTTLE TYPE N	0. VOLUME		600 LAB	SAMPLE METHOD APPROXIMATE DEPT DATE <u>5-2/-</u> PRESERVATION	TH OF GRAB	
DECONTAMINATION INFO PURGE DEVICE ID PREVIOUSLY USED IN WELL SITE DECON METHOD/STEAMETIM	HOSE REE		ETHOD/STEAN	VELL		
RINSEATE SAMPLE	EL BLANK <u>X</u> YE	<u>S</u> NO ID <u>4768</u>	_ QA/QC SPIKE	YES_X_NO	ID	

	LOCUS TEC	HNOLOGIES W	ATER SA	AMPLING LOG	
WELL\SAMPLE DESIGNA SAMPLE SOURCEA AMBIENT CONDITIONS_	Clear & Sunny		SAMPLER	S.C. VTA <u>5-2-2-08</u> 28006-08-0001 H.CASTRO/ T.Murphy	
GRAB SAMPLETINFOR	MATION (Use note:	sisection ior mete⊮readi	ng, flow rate	xvol-purged etc.)	
GRABISAMPLE METHOD: WATER LEVEL INFOR	CONTINU PUMPICY MATION	OUSPUMPER YES CLING YES NO MEASURING POINT	NO TOC	DHimeter METER/READING INSTRUMENT/USED#SJ	WRATE
WILLBEFORE PURGE WILFOR 80% RECOVER MONITORING WELL P			NG WELL	TIMETIM DATETIM PURGE METHODE	
PURGE DEVICE I.D. <u>Low</u> WELL DEPTH_9J' SCREENED INTERVAL_ PURGE VOLUME CALCU		DIAMETER PUMP SETTING		#CASING VOLUMES (PROT	
	na ya ala pelakani ayayan	ACTUAL AMOUNT PUR	GED	PH INSTRUMEN	T_Low flow cell
ТІМЕ ТЕМР. 845 1875 с	COND. p 1042 7.	H PURGE WATEF	the second second second second second second second second second second second second second second second s		DD 19:7% 1.81mg/L
				SAMPLE METHOD D	
WATER SAMPLING IN SAMPLING DEVICE IDT BOTTLE TYPE				APPROXIMATE DEPTH OF C DATE 5-22-08 PRESERVATION	
DECONTAMINATION IN	FORMATION				
PURGE DEVICE ID PREVIOUSLY USED IN WE SITE DECONIMETHOD/STEAM RINSEATE SAMPLE	TIME	PREVIOUSI SITE DECONMEN	(USED'INW HOD/STEAM	VED.	
QA/QC INFORMATION					
				YES X NO ID R-LAB SPLIT YES X N	

WELLBAMPLE DESIGNATION MW-54 SITE: S.C. VTA DATE S-22-08 PROJECT 2006-96-0001 AMBIENT CONDITIONS Clear & Sunny SAMPLE 2006-96-0001 CRAST SAMPLE SUPPORT SAMPLE 2006-96-0001 CRAST SAMPLE CONTINUOUS DEMENS VALUE 2006-96-0001 CRAST SAMPLE CONTINUOUS DEMENS VALUE 2006-96-0001 CRAST SAMPLE CONTINUOUS DEMENS VALUE 2007-96-0001 MATTER LEVELING OF MATION MEASURING 2007-96-0001 WATER LEVELING OF MATION MEASURING 2007-97-0001 WELL DEPTH / 25 DIAMETER 211 PURGE DEVICE ID LEW flow Dump MATTER 211 WELL DEPTH / 25 DIAMETER 211 PURGE DEVICE ID LEW flow Dump DIAMETER 211 WELL DEPTH / 25 DIAMETER 211 PURGE DEVICE ID LEW flow DUMP MATTER 2007-0007 PURGE DEVICE ID LEW flow OBMPLE DIAMETER 2007-0007 PURGE DEVICE ID LEW flow OBMPLE ACTUAL AMOUNT PURGED PURGE DEVICE ID LEW flow OBMPLE ACTUAL AMOUNT PURGED	LOCUS TECHNOLOGIES WATER SAMPLING LOG	<u></u>
CRAINS AND FE CONTINUOUS PUTTIFIES AND AND ADDITION TO CONTRUMENT ADDITION ADDITIONATION TIONATIONATIONATIONATIONATION	WELL\SAMPLE DESIGNATIONMW-5ADATE5-22-08SAMPLE SOURCEAPROJECT#28006-08-0001AMBIENT CONDITIONSClear & SunnySAMPLERH.CASTRO/ T.Murphy	
Matter Level Information Escape Image: Image: Evel Normation Escape Image: Evel Normation Escape WIEDRECK RECOVERS Image: Evel Normation Escape Image: Evel Normation Escape MONITORING WELL PURGE INFORMATION MONITORING WELL PURGE METHOD E Image: Evel Normation Escape PURGE DEVICE ID Low flow pump well DEPTH /25/ Screened Interval DIAMETER 2// PURGE VOLUMES (PROTOCOL) #CASING VOLUMES (PROTOCOL) Screened Interval PUMP SETTING PUMP SETTING PUMP SETTING PURGE VOLUME CALCULATION ACTUAL AMOUNT PURGED pH INSTRUMENT Low flow cell TIME TEMP. COND. pH PURGE WATER APPEARANCE/ODOR ORP DO 9570 /9.2 's 51/6 7.50 Clear / no color CST.3 20.65% WATER SAMPLING INFORMATION MONITORING WELL SAMPLE METHOD D D SAMPLING DEVICE ID Tubing SAMPLING TIME 9.55 DATE 5.22.05% BOTTLE TYPE NO. VOLUME ANALYSIS LAB PRESERVATION FILTRATION CSCE 6.57H //e /1.57.6 SAMPLING DEVICE D TREVOSISY USED IN WELL TREVENDER VESTION FILTRATION CSCE 6.57H //e /1.57.6 S	GRABSAMBLE CONTINUOUSELWARES MES NO DELMETER	WRATE
MONITORING WELL PURGE INFORMATION MONITORING WELL PURGE METHOD E PURGE DEVICE ID Low flow pump	METHOD: METERREADING YES TNO METERREADING WATER LEVELINFORMATION MEASURING POINT TOC INSTRUMENT USED SJ	lesses and a second
WELL DEPTH 227 DIAMETER 27 #CASING VOLUMES (PROTOCOL) SCREENED INTERVAL PUMP SETTING		
TIME TEMP. COND. pH PURGE WATEB APPEARANCE/ODOR ORP DO 950 19,2 ' 546 7.50 Clear / register 65.3 28,65 WATER SAMPLING INFORMATION MONITORING WELL SAMPLE METHOD D 1,74mg/L WATER SAMPLING INFORMATION MONITORING WELL SAMPLE METHOD D SAMPLING DEVICE ID Tubing SAMPLING TIME 95.5 DATE 5.20.65 BOTTLE TYPE NO. VOLUME ANALYSIS LAB PRESERVATION FILTRATION DECONTAMINATION INFORMATION: SAMPLING DEVICE ID SAMPLING DEVICE ID Clear / 1/5 (-) DECONTAMINATION INFORMATION: SAMPLING DEVICE ID SAMPLING DEVICE ID Clear / 1/5 (-) DECONTAMINATION INFORMATION: SAMPLING DEVICE ID Clear / 1/5 (-) DECONTAMINATION INFORMATION: Clear / 1/5 (-) SAMPLING DEVICE ID SAMPLING DEVICE ID SAMPLING DEVICE ID	WELL DEPTH_/25' DIAMETER_2'' #CASING VOLUMES (PROTO SCREENED INTERVAL PUMP SETTING	DCOL)
950 19,2 * 54/6 7,50 Clear / Holdor 65.3 20,62 Interviewed and the state of the state		Low flow cell
APPROXIMATE DEPTH OF GRAB		20.6%
APPROXIMATE DEPTH OF GRAB	WATER SAMPLING INFORMATION MONITORING WELL SAMPLE METHOD D	
RURGE DE VICE ID HOSE REELANS SAMPLING DE VICE ID PREVIOUSLY USED IN WELL PREVIOUSLY USED IN WELL SITE SITE DECONIMETHOD/SITEAM TIME DECONIMETHOD/SITEAM TIME RINSEATE SAMPLES YESSAM NO IDE RINSEATE SAMPLES QA/QC INFORMATION IDE IN SAMPLE SHIPMENT: TRAVEL BLANK X YES NO NO IN SAMPLE SHIPMENT: TRAVEL BLANK X YES NO ID 4768 QA/QC SPIKE YES X NO DUPLICATE YES X NO	SAMPLING DEVICE ID Tubing SAMPLING TIME 955 DATE 5-22-08 BOTTLE TYPE NO. VOLUME ANALYSIS LAB PRESERVATION	
PURGE DE VICE ID	DECONTAMINATION INFORMATION	
QA/QC INFORMATION IN SAMPLE SHIPMENT: TRAVEL BLANK_X YESNO_ID_4768_QA/QC SPIKEYES_X_NO_ID DUPLICATEYESNO_IDFIELD BLANKYES_X_NO_IDINTER-LAB SPLITYES_X_NO_ID	RURGE DEVICE ID	
IN SAMPLE SHIPMENT: TRAVEL BLANK_X_YESNO_ID_4768QA/QC SPIKEYES_X_NO_ID DUPLICATEYESNO_IDFIELD BLANKYES_X_NO_IDINTER-LAB SPLITYES_X_NO_ID		
	IN SAMPLE SHIPMENT: TRAVEL BLANK X YES NO ID 4768 QAVQC SPIKE YES X NO ID DUPLICATE YESNO ID FIELD BLANK YES X NO ID INTER-LAB SPLIT YES X NO	

LOCUS TEC	HNOLOGIES WA	ATER SA	AMPLING LOG	
<u> </u>	4			
ATION (Use notes	ssection.io/smeter/readli	nghflow rate	vol-purged etc.)	
	ousipumper mes Gling yes no Tmeasuringipoint	NO TOC	DHIMETER II METER READING INSTRUMENT USED S	OW.RATE
TIME			TIME	
	WE FINE OF SAMPLE		DATESTER	MEDIANA
flow pump	DIAMETER PUMP SETTING		#CASING VOLUMES (PRO	
	ACTUAL AMOUNT PUR	GED	pH INSTRUME	NT_Low flow cell
		1		
	ΜΟΝΙΤΟΡΙ			<u></u>
NO. VOLUME	ANALYSIS	15 LAB		
			<u></u>	
FORMATION				
Hoserrei	SAMPLINGI PREVIOUSL SITE DECONIME RINSEATES	YAUSEDAINAV IHOD/SITEAN		
Hose Ree III		YAUSEDAINAV IHOD/SITEAN	VELL	
	Clear & Sunny AATIONE (Else note) CONTINU COND. COND. 77/4 7/ ORMATION	MATION! (Use notest section for meter readined in the section for the section f	IION_TW-84 DATE Clear & Sunny SAMPLER MATIONE (Use notest section for meter reading) flow rate CONTINUOUS: PUMPER AVES CONTINUOUS: PUMPER AVES CONTINUOUS: PUMPER AVES PUMP EVELING AVES MATION MEASURING: POINT MEASURING: POINT TOC MATION MEASURING: POINT TIME WILLAFTER PURGE WILL TIME OF SAMPLE WILL IRGE INFORMATION MONITORING WELL flow pump 10 DIAMETER 10 MATION ACTUAL AMOUNT PURGED COND pH PURGE WATER APPEARAN 7/4 7/7 Clear / no odo r ORMATION MONITORING WELL Abing SAMPLING TIME 1045	TION TW-84 DATE 5-22-08 PROJECT# 28006-08-0001 Clear & Sunny SAMPLER H.CASTRO/T.Murphy MATIONE (Use notes section for meter reading), flow rate, vol purged etc.) F CONTINUOUS PUMPER YES NO PHImeter CONTINUE ACTING MEASURING POINT NO TIME MEASURING POINT ACTUAL ANOUNT PURGE TIME TIME TIME DIAMETER PUMP SETTING #CASING VOLUMES (PRO MATION ACTUAL AMOUNT PURGED PH INSTRUME COND PH PURGE WATER APPEARANCE/ODOR ORP 7/4 7/7 Clear / no odor 66, 2 ORMATION MONITORING WELL SAMPLE METHOD I APPROXIMATE DEPTH OF APPROXIMATE DEPTH OF 10ng <t< td=""></t<>

Date: _____

File Code (Office Use):

640 Airpark Road, Suite D Napa CA, 94558 Lab (707)224-7903 ext 106, 109 Fax (707)255-2019

Have	you	submitted	samples	to	us in	the	past?		yes
								<u> </u>	no

IF YES. (**) MARKED INFORMATION <u>MUST</u> BE FILLED OUT FOR SAMPLES TO BE PROCESSED IF NO, PLEASE FILL OUT THIS FORM COMPLETELY

ANALYSIS REQUEST FORM

PLEASE LABEL EACH SUBMITTED SAMPLE WITH YOUR WINERY NAME, A SAMPLE NAME AND THE SUBMISSION DATE PLEASE FILL OUT THE REQUIRED INFORMATION ON BOTH SIDES OF THIS FORM AND SEND OR BRING WITH YOUR SAMPLES

MINIMUM ANALYSIS CHARGE	\$25 00
**Account Name (Responsible Party)	Fichaeley, 23
**Name (person requesting analysis) \overline{J} , W_{cs}	+ Have that . (
Address: 299 Fairchild Dru	ίνε
City, State and Zip: Mountain Vie	W. C.A 94043
**Daytime Phone <u>(650)</u> <u>160-1640</u> **	Fax (65°) 960-0739
**E-mail hawthornew @locustic co	Эн
Credit Card #	exp date
Name on Card S	ignature
**Send Results to (if different from above):	s about
**Please send results by:	
Are these samples involved in a legal dispute between two	parties? <u>No</u>
Please check all that apply: I am not sure which test to run (please write a note or call our lab staff Do only the tests I select Other Comments:	to discuss the sample)

ANALYSIS REQUEST FORM

Please write the corresponding letter of the analysis you would like performed after the sample name in the table below Please refer to our Web Page or Catalog for instructions on preparing and sending samples and amount of sample required

**Sample Name		Letter(s) of	RequestedAnalyses	Sample Type(s):
1. TW-23	11, TW-5A	0	0	
2. MW.ZE	12. MW-5.A		Ĩ	uncrushed grapes
3. MW-ZF	13. TW-6A			⊡ juice
4. 57-3	14, TW-63			·
5. TH-8A	15. MW-65			🛛 fermenting
6. MW. 30(v)				refrigerated
7. 5T-5				L ICHIGGIACU
8. 4767				🛛 wine in cellar
9. 4765				
10. 4769				□ bottled wine
	••• ••• ••• ••• ••• ••• ••• ••• ••• ••	<i>l</i>		& water

ANALYSIS PANELS FOR COMMERCIAL WINEMAKERS

	Panel Name	Sample Size Needed
AA	Juice Panel Brix, TA, pH, YAN (NOPA and Ammonia), Nutrient Recommendation (\$66.00)	125 mL
BB	Basic Wine Chemistry Alcohol, VA, TA, pH, Free and Total SO ₂ (\$70.00)	250 mL
<u></u>	Monitoring Malolactic Fermentation pH, Malic acid, Detailed Micro Exam (\$40,00)	125 mL
<u>DD</u>	Comprehensive Wine Panel Alcohol. VA. TA. pH, F/T SO ₂ , Malic Acid. G/F. Basic Sensory Evaluation. Detailed Micro Exam (\$140.00)	375 mL
EE	Cellar Maintenance Panel VA, pH, Malic acid, F/T SO2 SO2 Recommendation (\$55.00)	125 mL
<u>FF</u>	Stuck/Sluggish Fermentation Panel Alcohol, VA, pH, G/F, Detailed Micro Exam, Yeast Viability (\$85.00)	375 mL
GG	Problematic MLF Panel Alcohol, VA, pH, F/T SO ₂ , Malic acid, Detailed Micro Exam (\$90.00)	125 mL
<u>HH</u>	Comprehensive Microbiology Panel VA. pH. F/T SO ₂ . Detailed Sensory. Detailed Micro Exam. Direct culture for yeast, mold and bacteria (\$115.00)	375 mL
<u>II</u>	Sediment/Haze ID pH, F/T SO ₂ , Detailed Micro Exam. Detailed Sensory Evaluation. Direct culture for Yeast, Mold and Bacteria (\$100.00) [White wine analysis includes: Cold and Heat (Protein) Stability (\$125.00)]	750 mL Un-opened
<u>11</u>	Pre-Bottling Panel Alcohol, VA. TA. pH. F/T SO ₂ . Malic Acid, G/F. Detailed Micro Exam. Direct Culture for Spoilage Organisms (\$140.00) [White wine analysis includes: Cold and Heat (Protein) Stability (\$162.50)]	375 mL
<u>кк</u>	Post-Bottling Panel Alcohol. pH. F/T SO ₂ . Membrane culture for Sterility (\$80.00)	750 mL

	<u>CHEMICAL TESTS</u> 58 min - no hadspare										
A	Alcohol (NIR)	0	Free and Total SO2	X	Brix Refractometer						
Ϋ́	Volatile Acidity	<u>R</u>	SO2 Recommendation* pH, F/T SO2 are required	D	Brix Hydrometer						
I	Total Acidity	M	Malic Acid (Enzymatic)	K	Potassium						
P	рН	Z	Residual Sugar (Enzymatic)	B	Bentonite Fining Trials (5 trial levels included)						
F	Free SO2	<u>C</u>	Cold Stability (Freeze/Thaw)	<u>Y</u>	YAN (NOPA, NH4)						
<u>S</u>	Total SO2	Н	Heat (Protein Stability)								

MICROBIOLOGICAL TESTS

Direct Culture

- MM Yeast, Mold & Bacteria
- MY Yeast & Mold
- MB Bacteria only
- MD Dekkera/Brettanomyces
- MR Red Wine Spoilage

Membrane Culture

<u>MC</u> Yeast, Mold & Bacteria <u>MP</u> Yeast & Mold <u>MQ</u> Bacteria only

SENSORY EVALUATIONS & ADJUSTMENTS

Sensory Evaluations:

<u>SB</u> Basic

Sulfide Treatment:

- FA SRM (no charge)
- FB Detection only
- FC Detection AND treatment

Adjustment Trials:

- TA Acidification
- TD De-Acidification

Microscopic Examination

ME Detailed Micro exam

Other: <u>MV</u> Yeast Viability <u>ML</u> Yeast Cell Count

•

CHAIN OF CUSTODY RECORD

Bioremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail MFindlay@bciLabs com

Project Name: Locus wells Sampling Location: SCVTA PO 30-12342 Sampled by: <u>itank(astvo</u>

Contact: John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble. each set: 2 voas, HCl-preserved: methane, ethane, ethanethiol 502 (A 2 voas, no preservative: Argon, O₂, CO, CO₂, N₂ = 502 (A 1 voa, no preservative: dissolved sulfide ~ HACH \$(3) 1 voa, no preservative: NH₃-N ~ HACH \$(55) 1 160-ml serum bottle: H₂ analyses 2 4-oz jars: dissolved O₂

RETURN CRIMPER & PLIERS TO BCI

Well Number	Date	VOA	TCV	VOA Vials	rcv	160 ml	rcv	4 oz jars	ŕcv
		Vials		No		SB		for D.O.	101
		HCI-		Preserv		(contain			
		preserved				Argon)			
TW-5A	5/21/08	2		4		1		2	
MW-5A		2		4		1		2	
TW-6A		2		4		1		2	
TW-6B		2		4		1		2	
MW-6J	\checkmark	2		4		1		2	
trip blanks									
Return crimp	per to B	CI							

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY; however, <u>No Loose Ice</u> – <u>bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite NO Saturday Delivery

Call or fax BCI at time of shipping and report the tracking number

Relinquished by date Received by date

CHAIN OF CUSTODY RECORD

Bioremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail MFindlay@bciLabs com

Project Name: Locus wells Sampling Location: <u>SCVTA</u> PO 30-12342 Sampled by: HANK CASTRO

Contact: John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble.

each set: 2 voas, HCl-preserved: methane, ethane, ethanethiol

2 voas, no preservative: Argon, O₂, CO, CO₂, N₂ I voa, no preservative: dissolved sulfide

I voa, no preservative: NH₃-N

I 160-ml serum bottle: H₂ analyses

2 4-oz jars: dissolved O₂

RETURN CRIMPER & PLIERS TO BCI

Return crimp	er to B			<u> </u>]		I		·····
trip blanks		2		2					
TW-84	5/21/0	8 2		4		1		2	······································
<u>ST-3</u>	5/21/0			4		1		2	
MW-2F	5/21/0	8 2		4		1		2	
MW-2E	5/21/0	\$ 2		4		1		2	******
TW-2B	5/21/0	82		4		1		2	
		preserved				Argon)			
		HCI-		Preserv		(contain			
		Vials		No		SB		for D.O.	
Well Number	Date	VOA	rcv	VOA Vials	rcv	160 ml	rcv	4 oz jars	rcv

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY; however, <u>No Loose Ice – bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite. NO Saturday Delivery

Call or fax BCI at time of shipping and report the tracking number

Relinquished b date Received by date

CHAIN OF CUSTODY RECORD

Bioremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail: MFindlay@bciLabs com

 Project Name:
 Locus wells
 Sampling Location:
 ScVTA

 PO 30-12342
 Sampled by:
 Hunk (asiW

Contact: John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble.

each set: 2 voas, HCl-preserved: methane, ethane, ethanethiol

2 voas, no preservative: Argon, O₂, CO, CO₂, N₂

I voa, no preservative: dissolved sulfide

1 voa, no preservative: NH₃-N

1 160-ml serum bottle: H₂ analyses

2 4-oz jars: dissolved O_2

RETURN CRIMPER & PLIERS TO BCI

Well Number	E	Date	VOA	rcv	VOA Vials	rcv	160 ml	rcv	4 oz jars	rcv
			Vials		No		SB		for D.O.	
			HCI-		Preserv		(contain			
			preserved				Argon)			
	5/21	108	2		4		1		2	
ST-5	1	,	2		4		1		2	
4747			2		4		1		2	
4768			2		4		1		2	
4769	`	r	2		4		1		2	
trin blonks										
trip blanks										
Return crimp	ber	to B	CI							

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY; however,

<u>No Loose Ice – bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite. NO Saturday Delivery

Call or fax BCI at time of shipping and report the tracking number

lingt Relinquished by < date

Received by

date

ATTACHMENT B

Field Log, Water Sampling Log, and Chain of Custody Forms

Phase 2 Sampling

Conductivity Turbidity																			
Reduction Conduc	Dotential		<u>113.9</u>	9.7	84.3	84.3 169	89.7 84.3 81.4 81.4	89.7 89.7 84.3 169 81.4 34.9	89.7 89.7 84.3 81.4 81.4 34.9 122.4	9.7 113.9 89.7 84.3 84.3 169 81.4 34.9 122.4 141.7	89.7 89.7 84.3 84.3 169 81.4 34.9 122.4 121.6	y totalidat 113.9 89.7 84.3 169 169 81.4 34.9 122.4 141.7 121.6 95.8	x occurrat 89.7 89.7 89.7 89.7 89.7 89.7 81.3 169 34.9 122.4 121.6 95.8 140.4	y totalidat 89.7 89.7 84.3 169 81.4 34.9 122.4 141.7 121.6 95.8 80.1 80.1	y voutinat 89.7 89.7 84.3 169 81.4 34.9 141.7 122.4 141.7 121.6 95.8 80.1 80.1	x occurate 89.7 89.7 84.3 113.9 84.3 34.9 169 34.9 122.4 141.7 141.7 121.6 95.8 95.8 140.4 80.1 147.3 48.4	x occurate 89.7 89.7 84.3 113.9 84.3 81.4 169 34.9 122.4 141.7 121.6 95.8 95.8 140.4 80.1 147.3 48.4 67.1	Number Number 89.7 89.7 89.7 89.7 84.3 113.9 84.3 34.9 169 34.9 122.4 141.7 121.6 95.8 95.8 134.9 121.6 95.8 121.6 95.8 121.6 95.8 121.6 95.8 121.6 95.8 121.6 95.8 121.6 95.8 121.6 95.8 90.1 147.3 90.3 90.3	x occurat 89.7 89.7 89.7 89.7 84.3 113.9 84.3 34.9 169 34.9 1141.7 122.4 122.4 141.7 121.6 95.8 95.8 80.1 147.3 48.4 67.1 90.3 90.3 64.7
	(% saturation)		13.1	13.1	13.1 13.1 18.4	13.1 13.1 18.4 21.0	13.1 13.1 18.4 21.0 21.6	13.1 13.1 13.1 18.4 21.0 21.6 16.2	13.1 13.1 13.1 18.4 21.0 21.6 16.2 9.8	13.1 13.1 13.1 18.4 21.0 21.0 21.6 9.8 9.8 34.7	13.1 13.1 13.1 18.4 21.0 21.6 21.6 16.2 9.8 9.8 34.7 19.5	13.1 13.1 13.1 18.4 21.0 21.6 16.2 9.8 9.8 9.8 34.7 19.5 13.4	13.1 13.1 13.1 13.1 21.0 21.6 21.6 9.8 9.8 34.7 19.5 13.4 13.4	13.1 13.1 13.1 18.4 21.0 21.6 9.8 9.8 9.8 34.7 19.5 13.4 11.3	13.1 13.1 13.1 13.1 18.4 21.6 21.6 9.8 9.8 9.8 9.8 9.8 34.7 19.5 19.5 11.3 11.3	13.1 13.1 13.1 13.1 18.4 21.6 21.6 16.2 9.8 9.8 9.8 9.8 19.5 11.3 11.3 9.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.1 13.1 13.1 13.1 18.4 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 9.8 9.8 9.8 19.5 13.4 11.3 9.4 9.4 10.7 9.4 15.1	13.1 13.1 13.1 13.1 13.1 18.4 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 9.8 10.7 10.7 8.2
	pH (mg/L)	-		7.01 1.09															
		23.8 7.31	24.5 7.01																
, e 1	(mL)	1900	4500		3900	3900 6000	3900 6000 4000	3900 6000 4000 4500	3900 6000 4500 3800	3900 6000 4000 3800 3800	3900 6000 4000 3800 3800 6300	3900 6000 4000 3800 3800 6300 6300 4800	3900 6000 4000 3800 3800 6300 6300 1900	3900 6000 4000 3800 3800 6300 6300 1900 1900 4400	3900 6000 4000 3800 3800 6300 6300 6300 1900 4400 4500	3900 6000 4000 3800 3800 6300 6300 6300 4800 1900 4400 4500 2500	3900 6000 4500 3800 3800 6300 6300 6300 4400 1900 1900 1900 4400 2500 4500	3900 6000 4500 3800 3800 6300 6300 1900 1900 4400 4500 1900 1900	3900 6000 4500 3800 3800 6300 6300 6300 4800 1900 4500 2500 5100 5100
	ne (min)	14	10	8		10	10 12	10 12 10	10 12 10 14	10 12 14 15	10 12 10 14 15 16	10 12 10 14 15 11	10 12 14 14 15 16 11 11	10 12 14 14 15 16 11 11 17	10 12 12 14 15 16 11 11 17 17	10 12 14 14 15 16 11 11 17 20 20	10 12 12 14 14 16 16 11 11 17 17 9 9	10 12 12 14 15 16 16 11 11 17 17 17 17 17 17 17 17 17 17 17	10 12 12 14 15 16 16 11 11 17 17 17 17 17 17 17 17 11 10 11 11 11 11 11 11 11 11 11 11 11
e Sample Time	Ì	11:40	12:10	12:40	17.15	13:40	13:45	15:05 14:35 15:05	13:45 14:35 15:05 15:50	13:45 14:35 15:05 15:50 7:20	13:45 14:35 15:05 15:50 7:20 7:56	13:45 14:35 15:05 15:50 7:20 7:56 8:30	13:45 14:35 15:05 15:50 7:20 7:56 8:30 9:10	13:45 14:35 15:05 15:50 7:20 7:20 8:30 9:10 9:10	10:45 14:35 15:05 15:50 7:20 7:20 8:30 9:10 10:07 10:45	11:5:05 14:35 15:05 15:50 7:56 8:30 9:10 10:07 10:45 11:55	13:45 14:35 15:05 15:50 7:20 7:56 8:30 9:10 9:10 10:45 11:55 11:55	13:45 14:35 15:05 15:50 7:20 7:20 9:30 9:10 10:07 10:45 11:55 12:57 13:43	13:45 14:35 15:05 15:50 7:26 8:30 9:10 10:07 10:07 10:45 11:55 13:43 13:43 14:15
Sample Date		22-Jul	22-Jul	22-Jul	2.2-Jul		22-Jul	22-Jul 22-Jul 22-Jul	22-Jul 22-Jul 22-Jul 22-Jul	22-Jul 22-Jul 22-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 23-Jul 23-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 22-Jul 23-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 22-Jul 23-Jul 23-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 22-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 22-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 22-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 22-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul	22-Jul 22-Jul 22-Jul 22-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul 23-Jul
	Well	ST-7	MW-5B	NW-05	ST-12		<u>MW-1</u>	MW-1 MW-3C	MW-1 MW-3C MW-2G	MW-1 MW-3C MW-2G MW-6D	MW-1 MW-3C MW-2G MW-6D ST-11	<u>MW-1</u> <u>MW-3C</u> <u>MW-2G</u> <u>MW-6D</u> ST-11 ST-10	MW-1 MW-3C MW-2G MW-6D ST-11 ST-10 MW-4A	MW-1 MW-3C MW-2G MW-6D ST-11 ST-10 MW-4A NW-06	MW-1 MW-3C MW-2G MW-6D ST-11 ST-10 MW-4A NW-06 ST-8	MW-1 MW-3C MW-2G MW-6D ST-11 ST-11 ST-10 MW-4A NW-4A NW-4A ST-1 ST-8 ST-1	MW-1 MW-3C MW-2G MW-6D ST-11 ST-11 ST-10 MW-4A NW-4A NW-06 ST-8 ST-1 NW-01 NW-01	MW-1 MW-3C MW-2G MW-6D ST-11 ST-11 ST-11 ST-11 ST-11 MW-4A NW-4A NW-4A ST-11 NW-06 ST-8 ST-1 NW-01 NW-01 MW-2C	MW-1 MW-3C MW-2G MW-6D ST-10 MW-6D ST-10 MW-4A NW-4A NW-4A NW-4A NW-06 ST-1 NW-01 MW-2C ST-2

WELL SAMPLING SUMMARY PHASE 2 GROUNDWATER SAMPLING

I:\28-006 HMM-Bechtel Dissolved Gas\sampling info 2008-07-22.xls

9/15/2008

	\bigcirc	C	S

Santa Clara VTA

Well Samplin

DAILY FIELD ACTIVITY LOG

Project No.: 28006-08-0002

Caltio Jr.

of

Date:

Page:

Logged by:

Project Name:

Field Activity:

Weather: DAILY ACTIVITIES AND EVENTS TIME -22-08 repul & loaled truck for Micro Purge Sampling. 0610 0705 Arrived Onsite at ST-8. Setup equipment I not set water to come up purg 0750 equipco to let them know. Equipco is sending out new equipment nower C.O. Equipic arrivel with CO2 equinment, exchange 1055 -ST-7. Met with officer Bryan &T CT 1115 control. Set up equipment. Sampled ST-7. 140 AT MW-5B, Setup traffic control & purge equipment Sampled MW-5B. 1210 AT NW-05. Setup traffic control & purge equipment. Sampled NW-05. 1240 ST-12. Setup traffic control & purge equipment. 1320 -12. TCI & officer Bryan left site. Sampled ST-1345 MW-1. Setup purse equip 1415 ample 1435 MW-3C. Setup purge equip 1450 Samplel MW-30 1505 Comments/Remarks:

	O	C		S
	TEC	HNO	DLOG	SIES

Santa Clara VTA

Well Sampling

DAILY FIELD ACTIVITY LOG

Project Name:

Field Activity:

Neather:

Project No .: -	28006-08-0002
Date:	7-2223-08
Logged by:	H. Confin Ju
Page	ユ of (張3

DAILY ACTIVITIES AND EVENTS TIME MW2G. Setup purge equip 1530 LMW-2 Sample <u>|550</u> NW-60. Setup purge equip. 0700 L MW-Sample 0720 AT ST-11. Setuppurge equip. 0735 Sampled ST 0756 ST-10. Setup purge equip. 0815 Sampled S 0830 NW-4A. Setup purge equip. 0850 Sampled MW-4 0910 0945 AT NW-06, Setup purge equip. 1007 Sampled NW-06. T-8. Setup purge equip. 1025 Sampled ST-1045 Setup purge equip. 125 55 ample NW-01. Set up purge equip. 240 ampted NW-0 257 Comments/Remarks:

		C		5
	TEC	HNC	> L O C	GIES

Well Sampling

Santa Clara VTA

DAILY FIELD ACTIVITY LOG

Project Name:

Field Activity: Meather: Project No.: 28006-08-0002Date: 7-23-08Logged by: H, $C_{2}+c_{6}T$ Page: B of 3

DAILY ACTIVITIES AND EVENTS TIME 1W-2C. Setup purge equip. 1322 13 72 amol Setup purge equip. 100 415 and T-13. Setup purge equin. '440 aun 500 water onsite east of STV3 against wal 1525 Lef 1 00 Pile w ana eft site for M.V. office. 1540 comments/Remarks:

LOCUS TECHNOLOGIES WATER SAMPLING LOG	
WELL\SAMPLE DESIGNATION_ST-7 SITE: S.C. VTA DATE 7-22-08 DATE 7-22-08 PROJECT# 28006-08-0002 AMBIENT CONDITIONSCLear SAMPLER	
GRAB SAMPLE INFORMATION (use notes section for meter reading, flow rate, vol. purged etc.)	
GRAB SAMPLE CONTINUOUS PUMPER YES NO PH meter: FLOW BATE:	
WATER LEVEL INFORMATION MEASURING POINT INSTRUMENT USED	
During During W.L. BEFORE PURGE 15.31 TIME W.L. FOR 80% RECOVERY W.L. TIME OF SAMPLE DATE TIME MONITORING WELL PURGE INFORMATION MONITORING WELL PURGE METHOD	
PURGE DEVICE I.D. Low Plow pump C.P.M. WELL DEPTH DIAMETER_H' #GASING VOLUMES (PROTOGOL) BI SCREENED INTERVAL PUMP SETTING 70' #GASING VOLUMES (PROTOGOL) BI PURGE VOLUME CALCULATION ACTUAL AMOUNT PURGED 1900 ML PH INSTRUMENT Low Plow	
TIME TEMP. COND. pH PURGE WATER APPEARANCE/ODOR OLP TURBIE 1/37 23.8 9/6 7.30 Cloudy / Moodor 1/3.8 13.7 1/38 23.8 9/6 7.31 11 11 113.9 13.7 1/39 23.9 9/8 7.31 11 11 11.9 13.7	77
WATER SAMPLING INFORMATION MONITORING WELL SAMPLE METHOD 3	
APPROXIMATE DEPTH OF GRAB SAMPLING DEVICE ID <u>Y4 Tubing</u> SAMPLING TIME <u>1140</u> DATE <u>7-22-08</u> BOTTLE TYPE NO. VOLUME ANALYSIS LAB PRESERVATION FILTRATION VOA 2 40ML Methane <u>BCI HCI None</u> VOA 2 40ML <u>CO2, N2 BCI None</u> <u>None</u> VOA 1 40ML Dissdue Suffile <u>BCI</u> None <u>None</u>	
PURGE DEVICE IDHOSE REELSAMPLING DEVICE IDHOSE REEL PREVIOUSLY USED IN WELL PREVIOUSLY USED IN WELL SITE DECON METHOD/STEAM TIME RINSEATE SAMPLEYESNOI D	
IN SAMPLE SHIPMENT: TRAVEL BLANK YES X NO ID QAQC SPIKE YES X NO ID DUPLICATE YES X NO ID FIELD BLANK YES X NO ID INTER-LAB SPLIT YES NO ID NOTES $DO 7_0 = 13.1$ $DO m_5 = 1.10$	

LO	CUS TECHNOLOG	IES WATER S	AMPLING LOG	
WELLISAMPLE DESIGNATION_ SAMPLE SOURCE AMBIENT CONDITIONS	MW-5B clear		<u>S.C.</u> 7-22-0 #28006-08- #.C_+m/1	8 DPD 7
GRAB SAMPLE INFORMATI		meter reading, flo	w rate, vol. purged etc	:.)
GRAB SAMPLE INFORMATI	ON USE HOLES SECTION TO	meter reduing, no		<u>»</u>
GRAB SAMPLE METHOD:	CONTINUOUS PUMPER_ PUMP CYCLINGYES		pH meter: METER READING	FLOW BATE:
WATER LEVEL INFORMATIO	ON MEASURING		INSTRUMENT USED	
W.L. BEFORE PURGE 23.00	During 6_TIMEWL.AFTERF	PURGE 23.04	TIME	TIME
W.L. FOR 80% RECOVERY	W.L. TIME OF		DATE	
MONITORING WELL PURGE				
PURGE DEVICE I.D <u>LOW</u> WELL DEPTH SCREENED INTERVAL PURGE VOLUME CALCULATION TIME PURGE BEGINS_J200	6. E.			
TIME PURGE BEGINS /			<u> </u>	
1207 24,5 13	200 7,00 cle	E WATER APPEARA	89.7	7 75.7
	400 7.01 11		89.7	
1209 24,5 12	00 7,01 (hur	89.6	75.5
WATER SAMPLING INFORM SAMPLING DEVICE ID <u>14</u> BOTTLE TYPE NO. VOA 2 VOA 2 VOA 1	Tubing sampling Th	ME <u>1210</u> SIS LAB KE <u>BC1</u> G <u>BC1</u>	APPROXIMATE DEPTH DATE 7-22- PRESERVATION HC1 None	B OF GRAB OS FILTRATION NONE NONE NONE NONE
DECONTAMINATION INFORM	MATION	· · · · · · · · · · · · · · · · · · ·		
PURGE DEVICE ID PREVIOUSLY USED IN WELL SITE DECON METHOD/STEAM TIME_ RINSEATE SAMPLEYES	PF	AMPLING DEVICE ID_ REVIOUSLY USED IN TE ECON METHOD/STEA NSEATE SAMPLE	WELL	REELE
QA/QC INFORMATION			······································	
IN SAMPLE SHIPMENT: TRAVEL	$\frac{1}{100\%} = 1$	<u>s / no id</u> /]./	2C SPIKEYES <u>`</u> INTER-LAB SPLITYI	
	DOMg = 1	. 07		

LOCUS TEC	INOLOGIES WAT	ER SAMPLING LO	G
			· · · · · ·
A (4. (m		$TE: \underline{S.C.V}$	<u>177</u>
WELLISAMPLE DESIGNATION NW-O-	<u>5</u> DA'		08
SAMPLE SOURCE A	PR	OJECT# 28006-08	-0002
SAMPLE SOURCE <u>A</u> AMBIENT CONDITIONS <u>CLEON</u>	SAI	MPLER H. Contro,	M. Murphy
GRAB SAMPLE INFORMATION (USE note		ig, now rate, vol. pargea	<u> </u>
		pH meter	ELOW BATE
	US PUMPER YES N	METER READING	
	LING YES NO		
WATER LEVEL INFORMATION	MEASURING POINT	INSTRUMENT US	EÐ
	During	12/	
W.L. BEFORE PURGE 21.3 TIME	W.L. AFTER PURGE	<u>1,36 </u>	
W.L. FOR 80% RECOVERY	W.L. TIME OF SAMPLE	DATE	TIME
MONITORING WELL PURGE INFORMATIC	N MONITORING	WELL PURGE METHOD	
PURGE DEVICE I.D. LOW Flow PURGE DEVICE I.D. LOW Flow PURGE			
PURGE DEVICE I.D LOW HOW DUM) , ii		CPM
	DIAMETER 6	#CASING VOLUMES	<u>(PROTOCOL)</u>
SCREENED INTERVAL	PUMP SETTING 85'		
f in the second s			
PURGE VOLUME CALCULATION	ACTUAL ALLOUIST DUDCED	3900ML PH INST	PLIMENT/AVI PLAL COLL
TIME PURGE BEGINS 1232	AUTUAL AMOUNT PURGED	STUDITE PITING	NUMENT DUV TIDE GI
	PURGE WATER APP		
	8 Silty/Sligh		1.2 2376.8
1242 26.3 282 7.6	18 11 11		3 2378.6
1243 26.3 282 7.6	.8 il u	11 84	3 2378.4
<u>[2]]2 [2][2]</u>			-
WATER SAMPLING INFORMATION	MONITORING	WELL SAMPLE METHOD	<u> </u> 3
		APPROXIMATE DEP	TH OF GRAB
SAMPLING DEVICE ID 14" TUBING	SAMPLING TIME 1240	DATE 7-22	-08
		AB PRESERVATION	FILTRATION
BOTTLE TYPE NO. VOLUME		BCI HCI	
		Del land	NOVE
		BCI None	None
VOA 1 40ML	Dissdiel Sulfide 1	BCI None	Nora
-			
	·		
DECONTAMINATION INFORMATION			
PURGE DEVICE IDHOSE REEL		CE IDHOS	
PREVIOUSLY USED IN WELL	PREVIOUSLY US	ED IN WELL	-/ 5
SITE			2 8
DECON METHOD/STEAM TIME	DECON METHOD	DISTEAM TIME	ε
RINSEATE SAMPLE YES NO ID	RINSEATE SAMP	/	
IN SAMPLE SHIPMENT: TRAVEL BLANKY			
IN SAMPLE SHIPMENT: TRAVEL BLANKT			VERY NO ID
DUPLICATEYES_X_NO_IDFIELD E	LANK YES NO ID	INTEK-LAB SPLII	
NOTES			
	00%=18:4		
	DDMg = 1,44		
	<u>,</u>		

	OCUS TECHNOLOG	HES WATER S	AMPLING LOG	,
		SITE:	S.C. VTA	
WELLISAMPLE DESIGNATIO	ST=12	DATE	7-22-08	
SAMPLE SOURCE			#28006-08-00	02
AMBIENT CONDITIONS	clear		H. Costo M.M.	
GRAB SAMPLE INFORMA	FION (use notes section for	or meter reading, flo	w rate, voi. purged etc.)	
	CONTINUOUS DUMPER		pH meter: FLC	W BATE
GRAB SAMPLE METHOD:	CONTINUOUS PUMPER PUMP CXCLINGYE		METER READING	
WATER LEVEL INFORMAT	ION MEASURI		INSTRUMENT USED	
	Aunia			
W.L. BEFORE PURGE 19.9	O TIME WL AFTER	PURGE 19.90	TIME	1.
W.L. FOR BO% RECOVERY	W.L. TIME C	DF SAMPLE	_ DATETIM	<u>E</u>
MONITORING WELL PURG	E INFORMATION	MONITORING WELL	_ PURGE METHOD	
	\mathcal{O}		<i>c</i> 0	44
PURGE DEVICE I.D. LOW	-bu pump	4"	CP/ #GASING VOLUMES (PROT	860日 第4
WELL DEPTH	DIAMETER_	ING 66	HONDING V ULDIVIEG (HEAUH	
SCREENED INTERVAL				
PURGE VOLUME CALCULATIO		OUNT PURGED 66	200 mL PH INSTRUMEN	TLOW flow cell
			<u></u>	
TIME TEMP. C	OND. PH PUR	GE WATER APPEARA	NCE/ODOR ORP	TURBIDITY
		loidy/no cl	or 169.0	96.4
	08 6,02	11/11/11/11	169.0	96.5
	08 6.02	11 11 11	169.1	96,5
			AUDIE METROD P	
WATER SAMPLING INFOR	VIATION	MONITORING WELL	APPROXIMATE DEPTH OF G	
SAMPLING DEVICE ID 14	Tub in CANOLING	THAT 1345	DATE 7-22-08	
BOTTLE TYPE NC	VOLUME ANAL	YSIS LAB		FILTRATION
	40ML Meth	and BCI		None
VOA 2 VOA 2	40ML GO2,/		None	None
VOA I	40ML Dissduel		None	Nona
DECONTAMINATION INFOR	MATION			
		PREVIOUSLY USED IN	HOSE REEL	
PREVIOUSLY USED IN WELL	and the second second second second second second second second second second second second second second second	SITE	WELL	ξ
	/	DECON METHOD/STE		2
DECON METHOD/STEAM TIME RINSEATE SAMPLE YES		RINSEATE SAMPLE		
RINGEATE SAWFLETEG_				
QA/QC INFORMATION			<u> </u>	
			· · · · · · · · · · · · · · · · · · ·	
IN SAMPLE SHIPMENT: TRAVI				
DUPLICATE YES X NO I				
NOTES				
	D0%=	21.0		
	DOMg = 1	. 7 <u>5</u>		
	- -	·		

10	CUS TECHNO	DI OGIES W	ATER SA	MPLING LOG	}
			SITE:	S.C. V	4
WELL\SAMPLE DESIGNATION	MW-1			7-22-0	08
		-	PROJECT#	28006-08	-0002
AMBIENT CONDITIONS	clear			H. Castro/	
					· · ·
GRAB SAMPLE INFORMATI	ON (use notes sec		eading, now	rate, voi. purgeu e	- Llo,)
	CONTINUOURD	UMPERYES_	NO	pH meter:	FLOW BATE:
GRAB SAMPLE METHOD:	PUMP CXCLING			METER READING	
WATER LEVEL INFORMATION		SURING POINT		INSTRUMENT USE	Ð
		During			
W.L. BEFORE PURGE 12.7	7 TIMEW.L.	AFTER PURGE_	12,98	TIME	
W.L. FOR 80% RECOVERY	W.L.	TIME OF SAMPLE		DATE	TIME
MONITORING WELL PURGE	INFORMATION	MONITOR	ING WELL	PURGE METHOD	
					C D AA
PURGE DEVICE I.D. LOWF	bis pump			HONOINIO VOLLIMES	CPM (PROTOCOL) 第二
WELL DEPTH	UNKIV	P SETTING 60	<u> </u>	HUMBING VOLUMED	(INO1000L) <u>9</u>
SCREENED INTERVAL		PSETTING 60			
PURGE VOLUME CALCULATION TIME PURGE BEGINS <u>1423</u>			GED	DH INSTR	RUMENT Low flow cell
	<u></u>			- <u></u>	
ТІМЕ ТЕМР. СС	ND. pH	PURGE WATE	3-APPEARAN		
1433 29.3 2		chily/	no aloir		
1457 29,3 2.		11		<u>81.4</u>	
1434 29,3 2:	1 6.86	LLL		81.4	179,3
		LIGHT OF	NIC WELL C	AND E METHOD	73
WATER SAMPLING INFORM	ATION	MONITOR	the second second second second second second second second second second second second second second second s	APPROXIMATE DEPT	
SAMPLING DEVICE ID J4	Tubica MA	THE THE 14	75- 1	NATE 7-22	-08
		ANALYSIS			FILTRATION
BOTTLE TYPE NO.	UDMI /			HCI	
VOA Z		D_2, N_2	BCI	None	None
VOA I		sduel Sulfide	BCI	None	Nona
DECONTAMINATION INFOR	NATION				
/				LOG	
PURGE DEVICE ID	HOSE REEL		LY USED IN W	HOSE	
PREVIOUSLY USED IN WELL		BITE		/ <u> </u>	2 &
			THOD/STEAN		حـــــــــــــــــــــــــــــــــــــ
DECON METHOD/STEAM TIME_ RINSEATE SAMPLEYES			SAMPLE		
RINSEATE SAMELETLS_					
QA/QC INFORMATION					
	<u>ــــــــــــــــــــــــــــــــــــ</u>			<u> </u>	,
IN SAMPLE SHIPMENT: TRAVE	_BLANKYES	<u>< no id</u>		SPIKEYES	<u></u> NO ID
DUPLICATE YES KNO ID	FIELD BLAN	K YES - NO	ID II	NTER-LAB SPLIT	YES X NO ID
NOTES					
		$2_0 = 21.6$			
	<u>()</u>))	ns = 1,63			·
					•

	OCUS TECHNO	LOGIES WA	TER SA	MPLING I	_OG	
WELLISAMPLE DESIGNATIONS	NW-3000 Clear	5 5	PROJECT#	S.C. 7-2: 28006- H.C.+	08-000	
GRAB SAMPLE INFORM			ding, flow	rate, vol. pur	ged etc.)	
		/		/		
GRAB SAMPLE	CONTINUOUS PL PUMP CXCLING	IMPER YES YES NO		pH meter: METER READII		/ BATE:
WATER LEVEL INFORMA	TION MEA	SURING POINT		INSTRUMENT	USED	
W.L. BEFORE PURGE 20. W.L. FOR 80% RECOVERY	47TIMEW.L.+ W.L.+	TIME OF SAMPLE		DATE	TIME_	
MONITORING WELL PUR	GE INFORMATION	MONITORIN	IG WELL	PURGE METH	OD	
PURGE DEVICE I.D. <u>LOW</u> WELL DEPTH SCREENED INTERVAL PURGE VOLUME CALCULAT TIME PURGE BEGINS_ <u>14</u> 5	<u>Flow pump</u> DIAMI PUMF	ETER 2" SETTING 73"		#CASING VOLU	CPN MES-(PROTO)	
TIME TEMP. 1502 27.9 1503 27.9	COND. PH 976 7.24 977 7.25 977 7.25	PURGE WATER A <u>cloudy/up</u> <u>cl</u> <u>a</u> <u>cl</u> <u>c</u>	ORD	CE/ODOR	OR P 34, F 34, 9 4, 9	
WATER SAMPLING INFOR	MATION	MONITORIN	G WELLS	SAMPLE METH	10D 13	
SAMPLING DEVICE ID <u>J4</u> BOTTLE TYPE N VOA 2 VOA 2 VOA 1		ANALYSIS ethane Dz. Nz	5 <u> </u>	PRESERVAT	22-08 10N F	AB TILTRATION None None None
	SNATION					
DECONTAMINATION INFC PURGE DEVICE ID PREVIOUSLY USED IN WELL, SITE DECON METHOD/STEAM TIM RINSEATE SAMPLEYES	HOSE REEL	SAMPLING DE PREVIOUSLY SITE DECON METH RINSEATE SAM	USED IN W	/ELL	HOSE REEL	E
QA/QC INFORMATION						
IN SAMPLE SHIPMENT: TRAV	IDFIED BLANK 12inse	NO ID $\frac{1}{2} = \frac{16}{2}$ $\frac{16}{2} = \frac{16}{2}$ $\frac{16}{2} = \frac{16}{2}$) <u> </u>	SPIKEYE		
					inne)	

	LOCUS TECHNOLC	GIES WATER S	SAMPLING LOG	
			S.C. VTA	
	101000	SITE:		
WELLISAMPLE DESIGNA	TION_/VIW-20-	DATE	7-22-08)
SAMPLE SOURCE A	- /		T#28006-08-00	
SAMPLE SOURCE_A_ AMBIENT CONDITIONS_	clear	SAMPLEI	R H. Costro/T.M	urphy
GRAB SAMPLE INFOR	MATION (use notes section	for meter reading, flo	w rate, vol. purged etc.)	•
		<u> </u>		
CRAP SHADIE	CONTINUOUS PUMPI	R YES NO	pH meter: FLO	W BATE:
GRAB SAMPLE METHOD:	PUMP CYCLING		METER READING	
WATER LEVEL INFORM	MATION MEASUE		INSTRUMENT USED	
WATER LEVEL INFOR				name ka ka ka ka ka ka ka ka ka ka ka ka ka
LUC DEFORE DURGE 7	DUNI. 0,21_TIMEW.L.AFTE	NG TOTOTE TOT	2 TIME	
		OF SAMPLE		
W.L. FOR 80% RECOVER	JRGE INFORMATION			
MONITORING WELL PL	IRGE INFORMATION	WONITORING WEL	L FORGE METHOD	
PURGE DEVICE LD. LO	W. Place Augus		CDA	
PURGE DEVICE I.D. LO	N +10W pomp	x 2"	CPN	
WELL DEPTH	DIAMETER		#CASING VOLUMES (PROTO	NUCE) S
SCREENED INTERVAL		TTING 70'		
PURGE VOLUME CALCUL	ATION	·~~·		
TIME PURGE BEGINS <u>/</u>	536 ACTUAL A	MOUNT PURGED3	PH INSTRUMENT	Low Flor Cell
TIME TEMP.	COND. pH PL	RGE WATER APPEARA	NCE/ODOR ORP	TURBIDITY
1552 31.9	2309 7.30 5	ilty/slighto.	lor -122,6	1896.4
1553 32.0		11 9 4		1897.1
1554 32.0	2308 7.29	n li li	-122.4	1897,2
<u> </u>			<u></u>	
WATER SAMPLING INF	ORMATION	MONITORING WELL	SAMPLE METHOD	
			ADDOXIMATE DEDTU OF OF	RAB -
	TUBING SAMPLING	THAF 1550	DATE 7-22-08	
BOTTLE TYPE				FILTRATION
1/01	7 LIDAN Mal	have RII		None
				None
<u> </u>	40ML Dissdie	LSULAIde BCI	None	Nona
		· · · · · · · · · · · · · · · · · · ·		
DECONTAMINATION IN				
DECONTAIMINATION INF				
	HOSE REEL		HOSE REEL	
		PREVIOUSLY USED IN		<u>/ </u>
PREVIOUSLY USED IN WEI	- L-		WELL	5
		SITE		Ş
DECON METHOD/STEAM T	IME	DECON METHOD/STEA		
RINSEATE SAMPLEY	ESNO ID	RINSEATE SAMPLE	_YESNO ID	-
/				
2A/QC INFORMATION				
	······································			_
N SAMPLE SHIPMENT: TR	AVEL BLANKYES 🔀 NC		NC SPIKEYES <u>`X</u> NO I	D
	D ID 4785 FIELD BLANK			
VOTES				
	()D 9	0= 9.8		
	 	15 = 0.70mg		
·····	I_// M	13 - U. IVRG	· · · · · · · · · · · · · · · · · · ·	

LOC	US TECHNOLOGIES W	ATER SAMPLI	NG LOG	
WELLISAMPLE DESIGNATION SAMPLE SOURCE AMBIENT CONDITIONS	MW-60 clear	SITE: <u>S</u> DATE 7 PROJECT#280 SAMPLER <u>4.</u>	C. VTA -23-08 06-08-000 -2+n/T.M	
GRAB SAMPLE INFORMATIO	N (use notes section for meter r	eading, flow rate, vo	ol. purged etc.)	
GRAB SAMPLE METHOD:	CONTINUOUS PUMPERYES PUMP CXCLINGYESNO	METER	FLOV	/ BATE:
WATER LEVEL INFORMATION		INSTRU	IMENT USED	
W.L. BEFORE PURGE 21.12 W.L. FOR 80% RECOVERY	DUTING TIMEW.L. AFTER PURGE W.L. TIME OF SAMPLE NFORMATION MONITOR	DATE	TIMETIMETIME	
PURGE DEVICE I.D LOW FA WELL DEPTH SCREENED INTERVAL PURGE VOLUME CALCULATION_ TIME PURGE BEGINS_705	DIAMETER 2" DIAMETER 2" PUMP SETTING 75		C.P.A S. VOLUMES (PROTO PH INSTRUMENT.	tol <u>) 32</u>
TIME TEMP. CON 716 20,2 41 717 20,2 41 718 20,2 41 718 20,2 41	D. pH PURGE WATE 7 6.19 Clear/M 7 6.19 11 11		R ORP 141,7 141,7 141,7	TURBIDITY 80, 2 80, 3 80, 3
WATER SAMPLING INFORMA	TION MONITOF	UNG WELL SAMPLE	METHOD	
	VOLUME SAMPLING TIME 7. VOLUME ANALYSIS 40ML Methane 40ML GO2, N2 40ML Dissduct Sulfide	2 <u>0</u> date LAB PRES [3C1 H [3C1 N	ERVATION	AB FILTRATION None None None
DECONTAMINATION INFORM	HOSE REEL SAMPLING PREVIOUS SITE DECON ME	DEVICE ID LY USED IN WELL THOD/STEAM TIME SAMPLEYES	HOSE REEL	E
QA/QC INFORMATION				
IN SAMPLE SHIPMENT: TRAVEL E DUPLICATE XYES NO ID4 NOTES	BLANK YES X NO ID 785 FIELD BLANK YES TNO (DUP TAKEN)	DOZO =	BSPLIT <u>YES</u>	NO ID

LOCUS TECHNOLOGIES	WATER SAMPLING LOG
	SITE: S.C. VTA
WELLISAMPLE DESIGNATION_ST-	DATE 7-23-08 PROJECT#28006-08-0002
AMPLE SOURCE A CLEAN	SAMPLER H. Contro T. Murphy
GRAB SAMPLE INFORMATION (use notes section for mete	r reading, flow rate, vol. purged etc.)
GRAB SAMPLE CONTINUOUS PUMPERYE	
W.L BEFORE PURGE 24,50 TIME W.L. AFTER PURGE	= 24.50 TIME
W.L. TIME OF SAME	PLEDATETIME
MONITORING WELL PURGE INFORMATION MONIT	ORING WELL PURGE METHOD
PURGE DEVICE I.D. LOW PLOW PUMP WELL DEPTH DIAMETER DIAMETER DIAMETER	" CPM 3
WELL DEPTH DIAMETER	#CASING-VOLUMES (PROTOCOL)
SCREENED INTERVAL PUMP SETTING_2	<u>fZ</u>
PURGE VOLUME CALCULATION	(200 million and a second seco
TIME PURGE BEGINS 740 ACTUAL AMOUNT P	PURGED 6300 MC PH INSTRUMENT LOW flow cell
TIME TEMP. COND. PH PURGE WA	TER APPEARANCE/ODOR ORP TURBIDITY
	no odor 121,4 7.4
753 20,1 594 7,08 1	1 4 121.6 7.4
	n 11 121,6 7,5
WATER SAMPLING INFORMATION MONIT	ORING WELL SAMPLE METHOD
1.11/10	APPROXIMATE DEPTH OF GRAB
SAMPLING DEVICE ID 14" TUBING SAMPLING TIME	$\frac{156}{156}$ DATE $\frac{1+23-08}{1500}$
BOTTLE TYPE NO. VOLUME ANALYSIS	LAB PRESERVATION FILTRATION BCI HCI None
0: 1/ 1 0: 0	
VOA 1 40ML Dissduel Suffic	te BCI None Nona
DECONTAMINATION INFORMATION	
	7
	NG DEVICE IDHOSE REEL
	USLY USED IN WELL
SITE	
	METHOD/STEAM TIME
RINSEATE SAMPLEYESNO IDRINSEA"	TE SAMPLEYESNO_ID
QA/QC INFORMATION	
IN SAMPLE SHIPMENT: TRAVEL BLANKYES_X_NO_ID	- DAVOC SPIKE YES X NO ID
	NO ID 4786INTER-LAB SPLIT_YES KNO ID
NOTES 12175 (RASTAE	FN) NO2 = 19.5
	DOMS - 1.75

		MATED CA	MPLINGLOG	
LOU	US TECHNOLOGIES	WATER SA		
		SITE:	S.C. VTA	
WELLISAMPLE DESIGNATION	51-10		7-23-08	
SAMPLE SOURCE	ſ		28006-08-00	
AMBIENT CONDITIONS	Clear	SAMPLER _	H. Costro F.1	norphy
GRAB SAMPLE INFORMATIO	N (use notes section for mete	r reading, flow	rate, vol. purged etc.)	
GRAB SAMPLE METHOD:	CONTINUOUS PUMPERYI		pH meter FLI	OW BATE:
WATER LEVEL INFORMATION			INSTRUMENT USED	
W.L. BEFORE PURGE 23.06	During	- 7704	TIME	
W.L. BEFORE PURGE	TIMEW.L.AFTER PORGE W.L. TIME OF SAMI	- <u></u>	DATE TIME	ΛE
W.L. FOR 80% RECOVERY MONITORING WELL PURGE I		ORING WELL F		
PURGE DEVICE I.D. LOW FA	i Dump	<i>u</i>	CF	m
WELL DEPTH	DIAMETER 4	+ +	CASING VOLUMES (PROT	-060L) <u>3</u>
SCREENED INTERVAL	PUMP SETTING	201		
PURGE VOLUME CALCULATION_				
TIME PURGE BEGINS 5/9	ACTUAL AMOUNT F	PURGED 480	OML PH INSTRUMEN	IT Low flow cell
			· · · · · ·	
TIME TEMP. CON		TER APPEARANC		TURBIDITY
827 21.1 600	0 7.18 Clear	Two abor		1,8
828 21.1 601	1 7,18 11	u cr	95.8	<u></u>
829 21.1 601	7,19 U	4 4	95.8	1.8
	HONIT		AMPLE METHOD	
WATER SAMPLING INFORMA			APPROXIMATE DEPTH OF	
SAMPLING DEVICE ID 14"T	LA SHE DANADI INC THAT	P30 r	DATE 7-23-0	8
1	VOLUME ANALYSIS	LAB		FILTRATION
BOTTLE TYPE NO.	40ML Methane		HCI	None
VOA 2 VOA 2 VOA 2	40ML GOZ, N2	BCI	None	None
VOA I	40ML Dissduel Sulfie	and the second second second second second second second second second second second second second second second	None	Nona
DECONTAMINATION INFORM	ATION			
PURGE DEVICE ID			HOSE REEL	·
PREVIOUSLY USED IN WELL		USLY USED IN W	ELL	. Ę
SITE				. ح
DECON METHOD/STEAM TIME		METHOD/STEAM		
RINSEATE SAMPLEYES	_NO IDRINSEA	TE SAMPLE	YESNO ID	
QA/QC INFORMATION			· · · · · · · · · · · · · · · · · · ·	
IN SAMPLE SHIPMENT: TRAVELE	NANK VER X NO ID -		SPIKE YES XNO	
IN SAMPLE SHIPMENT: TRAVELE DUPLICATEYESNO_ID_			ITER-LAB SPLIT YES >	LNO ID -
NOTES	10%=13	. 4		
	DDMg=1,1			
	"Introg - Int			Verse 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
				

1.00	CUS TECHNOLOO	SIES WATER	SAMPLING L	.OG
WELL\SAMPLE DESIGNATION SAMPLE SOURCE AMBIENT CONDITIONS	MW-4A clear	SITE: DATE PROJEC SAMPLI	<u> </u>	VTA -08 08-0002 no/T.Murphy
GRAB SAMPLE INFORMATIC	N (use notes section fo	or meter reading, f	low rate, vol. purg	ed etc.)
GRAB SAMPLE METHOD:	CONTINUOUS PUMPER	s <u>NO</u>		FLOW BATE:
WATER LEVEL INFORMATIO			INSTRUMENT	<u>05ED</u>
W.L. BEFORE PURGE 13,6(W.L. FOR 80% RECOVERY	W.L. TIME C	PURGE_ <u>/6,6</u> DF SAMPLE	DATE	
PURGE DEVICE I.D <u>LOW</u> FI WELL DEPTH SCREENED INTERVAL PURGE VOLUME CALCULATION TIME PURGE BEGINS <u>256</u>	DIAMETER_ 	2" ING_70'	#GABING VOLUI	NSTRUMENT Low flow cell
TIME TEMP. COM 907 24,2 129 908 29,2 129 909 24,2 129	ND. PH PUR 78 11.49 CL 79 11.49 L	GE WATER APPEAL ersty/stick ((()	tolog 1	<u>ORP</u> TURBIDITY 40,4 95,1 40,4 95,2 10,3 93,4
WATER SAMPLING INFORMA SAMPLING DEVICE ID <u>14</u> BOTTLE TYPE NO. VOA 2 VOA 2 VOA 1	sampling sampling	rime <u>910</u> Ysis Lab <i>are BC</i> V2 BC	DATE 7-2 PRESERVATI I HCI I None	DEPTH OF GRAB -3-08 ION FILTRATION None None
DECONTAMINATION INFORM	ATION			
PURGE DEVICE ID PREVIOUSLY USED IN WELL SITE DECON METHOD/STEAM TIME RINSPATE SAMPLEYES		SAMPLING DEVICE I PREVIOUSLY USED STE DECON METHOD/ST RINSEATE SAMPLE_	EAM TIME	$\sum_{i=1}^{k} \xi_{i}$
QA/QC INFORMATION	BLANKYES_X_NO	ID Q/	VQC SPIKEYE	s <u>×</u> no id
DUPLICATE YES YNO ID	FIELD BLANK Y	<u>es 7 no id —</u> = 14,0	INTER-LAB SPLIT	YES NO ID

			TED S	MPLINGIO	G
LO	CUS TECHNOL	UGIES WA	ALER OF		
			SITE:	S.C.V	<u> </u>
WELLISAMPLE DESIGNATION_	N.W-06		DATE	7-23-	08
SAMPLE SOURCE A	clear		PROJECT#	28006-08	F-0001
AMBIENT CONDITIONS	clear		SAMPLER	H. Costro	Murphy
GRAB SAMPLE INFORMATIO	N luca notas sectio	n for meter re	adina, flow	rate, vol. purged	l etc.)
GRAB SAMPLE INFORMATIC	JN (USE HOLES SECTIO			/	
	CONTINUOUS PUM	PER YES	NO	pH meter	FLOW BATE:
GRAB SAMPLE METHOD:	PUMP CXCLING		_/	METER READING	
WATER LEVEL INFORMATIO		JRING POINT		INSTRUMENT US	SED
	<u></u>	ring			
W.L. BEFORE PURGE 22.24	TIME WLAF	TER PURGE	22,24	TIME	
W.L. FOR 80% RECOVERY	W.L. TI	AL OF SAMPLE			TIME
MONITORING WELL PURGE		MONITOR	NG WELL	PURGE METHOD	
	-				
PURGE DEVICE LD LOW F.	by pump	, 11		#GABING VOLUME	CPM too
WELL DEPTH	DIAMET	ER_6	1	#GABING VOLUME	S (PROTOGOL) 24
SCREENED INTERVAL	PUMP S	ETTING 90			
PURGE VOLUME CALCULATION					
TIME PURGE BEGINS 950	ACTUAI	AMOUNT PUR	GED <u>44</u>	OOML PHINS	TRUMENT LOW flow Cell
				-	
TIME TEMP. CO	ND. pH	PURGE WATER	APPEARAN		DEP TURBIDITY
1004 23,0 52		clear n	o alor		0.1 58.6
1005 23,1 53		11 11	L/	86	
1006 23.1 53	and the second second second second second second second second second second second second second second secon	NEC	4	80	1 58.6
1000 13.1 ==					
WATER SAMPLING INFORM	ATION	MONITOR	NG WELL	SAMPLE METHO	D_ <u>{</u>
				APPROXIMATE DE	PTH OF GRAB
SAMPLING DEVICE ID 14"7	ubjus SAMPLI	NG TIME <u>/04</u>	>7_	DATE 7-22	
BOTTLE TYPE NO.	VOLUME A	NALYSIS	LAB	PRESERVATION	
160 1 7	40ML Me	thank	BCI	HCI	None
VOA Z	HOML GO:	$2, N_2$	BCI	None	None
VOA I	40ML Disso	vel Sulfide	BCI	None	Nons
<u> </u>	<u></u>	<u></u>			
	· · · · · · · · · · · · · · · · · · ·				
DECONTAMINATION INFORM	NATION		<u></u>		
		/			
PURGE DEVICE ID	HOSE REEL				
PREVIOUSLY USED IN WELL		PREVIOUSL	Y USED IN	WELL	-/ 5
SITE		SITE			$- \epsilon$
DECON METHOD/STEAM TIME_		Z DECON ME	FHOD/STEA	M TIME	<u> </u>
RINSPATE SAMPLEYES			SAMPLE	_YESNO ID	
	- —				
QA/QC INFORMATION					
IN SAMPLE SHIPMENT: TRAVEL	BLANK YES X	NO ID	QA/Q	C SPIKEYES	XNO ID
DUPLICATE YES -NO ID	FIELD BLANK	YESNO	1D	INTER-LAB SPLIT	YES XNO ID
NOTES					
	/	10% - 11	1.3		
	 	DMg=C			
		and the second s			
			,,,,,,,,,		
1					

1.0	CUS TECHN		WATER S		OG	
LU	LUS TEURIN	OLUGIES				
	OFD		SITE:	<u><u> </u></u>		an an an an an an an an an an an an an a
WELLISAMPLE DESIGNATION_	71-8			7-23		·
SAMPLE SOURCE	. [28006-6		
AMBIENT CONDITIONS	Clear		SAMPLER	H. Costi	\$ 1.710	грач
GRAB SAMPLE INFORMATIC	DN (use notes se	ction for mete	r reading, flow	v rate, vol. purg	ed etc.)	
		/				
GRAB SAMPLE METHOD:	CONTINUOUS	SUMPERYE		pH meter:		BATE:
METHOD:	PUMP CXCLING			METER READIN		
WATER LEVEL INFORMATIO		ASURING POI	N]	INSTRUMENT		
W.L. BEFORE PURGE 23.60		ALTER PURGE	= 23.71	TIME		
W.L. FOR 80% RECOVERY	W.L	. TIME OF SAMP	>LE	DATE	TIME	
MONITORING WELL PURGE				PURGE METHO)D	
PURGE DEVICE I.D. <u>LOW</u> FI WELL DEPTH SCREENED INTERVAL	ow pump	· م د	17	#GASING VOLUN	CPN	1 ->
WELL DEPTH	DIA	METER 4		#GASING VOLUN	HES (PROTOC	0 <u>+)</u>
SCREENED INTERVAL	PUN	AP SETTING 8	10'			
PURGE VOLUME CALCULATION				1.2 . A (PL PL PI
TIME PURGE BEGINS 1035	ACT	'UAL AMOUNT F	URGED 450	10ML_pHIN	ISTRUMENT	on tion cell
			TER APPEARAN		ORP	TURBIDITY
TIME TEMP. COM			/ no allot	فالكانات المستعلة كيتباري فتتعصدا البابا المتنصب بينيه	47,2	37,5
		11	1 Hourst		473	37.5
1043 21.8 110		<u> </u>	11 41		<u>- 1 2</u> 4 7, 3	37.6
1044 21.8 110	6 120	<u>، ر</u>	2 (1.1.2	
WATER SAMPLING INFORMA	TION	MONIT	ORING WELL	SAMPLE METH	OD <u>(</u> 3	
				APPROXIMATE D	EPTH OF GRA	B
SAMPLING DEVICE ID 14"T	ubjug SAN	IPLING TIME	045	DATE	1-08	
BOTTLE TYPE NO.	VOLUME	ANALYSIS	LAB	PRESERVATIO	DN FI	LTRATION
VOA 2	40ML 1	Methane	BCI	<u> </u>	/	Vone
VOA Z	40ML G		BCI	None	لو میں دیں دیں دیں	None
<u> </u>	40ML Dig	solver Sulfie	le BCI	None		Nona
·	<u>,</u>					
DECONTAMINATION INFORM	ATION		<u></u>			
	<u>A1101</u>		/			
PURGE DEVICE ID	HOSE REEL	SAMPL	G DEVICE ID_	H	OSE REEL	
PREVIOUSLY USED IN WELL			JSLY USED IN V	VELL	/	C
SITE		SITE				Ę
DECON METHOD/STEAM TIME_		DECONI	METHOD/STEAN	4 TIME		C
RINSEATE SAMPLE YES	NO ID	RINSEAT	TE SAMPLE	_YESNO I	D	
	/					
QA/QC INFORMATION						
	•	· · · · ·			×	
IN SAMPLE SHIPMENT: TRAVEL	BLANKYES_	X NO ID	QAVQ	SPIKEYES	s <u>×</u> NO ID	
DUPLICATE YES YNO ID	FIELD BLAN	1KYES_ / _	ND ID [NIEK-LAB SPLIT	<u>YESZ_</u> N	
NOTES		0-6-5	1- 1-			
		00%=	10.7		·	
		DOM9 =	0.71			
					,	

LOC	CUS TECHNO	DLOGIES W	ATER S.	AMPLING L	DG	
				S.C.		
	Pi-1		SITE:		- 09	
WELLISAMPLE DESIGNATION_	-31-1		DATE	7-23	- U &	
SAMPLE SOURCE_A	ſ		PROJECT	# <u>28006-</u> 5	8-000.	<u> </u>
AMBIENT CONDITIONS	clear		SAMPLER	H. Costr	»/./nur	phy
GRAB SAMPLE INFORMATIC	NI (upp potor co	ction for mater	eading flow	v rate, vol. puros	ed etc.)	
GRAB SAMPLE INFORMATIC	IN USE IDLES SEL		cuung, no	/ 1200 / 100 P = - 5		
				pH meter	FLOW/	PATE.
GRAB SAMPLE		UMPER YES		METER READING		
METHOD:	PUMP CYCLING			INSTRUMENT		
WATER LEVEL INFORMATIO	• •	ASURING POIN				
W.L. BEFORE PURGE		During	11 ar			
W.L BEFORE PURGE 4.77	_TIMEW_L	. AFTER PURGE_	4,18	TIME		
WI FOR BOM RECOVERY	W.L.	. TIME OF SAMPLI	<u>ت</u>	DATE	TIME	
MONITORING WELL PURGE	INFORMATION	MONITO	RING WELL	PURGE METHO	<u>ע</u>	
PURGE DEVICE I.D. LOW FI	i a a				C 011	
PURGE DEVICE I.D LOW +1	ON DUMP	4			CPM	51
	DIAN	NETER 4		#CASING VOLUM	IES (PROTOCO)L)
SCREENED INTERVAL		NP SETTING 70	>/			
PURGE VOLUME CALCULATION	2-10-10 2-10-10					
TIME PURGE BEGINS 1135	ACT	UAL AMOUNT PU	RGED 25	OBML PHIN	STRUMENT L	ow flow cell
TIME PURGE BEGINS_7722	- ,					
TIME TEMP. COM	ND. pH	PURGE WATE			ORP	TURBIDITY
11111		clearlo			18,4	10.3
1152 24.5 28		11 11	LI LI		18,4	10=3
1153 24,6 28					8.4	10,5
1154 04,6 28;	74 7,19	<u>n ((</u>	-(7	01	10,3
				SAMPLE METH		<u></u>
WATER SAMPLING INFORMA		MONITOR				
1-11-	- : •	,,	~~~	APPROXIMATE D	EPIH OF GRA	8
SAMPLING DEVICE ID 14"T	<u>Ub/119</u> SAM	PLING TIME //	<u>55</u>	DATE /- 2	5-08	
BOTTLE TYPE NO.	VOLUME	ANALYSIS	LAB			LTRATION
VOA 2	40ML 1	Nethane	<u>BCI</u>	HCI None	/	Vone
VOA 2	40ML G	02, N2	BCI	None	/	None
VOA I		sduel Sulfide	e BCI	None		Nora
DECONTAMINATION INFORM	ATION		*			
				<u> </u>		7
	HOSE REEL	SAMPLING	DEVICE ID_	Н	OSE REEL	
PREVIOUSLY USED IN WELL			SLY USED IN	WELL		~
		SITE				Ę
SITE			ETHOD/STEA			2
DECON METHOD/STEAM TIME_					<u>د</u> ۲	
RINSEATE SAMPLEYES	NO ID	KINSEATE	SAMPLE	_1=0/ "		
	٩				×/	
IN SAMPLE SHIPMENT: TRAVEL	BLANKYES_	<u>× no id</u>		C SPIKEYES	<u>X</u> NO ID	
DUPLICATE YES - NO ID	FIELD BLAN	IK YES <u>- Y</u> NC		INTER-LAB SPLIT	YES <u>X_</u> N	<u>o id</u>
NOTES						
		0020 = 9	7,4			
		DDMS = 0		······		
		-01.000	<u> </u>			
	-					
		gyaqaran				
1						н

LOCUS TECHNOLOGIES	WATER SAMPLING LOG
	SITE: <u>S.C. VTA</u>
WELLISAMPLE DESIGNATION NW-01	DATE 7-23-08
SAMPLE SOURCE A	PROJECT# 28006-08-0002
AMBIENT CONDITIONS	SAMPLER H. Contro Morphy
GRAB SAMPLE INFORMATION (use notes section for me	ter reading, flow rate, vol. purged etc.)
GRAD SAWFEE IN CRIMATION (200 Mente	
GRAB SAMPLE CONTINUOUS PUMPER	YESNOPH meter:FLOW BATE:
METHOD: PUMP CXCLING YES	NO METER READING
WATER LEVEL INFORMATION MEASURING PO	
During	10 1/
W.L BEFORE PURGE 19.11 TIME W.L. AFTER PURC	GE <u>19,11</u> TIME MPLF DATE TIME
W.L. FOR 80% RECOVERY W.L. TIME OF SAI	MPLETIME ITORING WELL PURGE METHOD
PURGE DEVICE I.D. LOW Flow PUMP WELL DEPTH DIAMETER SCREENED INTERVAL PUMP SETTING	in CRM 3
PURGE DEVICE ID <u>LOW FOR PURP</u>	#GASING VOLUMES (PROTOCOL) 3
WELL DEPTH DIMETERVAL	75
THE REPORT OF ATOM	
TIME PURGE BEGINS 1248 ACTUAL AMOUNT	PURGED 4500 ML PH INSTRUMENT Low flow cell
TIME TEMP. COND. PH PURGE W	ATER APPEARANCE/ODOR OLP TURBIDITY
1253 27.2 637 7.50 cloud	
1254 27.3 638 7.52 11	11 1 67.1 341.8
1755 77.4 638 7.51 CL	11 LL 67.7 341.8
	TORING WELL SAMPLE METHOD
SAMPLING DEVICE ID J4" TUBING SAMPLING TIME	1257 DATE 7-23-08
	LAB PRESERVATION FILTRATION
	BCI HCI None
VOA 2 40ML Methane VOA 2 40ML GO2, N2	
VOA I 40ML Dissduel Sult	
DECONTAMINATION INFORMATION	
	OUSLY USED IN WELL
SITE	
	N METHOD/STEAM TIME ATE SAMPLE YES NO ID
RINSEATE SAMPLEYESNO IDRINSE	ATE SAMPLEYESNO ID
QA/QC INFORMATION	
IN SAMPLE SHIPMENT: TRAVEL BLANK YES X NO ID	QA/QC SPIKE YES XNO ID
DUPLICATEYESNO_IDFIELD_BLANKYES	AND ID INTER-LAB SPLIT YES X NO ID
NOTES DD 2	=10.7
	=0,87

	S WATER SAMPLING LOG
	A
	SITE: <u>S.C. VTA</u> DATE 7-21-08
WELLISAMPLE DESIGNATION MW-2C	DATE <u>1-25-08</u> PROJECT# <u>28006-08-0002</u>
SAMPLE SOURCE <u>A</u> AMBIENT CONDITIONS <u>CLEON</u>	SAMPLER H. Captor T. Murphy
AMBIENT CONDITIONS <u>CLEOF</u>	
GRAB SAMPLE INFORMATION (use notes section for m	eter reading, flow rate, vol. purged etc.)
GRAB SAMPLE CONTINUOUS PUMPER	
METHOD: PUMP CXCLING YES_	
WATER LEVEL INFORMATION MEASURING F	
During	RGF 16.55 TIME
W.L. BEFORE PURGE 16,36 TIME W.L. AFTER PUR W.L. EOR 80% RECOVERY W.L. TIME OF S/	AMPLE DATE TIME
	NITORING WELL PURGE METHOD
MONITORING WELL PURGE INFORMATION MO	
PURGE DEVICE I.D. LOW FLOW PUMP	CPM
	2 #GASING VOLUMES (PROTOCOL) BI
TIME PURGE BEGINS 1729 ACTUAL AMOUNT	NT PURGED 1900ML pH INSTRUMENT Low flow cell
TIME FORGE BEGING	
TIME TEMP. COND. PH PURGE	WATER APPEARANCE/ODOR OR TURBIDITY
1340 26,8 5928 12,04 clp.	sty/ Slight oder 90.1 39.0
1741 268 5987 1203 11	1 11 11 90.3 39.4
1342 26.7 5988 12.03 (1 11 11 GD.4 J&7
WATER SAMPLING INFORMATION MOI	NITORING WELL SAMPLE METHOD
SAMPLING DEVICE ID JU TUBING SAMPLING TIME	APPROXIMATE DEPTH OF GRAB
	AB PRESERVATION FILTRATION
BOTTLE TYPE NO. VOLUME ANALYSIS	
VOA Z HOML GOZ, NZ	
VOA 1 40ML Dissduel Su	Hide BCI None Nona
DECONTAMINATION INFORMATION	
PURGE DEVICE ID HOSE REEL SAM	IPLING DEVICE IDHOSE REEL
PREVIOUSLY USED IN WELL PRE	WIOUSLY USED IN WELL
SITESITE	#IOUSLY USED IN WELL
DECON METHOD/STEAM TIME DEC	CON METHOD/STEAM TIME
RINSEATE SAMPLE YES NO ID RINS	SEATE SAMPLEYESNO_ID
QA/QC INFORMATION	
IN SAMPLE SHIPMENT: TRAVEL BLANK YES X NO ID	
	NO IDINTER-LAB SPLITYES X_NO ID
NOTES	2101
	$\frac{2}{5.1}$
Doms	- 11/7

LOCUS TECHNO	LOGIES WATER S	AMPLING LOG	
		S.C. VTA	
T-7	SITE: DATE	7-23-08	
WELLISAMPLE DESIGNATION <u>57-2</u>	PROJECT	#28006-08-00	02
SAMPLE SOURCE <u>A</u> AMBIENT CONDITIONS <u>CLEON</u>		H. Castro M.M.	
GRAB SAMPLE INFORMATION (use notes sect	ion for meter reading, flo	w rate, voi. purgeu etc.)	
CONTINUOUSPU	MPERYESNO	pH meter: FLC	W BATE:
GRAB SAMPLE CONTINUOUS PU METHOD: PUMP CXCLING		METER READING	
	SURING POINT	INSTRUMENT USED	
	wring 17-		
W.L BEFORE PURGE 1748 TIME W.L. A	FTER PURGE / 1.5 4	TIME	-
W.L. FOR 80% RECOVERY W.L. T	TME OF SAMPLE		E
MONITORING WELL PURGE INFORMATION	MONITORING WELL		
PURGE DEVICE I.D. LOW Flow PUMP	<i>il</i>	CPI	11
	TER 4	#GAGING VOLUMES (PROTO	эсон <u>104</u>
	SETTING 20	•	
TIME PURGE BEGINS 1402 ACTU	AL AMOUNT PURGED 51	DOML PH INSTRUMEN	TLOW flow cell
TIME TEMP. COND. PH	PURGE WATER APPEARA		
1412 26,4 608 8,49	clore / ho dir	- <u>64,6</u>	50.8
1413 26.5 608 5.50	11/11/4	64.7	50,7 50,7
1414 26,5 608 8.50	IL LELE	64.7	50,1
	MONITORING WELL	SAMPLE METHOD 13	
WATER SAMPLING INFORMATION		APPROXIMATE DEPTH OF G	SRAB -
SAMPLING DEVICE ID 14 TUBING SAMPI	LING TIME 1415	DATE 7-23-08	<u>}</u>
	ANALYSIS LAB	PRESERVATION	FILTRATION
VOA 2 40ML M	ethane BCI Dz. Nz BCI	HCI	None
			None
VOA 1 40ML Disso	duel Sulfide BCI	None	Nona
DECONTAMINATION INFORMATION			
PURGE DEVICE IDHOSE REEL	SAMPLING DEVICE ID_	HOSE REEL	<u> </u>
PREVIOUSLY USED IN WELL	PREVIOUSLY USED IN	WELL	5
SITE	81TE		Ę
DECON METHOD/STEAM TIME	DECON METHOD/STEA		
RINSPATE SAMPLEYESNO ID	RINSEATE SAMPLE	YESNO ID	
QA/QC INFORMATION			
IN SAMPLE SHIPMENT: TRAVEL BLANKYES_X		CSPIKE YES XNO	
DUPLICATE YES YNO ID FIELD BLANK	YES	INTER-LAB SPLIT YES	NO ID -
NOTES	D07 = 8.2		
	DDMG = D.65		
-			

1.00	CUS TECHN		MATERSA	MOLING		
LO	JUS IEURIN	ULUGIES V	VALEK SA			
			SITE:		· VTA	********
WELLISAMPLE DESIGNATION_	21-15		DATE	28006	23-08 -08-00	<u>ר' רי ניינ</u>
SAMPLE SOURCE_A	e la c				\$+10/T.1	
AMBIENT CONDITIONS	CLEOF				-	<u>101/149</u>
GRAB SAMPLE INFORMATIC)N (use notes se	ction for meter	reading, flow	rate, vol. p	urged etc.)	
GRAB SAMPLE				PH METER REA	FLC	JVV BATE:
METHOD:		ASURING POIN		INSTRUME		
WATER LEVEL INFORMATIO						
W.L BEFORE PURGE 15,76	TIME WI	DURING APTER PURGE	13,76	٦	TIME	
W.L. FOR 80% RECOVERY		_ TIME OF SAMPI	LEI	DATE	TIM	E
MONITORING WELL PURGE	INFORMATION	MONITO	DRING WELL F	PURGE ME	THOD	
					<i>c</i> 0	
PURGE DEVICE LD LOW FI	ow pump	112	7		CP,	M
	DIA	METER 4	777 [‡]	#CASING VO	LUMES (PROT	∂ 60 ⊧)
SCREENED INTERVAL		VIP SETTING 2				
PURGE VOLUME CALCULATION			10050 3300	OMI -		TLOW flow cell
TIME PURGE BEGINS 1454	_ AC1	UAL AMOUNT PL	JRGED AND	<u> </u>		100 - 1100 - 41
TIME TEMP. COM	ND. pH	PURGE WAT	ER APPEARAN	CE/ODOR	ORP	TURBIDITY
1457 25.5 110		والأخذ اختطاب البابية البالية الشابين تجمعه ومحمد وبمكار فكالجباب التزاجي والمراجع فيتراجهها	slighto		122.6	70:1
1458 25.6 116		ii i			122,8	>0,4
	5 7.08	il	~(()		122.8	70,3
WATER SAMPLING INFORMA	TION	MONITO	RING WELL S			
SAMPLING DEVICE ID 14"T			р СЛС г	APPROXIMA	re depth of 0 ・スミーの	SRAB
		ANALYSIS	LAB	PRESERV		FILTRATION
BOTTLE TYPE NO.	VOLUME 40ML /	Methane	and the second second second second second second second second second second second second second second second	and a second second second second second second second second second second second second second second second	المشارح مستليا فالمساراتها فتخر بالقادة اعتراد وويبيه والتراف فالمار	None
VOA 2 VOA Z	40ML G		- BCI	Non	e	None
VOA Z	UDMI Di	sodver Sulfid		Non		Nora
		<u></u>				
DECONTAMINATION INFORM	ATION		<u>^</u>			
PURGE DEVICE ID	HOSE REEL	/	G DEVICE ID ISLY USED IN W			
PREVIOUSLY USED IN WELL		BITE	SET USED IN W		/	Ę
SITE		. /	ETHOD/STEAM			2
DECON METHOD/STEAM TIME_	NO ID		E SAMPLE		O ID	
RINSEATE SAMPLEYES					7 "	-
QA/QC INFORMATION					••••• <u>•</u>	
		-		<u></u>	`	
IN SAMPLE SHIPMENT: TRAVEL	BLANKYES_	<u>×</u> no id		SPIKE	YES X NO	ID
DUPLICATEYESNO_ID_	FIELD BLAN	IK YES ZN		ITER-LAB SP	PLITYES	_NO ID
NOTES						
		110 70 = 1	and the second second second second second second second second second second second second second second second			[
		DDMg=	1.10			
	••					

Bioremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fux 617-923-0959 e-mail MFindlay@bciLabs com

Sampling Location: SC VTA Project Name: Locus wells

Sampled by:

PO 30-12362 11. Coffin T. Murply

hawthornej@locustec com John Hawthorne Contact: pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble. each set: 2 voas. HCl-preserved: methane 2 voas, no preservative: CO₂, N₂ I voa, no preservative: dissolved sulfide

Well Number	Date	VOA Vials	TCV	VOA Vials	гси
		HCl-preserved		No	
				Preserv	
MW-60	7/23	2		3	
57-11	7/23	2		3	
ST-10	7/53	2		3	
MW-4	7/25	2		3	
NW-6	7/53	2		3	
MW-4 NW-6 ST-8	7/23	2		3	
57-1	7/23	2		3	
NW-01	7/23	2		3	
NW-01 MW-2C	7/23	2		3	
trip blanks	7/23				

Bioremediation Consulting Inc (phone 617-923-0976) SHIP TO: 39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY; however, No Loose Ice - bag ice in leak-proof bags Do not allow ice to contact groundwater samples

Fed Ex Priority Overnite. NO Saturday Delivery

Call or fax BCI at time of shipping and report the tracking number

Relinquished by 71 sclenet date 7-23-08 date _____

Received by

Bioremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail MFindlay@bciLabs.com

Sampling Location: SCVTA Project Name: Locus wells PO 30-12362

Sampled by: <u>H. Castro T. Morphy</u>

hawthornej@locustec.com Contact: John Hawthorne pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble. each set: 2 voas. HCl-preserved: methane 2 voas, no preservative: CO₂, N₂ I voa. no preservative: dissolved sulfide

Well Number	Date	VOA Vials	rev	VOA Vials	rcv
		HCl-preserved		No	
				Preserv	
ST-7	7/22	2		3	
MW-5B	7/22	2		3	
NW-05	7/22	2		3	
57-12	7/22	2		3	
MW-1	7/22	2		3	
MW-3C	7/22	2		3	
MW-3C MW-26	7/22	2		3	
4783	7/22	2		3	
4784	7/22	ユ		3	
trip blanks				1	

Bioremediation Consulting Inc (phone 617-923-0976) SHIP TO: 39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY: however, No Loose Ice - bag ice in leak-proof bags Do not allow ice to contact groundwater samples

Fed Ex Priority Overnite, NO Saturday Delivery

Call or fax BCI at time of shipping and report the tracking number

Relinquished by <u>Ideglech</u>	date	7-2508
Received by	date	2

Received by

Bioremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail MFindlay@bciLabs.com

Project Name: Locus wells Sampling Location: SCVTA

Sampled by:

PO 30-123627 H. Costro T. Murphy

Contact: John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble. each set: 2 voas, HCl-preserved: methane 2 voas, no preservative: CO₂, N₂ I voa, no preservative: dissolved sulfide

Well Number	Date	VOA Vials	rev	VOA Vials	rev
		HC1-preserved		No	
				Preserv	
\$7-2	7/23	2		3	
51-13	7/23	2		3	
4785	7/23	2		3	
4786	7/23	2		. 3	
		2		3	
	Ì	2		3	
		2		3	
		2		3	
	1				
trip blanks	1				

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02471

Shipping Conditions:

ICE NECESSARY: however, <u>No Loose Ice – bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite. NO Saturday Delivery

Relinquished by The Carlof date 7-15-05 date Received by

ATTACHMENT C

Laboratory Reports

Phase I Sampling

Analytical Results

Groundwater Samples from SCVTA Site

15 wells Sampled 5/21/08 Received 5/23/08 Analyzed 5/23/08 through 5/29/08

5/30/08

Prepared for:

John Hawthorne hawthornej@locustec.com 650-960-1640 Locus Technologies 299 Fairchild Drive Mountain View CA 94043

Prepared by **Bioremediation Consulting Inc** 39 Clarendon St, Watertown MA 02472 ph 617-923-0976 fx -0959 bioremediation@bciLabs.com

Groundwater Samples from SCVTA Site

15 wells Sampled 5/21/08 Received 5/23/08 Analyzed 5/23/08 through 5/29

Prepared for John Hawthorne, Locus Technologies

5/30/08

Dissolved Gasses by Gas Chromatography. Dissolved gasses were analyzed by according to EPA Method 5021A. Vials (40 ml), without preservative, were prepared for analysis by replacing 5 ml of groundwater with 5 cc Helium, using a double needle procedure through the septum, then shaken for 20 minutes to allow volatilization of gasses into the headspace. Headspace samples of 100 μ L were removed by syringe and injected directly into an HP 5890 gas chromatograph.

<u>Argon, N₂, O₂, and CO₂ were detected by Thermal Conductivity Detector.</u> <u>Methane, ethane, and ethanethiol</u> were detected by Flame Ionization Detector.

Standards were prepared and analyzed in the same manner as samples. Compounds were identified by retention time, and quantitation was conducted using ChemStation software.

Dissolved Argon was calculated by subtracting the field O_2 readings from the combined Argon/ O_2 peak on the gas chromatograph.

Dissolved O₂ by chemical test. Two samples, in 4 oz jars, were analyzed for dissolved O_2 according to Hach 8166.

Sulfide and Ammonia. VOA vials for the analysis of sulfide and ammonia were placed upright to allow sediment to settle prior to removing sub-samples for analysis. Sulfide was measured by Hach method 8131, NH₃-N by Hach method 8155. Measurements were made using a Hach Spectrophotometer. Samples were not diluted for analysis.

 H_2 from Aqueous Samples. Serum bottles, 160 ml, provided pre-filled with H₂-free gas, were filled with ground water during field sampling and sealed with Teflon-coated gray rubber septa affixed with crimped caps. At BCI, using a two-needle procedure, 10 ml of water were removed while adding 10 cc of Argon, then the bottle was shaken for 20 min to allow H₂ to transfer to the headspace. A headspace sample of 5cc was removed from the 160 ml serum bottle (while injecting 5 cc degassed water) and injected directly into the H₂ Analyzer. A response factor for H₂ was obtained by analyzing a 5 ppm H₂ gas standard. The H₂ concentration originally in the ground water was calculated from the measured headspace concentration assuming a Henry's constant of 50.3. A lab blank was subtracted from the sample results prior to entering in data table.

Sample ID			4767	4768	4769	MW-2E	MW-2F	MW-3D-(r)	MW-2F [MW-3D-(r)]MW-3D-(r)-dun MW-5A	MW-5A	MW-6.1
Date Sampled			5/21/2008		5/21/2008 5/21/2008 5/21/2008 5/21/2008	5/21/2008	5/21/2008	5/21/2008	5/21/2008	5/22/2008 5/21/2008	5/21/2008
Date Received			5/23/2008	5/23/2008		5/23/2008 5/23/2008 5/23/2008	5/23/2008	5/23/2008	5/23/2008	5/23/2008 5/23/2008	5/23/2008
Dissolved Gas, water matrix,											
Headspace GC, EPA meth 5021A											
Dale Analyzed			5/23/2008	5/23/2008 5/27/2008	5/27/2008	5/23/2008	572372008	5/23/2008	2/28/2008	5/27/2008	X002/12/2
Analyst	Det. Lun.	Units	t.s.	1.a.	1.a.	t.s.	t.s.	t.s.	1.a.	1.a.	1.8.
Methane	0.2	µg/L	4.4	0.2	0.2	2.9	4.6	98	107	9.2	16
Ethane	0.2	μg/L	0.3	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	0.2	< 0.2
Ethanethiol	0.07	mg/L	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07
Argon	2	mg/L	< 2	< 2	< 2	<2	< 2	2	1.6 J	< 2	< 2
Nitrogen	7	mg/L	34	15	15	33	36	34	28	25	24
Carbon monoxide	0.5	nıg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon dioxide	0.2	mg/L	16	0.4	0.4	17	17	20	20	~	20
Chemical Tests										,	
Dates Analyzed											
Analysts			1.a./c.m	1.a./c.m	1.a./c.m	1.a./c.m	1.a./c.m	1.a./c.m		1.a./c.m	1.a./c.m
NH3-N Hach 8155	0.02	mg/L	0.03	< 0.02	< 0.02	< 0.02	< 0.02	0.06		0.10	0.02
sulfide Hach 8131	0.003	mg/L	0.004	< 0.003	< 0.003	0.007	0.005	0.008		0.003	0.010
Dissolved O2 Hach 8166		mg/L	n.a.	8.3	9.8	n.a.	n.a.	n.a.		11.8.	n.a.
Dissolved H2, water matrix											
Reduction gas analyzer											
Date Analyzed			5/23/2008	5/23/2008	5/23/2008	5/23/2008	5/23/2008 5/23/2008	5/23/2008		5/23/2008	5/23/2008
Analyst			t.s.	t.s.	t.s.	t.s.	L.S.	t.s.		t.s.	t.s.
Sample Dilution	Det. Lim.		I	1	1	1	1	1		1	-
Sample Result	0.3	Мп	1.6	4.9	2.8	1.1	0.9	0.4		1.0	0.5
Field DO			2.92	n.a.	n.a.	2.8	2.92	2 98		1 74	4 45

May 30, 2008	

Sample ID			ST-3	ST-5	TW-2B	TW-2B-dup	TW-5A	TW-6A	TW-6B	TW-8A	Trin RI
Date Sampled			5/21/2008	5/21/2008	5/21/2008	5/21/2008		5/22/2008 5/21/2008 5/21/2008 5/22/2008	5/21/2008	5/22/2008	prep 5/15
Date Received			5/23/2008	5/23/2008 5/23/2008 5/23/2008	5/23/2008	5/23/2008	5/23/2008	5/23/2008 5/23/2008	5/23/2008	5/23/2008	5/23/2008
Dissolved Gas, water matrix,											
Headspace GC, EPA meth 5021A											
Date Analyzed				5/23/2008 5/23/2008 5/23/2008	5/23/2008	5/27/2008	5/27/2008	5/27/2008 5/27/2008 5/27/2008 5/23/2008 5/28/2008	2/27/2008	5/23/2008	5/28/2008
Analyst	<u>Det. Lım.</u>	<u>Units</u>	t.s.	t.s.	t.s.	1.a.	1.a.	1.a.	1.a.	t.s.	1.a.
Methane	0.2	μg/L	6.9	6.1	75	70	0.5	95	0.5	31	0.6
Ethane	0.2	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Ethanethiol	0.07	mg/L	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07
Argon	2	mg/L	< 2	< 2	< 2	< 2	< 2	< 2	< 2	<2	n.a.
Nitrogen	7	mg/L	33	32	33	29	34	24	24	33	21
Carbon monoxide	0.5	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon dioxide	0.2	mg/L	23	21	16	15	32	49	20	17	< 0.5
Chemical Tests											
Dates Analyzed											
Analysts			1.a./c.m	1.a./c.m	1.a./c.m		1.a./c.m	1.a./c.m	1.a./c.m	1.a./c.m	1.a./c.tn
NH3-N Hach 8155	0.02	mg/L	< 0.02	0.08	0.03		0.10	0.04	0.52	0.03	
sulfide Hach 8131	0.003	mg/L	0.007	< 0.003	0.014		0.005	0.005	< 0.003	0.009	n a
Dissolved O2 Hach 8166		mg/L	n.a.	n.a.	n.a.		n.a.	11.a.	n.a.	n.a	
Dissolved H2, water matrix											
Reduction gas analyzer											
Date Analyzed			5/23/2008	5/23/2008 5/23/2008 5/23/2008	5/23/2008		5/23/2008	5/23/2008	5/23/2008	5/23/2008	
Analyst			t.s.	t.s.	t.s.		t.s.		t.s.	t.s.	
Sample Dilution	Det. Lim.		1	1	1		1	1	1	-	
Sample Result	0.3	Mu	1.3	<2	0.8		0.9	0.8	1.2	0.7	
Field DO			4.01	2.62	2.58		1.81	1.37	4.98	1.97	

fioremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail MFindlay@bciLabs com

Project Name: Locus wells Sampling Location: <u>SCVTA</u> PO 30-12342 Sampled by: <u>HANK CASTRO</u>

Contact: John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble.

each set: 2 voas, HCI-preserved: methane, ethane, ethanethiol
2 voas, no preservative: Argon, O₂, CO, CO₂, N₂ *I* voa, no preservative: dissolved sulfide *I* voa, no preservative: NH₃-N *I* 160-ml serum bottle: H₂ analyses
2 4-oz jars: dissolved O₂

RETURN CRIMPER & PLIERS TO BCI

Well Number	Date	VOA	rcv	VOA Vials	rcv	160 ml	rcv	4 oz jars	rcv
		Vials		No		SB		for D.O.	
		HCI-		Preserv		(contain			
		preserved				Argon)			
TW-2B	5/21/08	- 2	*~	4, 1	1001	1	ノ	2	~~
MW-2E	5/21/01	\$ 2	$\sqrt{2}$	4.	1,11	1	/	2	22
MN-2F	5/21/09	2	رر	4	vvv./	1	/	2	VV
ST-3	5/21/09		N	4 v ,	1001	1	· .	2	~~
TW-84	5/2/10	2	vV	4	JJ]/	1	V	2	レレ
trip blanks		1	\checkmark	2	vv				
Return crimp	per to B	CI							

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY; however, <u>No Loose Ice – bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite NO Saturday Delivery

D date Relinquished by Received by

mediation Consulting Inc Farendon Street Watertown MA 02472 One 617-923-0976 fax 617-923-0959 mail: MFindlay@bciLabs.com

Ś

project Name: Locus wells Sampling Location: <u>SCVTA</u>

PO 30-12342 Sampled by: Hank Castro

Contact: John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely No air bubble each set: 2 voas, HCI-preserved: methane, ethane, ethanethiol 50-(A 2 voas, no preservative: Argon, O₂, CO, CO₂, N₂ = 502(A 1 voa, no preservative: dissolved sulfide ~ HACH \$(3) 1 voa, no preservative: NH₃-N ~ HACH \$(55) 1 160-ml serum bottle: H₂ analyses 2 4-oz jars: dissolved O₂

RETURN CRIMPER & PLIERS TO BCI

Well Number	Date	VOA	tev	VOA Vials	гсл	160 ml	rev	4 oz jars	ICV
		Vials		No		SB		for D O	
		HCI-		Preserv		(contain			
		preserved				Argon)			
TW-5A	5/21/08	. 2	۰·',	47200		1	~	2	~~
MW-SA	ľ	2	11	4000		1	/	2	~~~
TW-6A		2	w,	40001		Ē	V	2	~~~
TW-68		2	~~	4 2000		1	~	2	15
MW-6J	\downarrow	2	V	4 111		1		2	~~
							•		
trip blanks									
Return crim	per to B	CI					•		

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St. Watertown MA 02472

Shipping Conditions:

ICE NECESSARY: however, <u>No Loose Ice – bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite NO Saturday Delivery

Relinquished by , date date Received by

Bioremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail_MFindlay@bciLabs.com

Project Name: Locus wells Sampling Location: <u>ScVTA</u>

PO 30-12342 Sampled by: Hunk (astw

Contact: John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble.

each set: 2 voas, HCl-preserved: methane, ethane, ethanethiol

2 voas, no preservative: Argon, O₂, CO, CO₂, N₂

I voa, no preservative: dissolved sulfide

I voa, no preservative: NH3-N

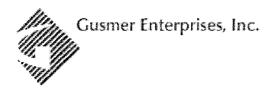
I 160-ml serum bottle: H₂ analyses

2 4-oz jars: dissolved O₂

RETURN CRIMPER & PLIERS TO BCI

Well Number	Date	VOA	rcv	VOA Vials	rcv	160 ml	rcv	4 oz jars	rcv
		Vials		No		SB		for D.O.	
		HCl-		Preserv		(contain			
		preserved		/		Argon)			
MW-3P(r)	5/21/08	· 2	$\sqrt{2}$	4	VV VV	1	/	2	~~
ST-5		2	VV	4	1551	1	<	2	レン
4747		2	1	4	1300	1	/	2	レレ
4768		2		4	VJJJ	1	~	2	11
4769	\downarrow	2	vV	4	1005	1	~	2	~~
trip blanks									
Return crimp	per to B	CI							

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02472


Shipping Conditions:

ICE NECESSARY; however, No Loose Ice – bag ice in leak-proof bags

Do not allow ice to contact groundwater samples

Fed Ex Priority Overnite. NO Saturday Delivery

date Relinquished by date Received by

Locus Technologies J. Wesley Hawthorne 299 Fairchild Drive Mountain View, CA 94043 Account Name: File name: LOC 8143

Phone: 1 650 960 1640 Fax: 1 650 960 0739 Email: hawthornej@locustec.com

ANALYSIS REPORT

Date Submitted: 5/23/08

Report Date: 5/27/08

Sample	Test	Result	
TW-2B	Free SO2 (Skalar) Total SO2 (Skalar)		
MW-2E	Free SO2 (Skalar) Total SO2 (Skalar)		
MW-2F	Free SO2 (Skalar) Total SO2 (Skalar)		
ST-3	Free SO2 (Skalar) Total SO2 (Skalar)		
TW-8A	Free SO2 (Skalar) Total SO2 (Skalar)		
MW-3D(r)	Free SO2 (Skalar) Total SO2 (Skalar)		
ST-5	Free SO2 (Skalar) Total SO2 (Skalar)		
4767	Free SO2 (Skalar) Total SO2 (Skalar)		
4768	Free SO2 (Skalar) Total SO2 (Skalar)		
4769	Free SO2 (Skalar) Total SO2 (Skalar)		
Results apply to samp	les as received.	1 of 2	6/2/2008 11:18 AM
81 M st. Fresno, CA 93721 Tal: 550 485 2602	640 Airpark Rd., Suite D Napa, CA 94558	1165 Globe Ave. Mountainside, NJ 07092	1401 Ware St. Waupaca, WI 54981

81 M st.	640 Airpark Rd., Suite D	1165 Globe Ave.	1401 Ware St.
Fresno, CA 93721	Napa, CA 94558	Mountainside, NJ 07092	Waupaca, WI 54981
Tel: 559 485 2692	Tel: 707 224 7903	Tel: 908 301 1811	Tel: 715 258 5525
Fax: 559 485 4254	Fax: 707 255 2019	Fax: 908 301 1812	Fax: 715 258 8488

"Service With Knowledge" ® Since 1924

Gusmer Enterprises, Inc.

Signed:

TW-5A	Free SO2 (Skalar) Total SO2 (Skalar)	< 5 ppm < 5 ppm
MW-5A	Free SO2 (Skalar) Total SO2 (Skalar)	< 5 ppm < 5 ppm
TW-6A	Free SO2 (Skalar) Total SO2 (Skalar)	< 5 ppm < 5 ppm
TW-6B	Free SO2 (Skalar) Total SO2 (Skalar)	< 5 ppm < 5 ppm
MW-6J	Free SO2 (Skalar) Total SO2 (Skalar)	< 5 ppm < 5 ppm

David A. Jeffrey, Enologist

Results apply to samples as received.

81 M st. Fresno, CA 93721 Tel: 559 485 2692 Fax: 559 485 4254 640 Airpark Rd., Suite D Napa, CA 94558 Tel: 707 224 7903 Fax: 707 255 2019 1165 Globe Ave. Mountainside, NJ 07092 Tel: 908 301 1811 Fax: 908 301 1812

2 of 2 6/2/2008 11:18 AM

1401 Ware St. Waupaca, WI 54981 Tel: 715 258 5525 Fax: 715 258 8488

"Service With Knowledge" ® Since 1924

ATTACHMENT D

Laboratory Reports

Phase 2 Sampling

H28-006 HMM-BECHTEL DISSOLVED GASHUNT - 2008-09-16 REPORT DOC (15-Sep-08)

Analytical Results

Groundwater Samples from SCVTA Site

Sampled 7/22 & 7/23/08 Received 7/24/08 Analyzed 7/24/08 through 7/29/08

7/31/08

Prepared for:

John Hawthorne hawthornej@locustec.com 650-960-1640 Locus Technologies 299 Fairchild Drive Mountain View CA 94043

Prepared by Bioremediation Consulting Inc 39 Clarendon St, Watertown MA 02472 ph 617-923-0976 fx -0959 bioremediation@bciLabs.com

Groundwater Samples from SCVTA Site

Sampled 7/22 & 7/23/'08 Received 7/24/'08 Analyzed 7/24 through 7/29/'08

Prepared for John Hawthorne, Locus Technologies

7/31/'08

Dissolved Gasses by Gas Chromatography. Dissolved gasses were analyzed by according to EPA Method 5021A. For the analysis of N_2 and CO_2 , vials (40 ml) without preservative were prepared for analysis by replacing 5 ml of groundwater with 5 cc Helium, using a double needle procedure through the septum, then shaken for 20 minutes to allow volatilization of gasses into the headspace. For the analysis of methane, vials with HCl as preservative were prepared for analysis in the same manner. Headspace samples of 100 μ L were removed by syringe and injected directly into an HP 5890 gas chromatograph.

 N_2 and CO_2 were detected by Thermal Conductivity Detector. Methane was detected by Flame Ionization Detector.

Standards were prepared and analyzed in the same manner as samples. Compounds were identified by retention time, and quantitation was conducted using ChemStation software.

Sulfide. VOA vials, unpreserved, were placed upright to allow sediment to settle prior to removing sub-samples for analysis. Samples were analyzed within one day of recepit by BCI. Sulfide was measured by Hach method 8131 and measurements were made using a Hach Spectrophotometer.

Bioremediation Consulting

Locus SCVTA Well Samples

July 31, 2008	

Sample ID			4783	4784	4785	4786	MW-1	MW-5B	MW-6D
Date Sampled			7/22/2008	7/22/2008	7/23/2008	7/23/2008	7/22/2008	7/22/2008	7/23/2008
Date Received			7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008
Dissolved Gas, water matrix,	•								
Headspace GC, EPA meth 5021A									
Date Analyzed			7/28/2008	7/25/2008	7/25/2008	7/29/2008	7/24/2008	7/24/2008	7/25/2008
Analyst	Det. Lim.	<u>Units</u>	t.s.	t.s.	t.s.	t.s.	t.s.	t.s.	t.s.
Methane	0.2	μg/L	35	0.7	1.8	1.0	0.5	0.9	1.9
Nitrogen	7	mg/L	27	15	22	18	17	28	21.
Carbon dioxide	0.2	mg/L	23	< 0.2	99	< 0.2	1.5	37	72
Chemical Test									
Dates Analyzed			7/24/2008	7/25/2008	7/25/2008	7/24/2008	7/24/2008	7/24/2008	7/25/2008
Analysts			i.a.	i.a.	i.a.	i.a.	i.a.	i.a.	i.a.
sulfide Hach 8131	0.01	mg/L	0.012	< 0.01	0.017	< 0.01	0.019	< 0.01	0.010
Sample ID			MW-2C	MW-2G	MW-3C	MW-4A	MW-4A lab dup	ST-1	ST-2
Date Sampled			7/23/2008	7/22/2008	7/22/2008	7/23/2008	7/23/2008	7/23/2008	7/23/2008
Date Received			7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008
Dissolved Gas, water matrix,									
Headspace GC, EPA meth 5021A									
Date Analyzed			7/29/2008	7/28/2008	7/24/2008	7/25/2008	7/25/2008	7/29/2008	7/29/2008
Analyst	Det. Lim.	Units	t.s.	t.s.	t.s.	t.s.	t.s.	t.s.	t.s.
Methane	0.2	μg/L	7.7	39	9.6	8.3	8.2	2.0	31
Nitrogen	7	mg/L	32	26	35	24	24	28	22
Carbon dioxide	0.2	mg/L	< 0.2	24	22	< 0.2	< 0.2	38	3.7
Chemical Test									
Dates Analyzed			7/24/2008	7/24/2008	7/24/2008	7/25/2008		7/25/2008	7/24/2008
Analysts			i.a.	i.a.	i.a.	i.a.		i.a.	i.a.
sulfide Hach 8131	0.01	mg/L	< 0.01	0.028	< 0.01	0.033		< 0.01	0.017

Bioremediation Consulting

Locus SCVTA Well Samples

2008
31
July

Sample ID			10-WN	NW-05	9-MN	ST-10	ST-11	ST-12	ST-13	Trin BI
Date Sampled			7/23/2008	7/22/2008	7/23/2008	7/23/2008	7/23/2008	7/22/2008	7/23/2008	prep 7/16
Date Received			7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008	7/24/2008
Dissolved Gas, water matrix,										
Headspace GC, EPA meth 5021A								and the second second second second second second second second second second second second second second second		
Date Analyzed			7/29/2008	7/24/2008	7/29/2008	7/25/2008	7/25/2008	7/24/2008	7/29/2008	7/29/2008
Analyst	Det. Lim.	Units	t.s.	t.s.	t.s.	t.s.	t.s.	t.s.	t.s.	t.s.
Methane	0.2	µg/L	2.0	2.1	2.1	0.1	0.4	1.0	1.0	0.4
Nitrogen	7	mg/L	35	20	26	27	27	23	27	29
Carbon dioxide	0.2	mg/L	11	2.7	12	17	17	110	56	0.7
Chemical Test										
Dates Analyzed			7/25/2008	7/24 & 7/25	7/25/2008	7/25/2008	7/25/2008	7/24/2008	7/24/2008	7/25/2008
Analysts			i.a.	i.a.	i.a.	i.a.	i.a.	i.a.	i.a.	i.a.
sulfide Hach 8131	0.01	mg/L	0.025	< 0.11 (1)	0.011	< 0.01	< 0.01	< 0.01	0.015	< 0.01
			(1) interferen	(1) interference from turbidity	dity;					
			Hach turbidit	Hach turbidity interference correction	e correction					
			procedure unsuccessful	successful						
Samule ID			ST-7	ST-8	ST-8 lab dun					
Date Sampled			7/22/2008	7/23/2008	7/23/2008					
Date Received			7/24/2008	7/24/2008	7/24/2008					
Dissolved Gas, water matrix,										
Headspace GC, EPA meth 5021A										
Date Analyzed			7/24/2008	7/28/2008	7/28/2008					
Analyst	Det. Lim.	Units	t.s.	t.s.	t.s.					
Methane	0.2	µg/L	1.5	1.7	1.3					
Nitrogen	7	mg/L	31	37	37					
Carbon dioxide	0.2	mg/L	29	31	31					
Chemical Test										
Dates Analyzed			7/24/2008	7/25/2008						
Analysts			i.a.	i.a.						
sulfide Hach 8131	0.01	mg/L	< 0.01	< 0.01						

Clarendon Street Watertown MA 02472 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail: MFindlay@bciLabs com

Sampling Location: SCVTA

Project Name: Locus wells Sampling Locatio PO 30-12362 /

Sampled by:

H. Costro H. Murphy

Contact:

John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble. <u>each set</u>: 2 voas, HCl-preserved: methane 2 voas, no preservative: CO₂, N₂ *I* voa, no preservative: dissolved sulfide

Well Number	Date	VOA Vials	rev	VOA Vials	rcv
		HC1-preserved		No	
				Preserv	
ST-7	7/22	2	2	3	3
MW-5B	7/22	2	2	3	3
NW-05	7/22	2	2	3	3
ST-12	7/22	2	2	3	3
MW=1	7/22	2	2	3	3
MW-3C	7/22	2	2	3	3
MW-26	7/22	2	2	3	3
4783	7/22	2	2	3	3
4784	722	2	2	3	Ĩ\$
trip blanks		2	2	2	2

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY: however,

<u>No Loose Ice</u> – <u>bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite. NO Saturday Delivery

Relinquished by <u>Idesled</u> date <u>7258</u> Received by <u>Im Smythn</u> date <u>7/24/08</u>

foremediation Consulting Inc 39 Clarendon Street Watertown MA 02472 phone 617-923-0976 fax 617-923-0959 e-mail MFindlay@bciLabs.com

Project Name: Locus wells Sampling Location: SCVTA

Sampled by:

ed by: H. Costa T. Murply

Contact:

John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble. <u>each set</u>: 2 voas, HCI-preserved: methane 2 voas, no preservative: CO₂, N₂ *I* voa. no preservative: dissolved sulfide

Well Number	Date	VOA Vials	rev	VOA Vials	rcv]
		HCI-préserved		No		
-				Preserv -		
MW-60.	7/23	2	2	3	3	+2 +3(3)
57-11	7/23	2	2	3	3	
17-10	7/27	2	2	3	3	
MW-4	7/25	2	2	3	3	MW4A(F)
NW-6	7/53	2	2	3	3	
27-8	7/23	2 ·	2	3	3	
57-1	7/23	2	2	3	3	
NW-01	7/23	2	2	3	3	
NW-01 MW-2C	7/23	2	2	3	3	
trip blanks	7/23					

SHIP TO: Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY: however, <u>No Loose Ice</u> – <u>bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite. NO Saturday Delivery

Relinquished by <u>Negland</u> date <u>7-23-08</u> Received by <u>Im Amph</u> date <u>7-24-08</u>

e-mail MFindlay@bciLabs.com

Sampling Location: 50/7A Project Name: Locus wells

Sampled by:

PO 30-12362 ed by: <u>H. Costo T. Murphy</u>

Contact:

John Hawthorne hawthornej@locustec.com pH: 650-960-1640 fax: 650-960-0739

Instructions: Fill containers completely. No air bubble. each set: 2 voas, HCl-preserved: methane 2 voas, no preservative: CO₂, N₂ *I* voa, no preservative: dissolved sulfide

Well Number	Date	VOA Vials	FCV	VOA Vials	rev
		HC1-preserved		No	
				Preserv	
57-2	7/23	2	2	3	2
ST-13	7/23	2	2	3	3
4785	7/23	2	0	3	0
4.786	7/23	2	2	3	2
		2		3	
-		2		3	
		2	!	3	
		2		3.	
trip blanks					

dup of MW6D- 104

SHIP TO:Bioremediation Consulting Inc (phone 617-923-0976)39 Clarendon St Watertown MA 02472

Shipping Conditions:

ICE NECESSARY: however,

<u>No Loose Ice</u> – <u>bag ice in leak-proof bags</u> <u>Do not allow ice to contact groundwater samples</u>

Fed Ex Priority Overnite. NO Saturday Delivery

Call or fax BCI at time of shipping and report the tracking number

Relinquished by The Castof date 7-23-05 Received by ImAnghan date 7-24-08

2

Appendix 11: Soil Abrasion Test Results

🕥 SIN	ITEF		
SINTEF Building a Infrastructure Rock and Soil Mech Address: NO-7465 Tron Location: R. Birkela Telephone: +47 73 5 Fax: +47 73 5	nd nanics dheim, NORWAY ands vei 3 9 46 00 9 47 78 aringen 7a 9 46 00	HMM/Bechtel SVRT Project Hynix Building 3331 North First Street (Bldg. A) San Jose, CA 95134 USA CLIENTS REF Dinesh C. Mathur/Abhishek Jain SAMPLE MATERIAL Four soil samples	
Enterprise No: NO 948 (007 029 MVA	SCOPE OF WORK SAT - Soil Abrasion Testing, Atterbergs Limits	
REPORT/JOURNAL NO. CI	ASSIFICATION	PERSON RESPONSIBLE (NAME, SIGN.)	
08043 IG C	confidential	Pål Drevland Jakobsen	
PROJECT NO. D	ATE	DISCIPLINARY RESPONSIBLE (NAME, SIGN.)	NO. OF PAGES
3C0097.00 0	2.10.08	Filip Dahl	15

DETERMINATION OF ABRASIVITY PROPERTIES OF FOUR SOIL SAMPLES FROM THE SILICON VALLEY RAPID TRANSPORT (SVRT) PROJECT

SINTEF Building and Infrastructure, Rock and Soil Mechanics received four samples, consisting of soil, from the Client on August 11, 2008.

The samples were analysed by use of the Soil Abrasion Test (SAT) in order to determine abrasivity properties. The testing was performed in accordance with Nilsen, B., Dahl, F., Holzhäuser, J. and Raleigh, P. (2007): "New test methodology for estimating the abrasiveness of soils for TBM tunnelling", RETC Proceedings, 104 - 116.

One of the samples was additionally analysed according to the Norwegian Standards NS 8001 and NS 8003 in order to determine Atterbergs Limits.

The laboratory testing was conducted during the period from August 12 to September 9, 2008.

CONTENT

Table of samples of soils received for testing	Page	3
Test results	Page	4
Methodology and procedure for the Soil Abrasion Test (SAT)	Page	5 - 9
Comments and remarks on SAT testing and test results	Page	10 - 11
Photographs of the samples prior to preparation	Page	12 - 15

TABLE OF SAMPLES OF SOIL RECEIVED FOR TESTING

(Given by the Client)

Sample No.	Boring Number (Sample I.D.)	Soil type	Depth Interval (ft)
1	BH-12/S-6	CL	55 - 57.5
2	BH-31/S-4	SC	53.5 - 56
3	MW-61	SP-SM	69 - 70
4	MW-8B	GW	25.5 - 28

3

47

1211

TEST RESULTS

Basis SAT: "New test methodology for estimating the abrasiveness of soils for TBM tunnelling", RETC 2007 Proceedings, 104 - 116.

Basis Atterbergs Limits: NS 8001 and NS 8003

Sample No. (given by the Client)	1	2	3	4
Sample ID. (given by the Client)	BH-12/S-6	BH-31/S-4	MW-61	MW-8B
Soil Abrasion Test				1
SAT Test 1	1	22	21	18
SAT Test 2	0	24	25	20
SAT Test 3		and the second	23	16
SAT (Mean)	0.5	23.0	23.0	18.0
Percentage of the total sample < 4.0 mm after preparation	100.0 %	92.6 %	99.1 %	91.1 %
Percentage of the total sample < 1.0 mm after preparation	100.0 %	81.7 %	84.7 %	51.9 %
Atterbergs Limits				1
WI	63.9 %	14	-	4
Wp	30.1 %			
Ip	33.8 %			

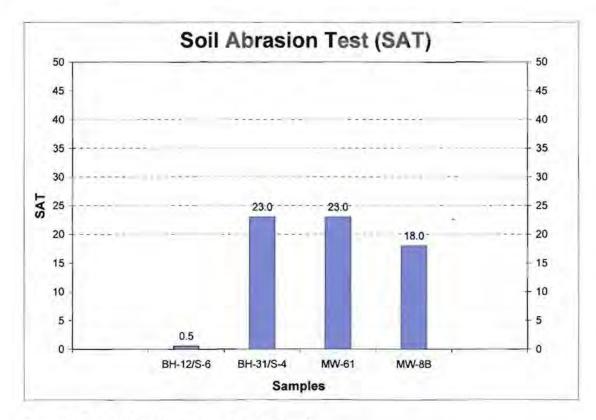


Figure 1. The SAT results presented as bar graph.

METHODOLOGY AND TEST PROCEDURE FOR THE SOIL ABRASION TEST (SAT)

The abrasivity of the received soil samples was tested by use of the Soil Abrasion Test (SAT). The Soil Abrasion Test is a further development of the existing Abrasion Value (AV) and Abrasion Value Cutter Steel (AVS) tests for rock. Compared to the AVS test, only one detail has been changed: instead of crushed rock powder <1 mm, a sieved soil sample with grain size < 4 mm is used in the SAT test. The initial SAT tests were performed with an upper grain size limit of 1 mm (Nilsen et al. 2006a to c), but this has now by a modification of the original test pieces, as shown in Figure 2 and 3, been increased to 4 mm (Nilsen et al. RETC 2007).

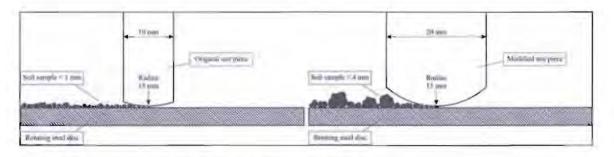


Figure 2. The original (left) and modified (right) SAT test pieces.

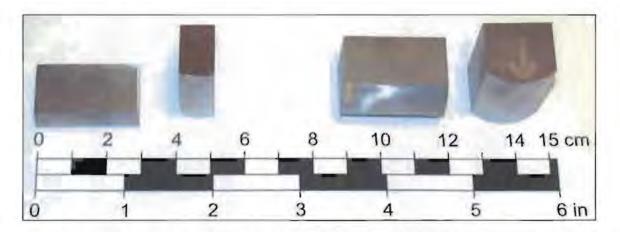


Figure 3. Photo showing two original AVS (to the left) and two modified SAT test pieces (to the right).

Preparation of soil samples

To enable comparison with previous test results and to take advantage of the extensive NTNU database, it is considered important to follow the standardized NTNU abrasion test procedures as closely as possible. The following preparation of soil samples is therefore recommended:

In order to reduce or avoid changes of the original properties, soil samples should be dried gently in a ventilated oven at 30° C for 2 - 3 days.

The following techniques should be used after drying in order to disintegrate and separate the particles for the abrasion powder:

- 1. Disintegration with a soft hammer (plastic head).
- 2. Sieving with steel balls as gentle milling/disintegration aid. The sample material is sieved on 4.0 mm and 1.0 mm sieves. 20 small steel balls with individual weight 14 g and diameter 15 mm are added to each sieve.
- Crushing by use of jaw crushers (type and opening depending on the size of the lumps): Initial disintegration of samples which contains very hard lumps of cohesive material after drying. Crushing of intact grains should be avoided.

The disintegrated material should be sieved on 1 mm and 4 mm in order to verify the grain size distribution after preparation. SAT testing of the sieved fraction < 4.0 mm is then carried out according to the same procedures as for AVS testing (see pages 8 - 9) and the SAT value is calculated as the mean value of the measured weight loss in mg (to be accepted, the results of 2 - 4 parallel tests should not deviate by more than 5 units).

SAT testing in progress is illustrated in Figure 5 and examples of the appearance of test pieces after completed tests are shown in Figure 6.

Figure 4. Overview photo showing the general layout of the SAT rig.

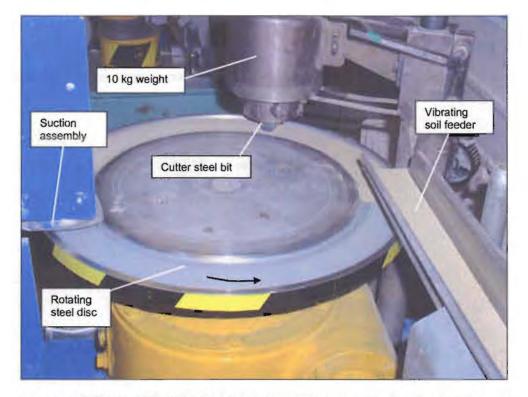


Figure 5. Close up photo taken during testing. The test piece which is clamped under the 10 kg weight is running on sample material supplied to the rotating disc by the vibrating feeder.

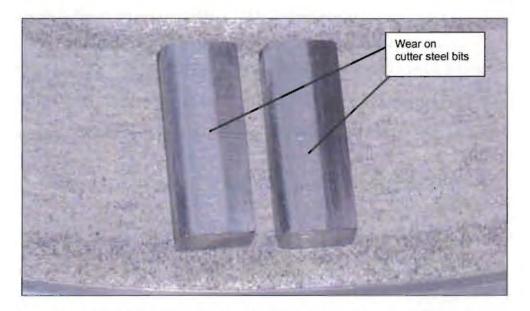


Figure 6. Abrasion of test pieces (L = 30 mm) after Soil Abrasion Test (SAT) (minimum 2 test runs per soil sample).

Test procedures for determination of Abrasion Value (AV), Abrasion Value Cutter Steel (AVS) and Soil Abrasion Test (SAT)

An outline of the principle for the Abrasion tests and specification of measurements for the test bits are given in Figure 7 and Figure 1 (modified SAT test pieces).

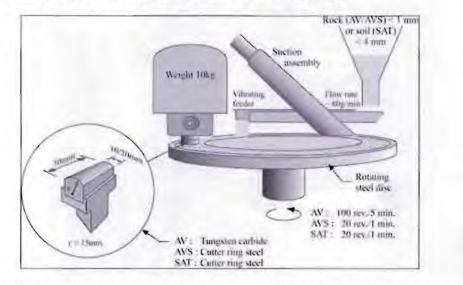


Figure 7. Abrasion Value, Abrasion Value Cutter Steel and Soil Abrasion tests.

Abrasion Value (AV)

Prepare 2 - 4 numbered tungsten carbide test pieces by grinding them to the specified dimensions.

Note:

Grinding of the test surface is a critical step and extra care is important in order to avoid overheating.

Visually examine the test surface and make sure that it is smooth and straight after grinding.

Polish the edges of the test surface by a hone and ensure that the test bit is absolutely clean and dry before weighing.

Weigh the test piece separately to the nearest 0.001g and note the number of the test piece and corresponding weight.

Secure a test piece to the weight and place it gently on the steel disc (see Figure 5).

Verify that the test surface is horizontally aligned with the steel disc, and if necessary, adjust the clamping of the test piece and the suspension of the weight.

Start the test and run it for 5 minutes, i.e. 100 revolutions. Verify whether the amount of abrasion powder fed onto the steel disc is sufficient or excessive. Adjust the vibrating feeder in order to avoid steel against steel abrasion or a pile of powder in front of the test piece. Make sure that the test piece runs in the middle of the track and that a single point of it does not bear directly against the steel disc.

Loosen the test piece from the weight and rinse and dry thoroughly before weighing.

Note the weight and calculate the weight loss in mg.

SINTEF

Run 2 - 4 parallel tests. The results shall not deviate by more than 5 units.

The Abrasion Value (AV) is calculated as the mean value of the measured weight loss in milligrams after 5 minutes testing time, i.e. 100 revolutions.

Abrasion Value Cutter Steel (AVS) and Soil Abrasion Test (SAT)

Prepare 2 - 4 numbered cutter ring test pieces by grinding them to the specified dimensions.

Follow the steps given for Abrasion Value (AV), apart from the testing time.

Note:

The testing time for the Abrasion Value Cutter Steel (AVS) and Soil Abrasion Test (SAT) are 1 min, i.e. 20 revolutions.

The Abrasion Value Cutter Steel (AVS) and Soil Abrasion Test (SAT) are calculated as the mean value of the measured weight loss in milligrams after 1 minute testing time, i.e. 20 revolutions.

References

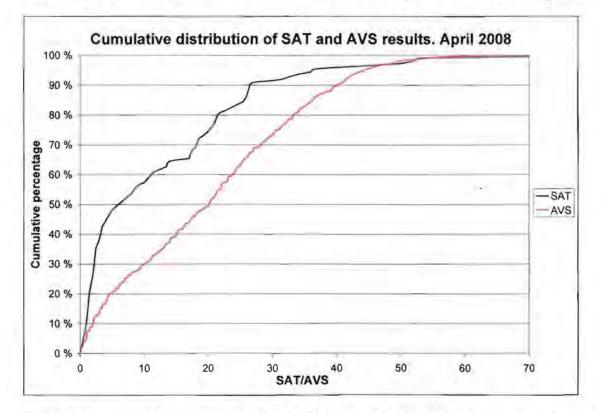
Nilsen, B., Dahl, F., Holzhäuser, J., Raleigh, P. (2006a): Abrasivity of soils in TBM tunnelling. Tunnels & Tunnelling International, March 2006, 36 - 38.

Nilsen, B., Dahl, F., Holzhäuser, J., Raleigh, P. (2006b): Abrasivity testing for rock and soils. Tunnels & Tunnelling International, April 2006, 47 - 49.

Nilsen, B., Dahl, F., Holzhäuser, J., Raleigh, P. (2006c): SAT: NTNU's new soil abrasion test. Tunnels & Tunnelling International, May 2006, 43 - 45.

Nilsen, B., Dahl, F., Holzhäuser, J., Raleigh, P. (2007): New test methodology for estimating the abrasiveness of soils for TBM tunneling. RETC 2007 Proceedings, 104 - 116.

COMMENTS AND REMARKS ON SAT TESTING AND TEST RESULTS


The percentages of sample material < 1.0 mm and < 4.0 mm which are given in the tables on page 4 are subsequent to preparation according to the given procedures.

All samples were tested on the sieved portion < 4.0 mm by use of modified SAT pieces. These samples have all an original portion of particles < 4.0 mm which constitutes higher than 90 % of the total sample volume. The SAT values for these samples can hence be regarded as very representative.

There is currently no available classification for SAT values. The SAT is however based on the AVS test and the classification (*see Table 1.*) based on the so far 1747 recorded test results from this test are useful also for describing/evaluating the abrasiveness of soils.

Category	Cumulative %	AVS	
Extremely low	0-5%	<1	
Very low	5-15%	2-3	
Low	15-35%	4-12	
Medium	35-65%	13-25	
High	65-85%	26-35	
Very high	85-95%	36-44	
Extremely high	95-100%	>44	

Tuble 1. Classification of AVS for rock samples.

A summary of soil samples tested by use of AVS and SAT per April 2008 is shown in Figure 8.

Figure 8. Cumulative distribution of AVS and SAT results. The distribution curves are based on the results from 1747 AVS and 115 SAT tests recorded so far in our database.

Tunnelling in soil is quite different from TBM hard rock excavation, and it is therefore not possible to use the SAT results directly for estimation of wear of cutter tools. There is however evidently similarities concerning cutter tool abrasion, and useful indications of the abrasiveness of soil samples could be obtained by comparing the results with the results for rock. The SAT is therefore believed to represent a great potential for describing/evaluating the abrasiveness of soils.

Based on rock testing, the content of quartz and other hard minerals like garnet and epidote have a major impact on the abrasion on the test pieces, but grain shape and grain binding may also contribute substantially.

In Table 2, AVS results for some sedimentary rocks tested at SINTEF are shown, illustrating that there is a considerable difference in AVS values between the softest (i.e. limestone) and hardest (i.e. quartzite) rocks. As also shown, the AVS value may differ significantly within one type of rock.

Rock type	Number of samples	AVS
Limestone	17	0.2 - 1.4
Shale	17	0.4 - 10
Siltstone	4	0.4 - 44
Sandstone	36	0.4 - 52
Quartzite	20	17-63

Table 2. AVS values for some sedimentary rock samples tested at SINTEF

For quality control, calibration of the test apparatus is performed at regular intervals (normally every 9 -12 months) by use of reference samples from three different rock types.

Rock type	AVS category	AVS test results ^{*)} Calibration	Acceptance range for AVS calibration
Quartzite (Metamorphic sandstone) 98% quartz	Extremely high	58	55 – 60
Trondhjemite (Tonalite) 25% quartz, 30% alkali feldspar, 15% plagioclase, 19% mica	Very high	37	35 - 40
Limestone (Jura limestone) 99% carbonate (calcite)	Extremely low	0.5	0 - 1

*) Mean value of 4 separate tests

Table 3. The most recent calibration performed by use of reference samples.

"Steel against steel" testing (running the test without abrasion powder) show no measurable abrasion on the test pieces.

PHOTOGRAPHS OF THE SAMPLES PRIOR TO PREPARATION

Sample No. 1, BH-12/S-6. SAT powder was prepared by use of soft hammer and sieving with steel balls. Of the total sample volume, 100.0 % was < 1.0 mm after preparation.

SINTEF

Sample No. 2, BH-31/S-4. SAT powder was prepared by sieving with steel balls. Of the total sample volume, 92.6 % was < 4 mm and 81.7 % was < 1.0 mm after preparation.

Sample No. 3, MW-61. SAT powder was by prepared by sieving with steel balls. Of the total sample volume, 99.1% was < 4 mm and 84.7% was < 1.0 mm after preparation.

Sample No. 4, MW-8B. SAT powder was prepared by sieving with steel balls. Of the total sample volume, 91.1% was < 4 mm and 51.9% was < 1.0 mm after preparation.

Soll Abrasion Test

ø

(SAT: NTNU's new soil abrasion test, Tunnels & Tunnelling International, May 2006, 43-45)

The University of Texas at Austin

Geotechnical Engineering Center Department of Civil, Architectural and Environmental Engineering

Project name	Silicon Valley Rapid Transit Project	Sample moisture condition	Dried in ventilated oven at 30°C for 3 days
project No.	ADM 329	Steel test piece condition	Ground and polished by bench grinder, 20 mm test piece
UT reference	2008_HMM/Bechtel_001_01	Boring number	MW-8B
Test Date	09/08/2008	Sample top depth	25.5 ft
Tested by	Seung Han Kim	USCS soil type	GP-GM

Result of Soil Abrasion Test (2 cm test piece, passing 4 mm sieve)

Portion No.	1		2	
Sample description			Soil fraction less that size particles crushed	an 4 mm with gravel to less than 4 mm
Test No.	A	В	А	В
Test piece weight loss (mg)	6	4	4	5
AVS	5		4	.5

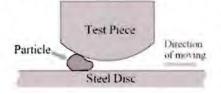
Photographs of the sample

Note:

Refer to the next page to have the result of SAT using 1 cm test pieces and samples crushed to less than 1 mm.

301 East Dean Keaton building ECJ B220	Dr. Fulvio Tonon
1 University Station C1792, Austin TX 78712 USA	Phone: +1-512-471-4929
	Fax: +1-512-471-6548

Soil Abrasion Test


(SAT: NTNU's new soil abrasion test, Tunnels & Tunnelling International, May 2006, 43-45)

The University of Texas at Austin

Geotechnical Engineering Center Department of Civil, Architectural and Environmental Engineering

Observed problem during the test when using 2 cm test piece.

Larger particles stuck between the rotating steel disc and the test piece. Smaller particles passed beneath the test piece without making contact with the test piece, leading an underestimation of the AVS. This happened several times during the 60 second test period and lasted about 2~10 seconds. To mitigate the risk of having influenced abrasion value, another set of test results, obtained using 1 cm test pieces and soils passing 1mm sieve, are provided below

Result of Soil Abrasion Test (1 cm test piece, passing 1 mm sieve)

Portion No.		1		2
Sample description			Soil fraction less that size particles crushed	an 1 mm with gravel to less than 1 mm
Test No.	A	8	A	В
Test piece weight loss (mg)	11	14	17	20
AVS	12.5		11	8.5

Photographs of the sample

301 East Dean Keaton building ECJ B220	Dr. Fulvio Tonon
1 University Station C1792, Austin TX 78712 USA	Phone: +1-512-471-4929
	Fax: +1-512-471-6548

Job #:	204104.703	Project Engineer:) AV.
Project:	SUR1- BARST	5 SAN JOSK	
Location:	SAN JOSE	Date:	7/25/08
	To: DATU	<u>1</u>	
	From: PRAV DAYAH		

Attached are the final results of the laboratory test acquired.

Signed By: Den

Q C Checked By: Lab Supervisor

Samples: BH-12/5-6 BH-31/5-4 MW-6I MW-86

PLEASE NOTE: Lab not responsible for missing data after 48 hours from the above date:

SVRT - TUNNEL SEGMENT

Project Name: SVRT - Bart to San Jose

Project Number: 213213

Assigned By: AJ

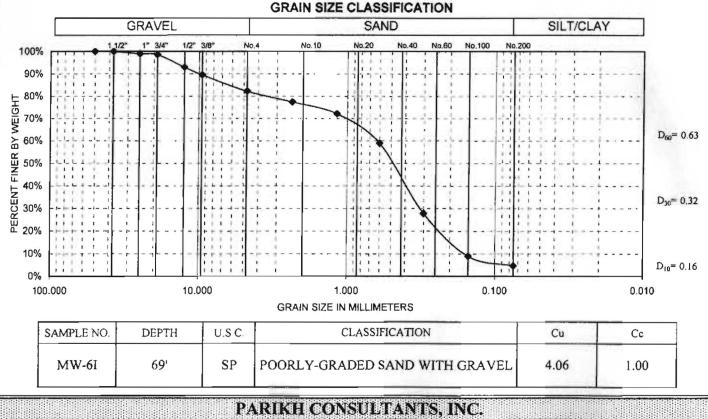
Boring Number:

Reference No .:

Page: 1 of 1

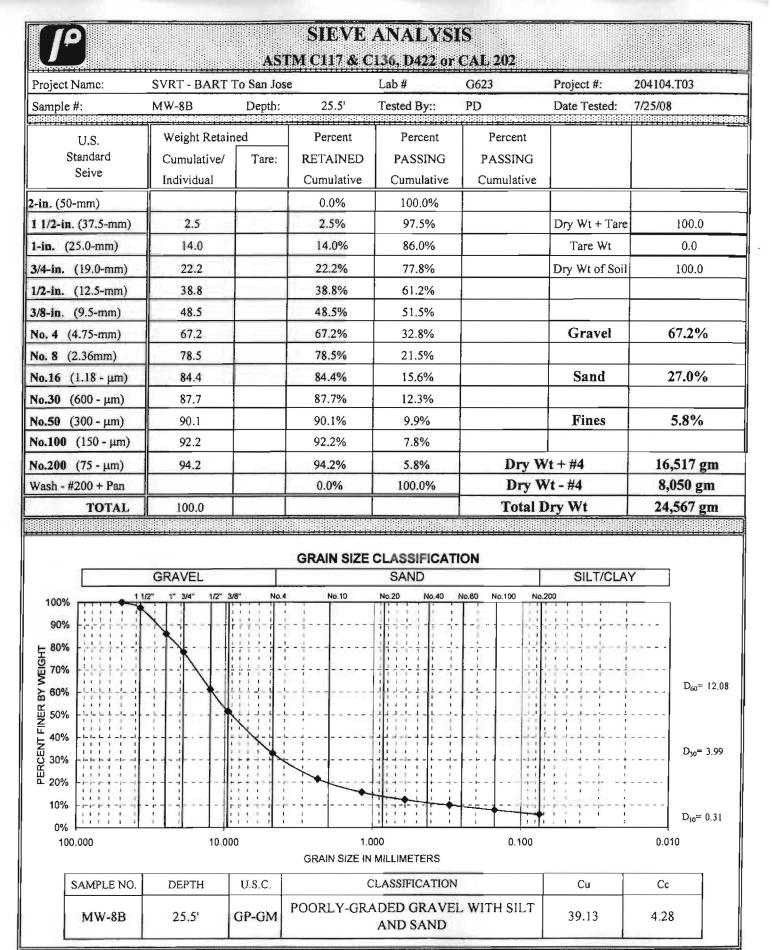
LABORATORY	TEST	ASSIGNMENT FORM
------------	------	-----------------

Date Assigned: 07/17	/2008
Date in:	Date Out
Tested By:	12.


																	-							2			_			
Sample Number	Boring Number	Sample type	Sol Type	Depth Interval (R)	U.C., Moisture Content, Dry Density	Moisture Content, Dry Density	Molsture Content	Plasticily Index	Sleve Analysis: 2"-#200	Sieve Analysis: #4-#200	Sieve Analysis: #200	Hydrometer	μ	Sulfate	Celcium Carbonale	Laboratory Vane Shear	t-D Consolidation	1-D Consolidation (CRS)	UU Triaxial Compression	CU Triaxial Compression	CD Triaxlal Compression	Ko CU Triaxial Compression	X-Ray Rediography	Slatic Simple Shear	Cyclic Simple Shear	Strain-Controlled Cyclic Simple Shear	Resonant Column	Extrusion	Visual Classificatio Test	Special Instructions and/ or Comments
1	BH-12/S-6	SH	CL	55 - 57.5			10						Γ															\odot	m	· · · · · · · · · · · · · · · · · · ·
2	BH-31/5-4	SH	sc	55 - 57.5		†	\otimes		F	†								†—							\square	\square		R	8	Sieve Analysis performed during 35% PE phase
3	MW-61	Bucket		69 - 70.5			r	-	n				1		-	<u> </u>	-			<u>†</u>			-	1	+			0	0	
4	MW-8B	Bucket		25.5 - 28					8	-	1	t	1		1		1		<u> </u>						+				A	
	MITTOD	Duonut		20.5-20		\vdash	\vdash	<u> </u>	1 ^m				1			1			1			\square	-	$^{+}$	\top		—	-	10	
					+	+	+		1				1	-	1	1	\vdash	\vdash	<u> </u>			—		†				<u> </u>		
					-	+	+		\vdash	-	-	\vdash	1	+	1	1	+	+	†—	\vdash			-	<u>+</u> ·		-	-			
					+	+	-		+	-	-	-	-	1	1		+	+		\vdash		-		\vdash	+	+				
<u> </u>		1			+	+	1	-	+		-	-	+	1	1	\vdash	+	\vdash	\vdash	†—	\vdash			\vdash	+	+		\vdash	+	
					+	+	+	+	┢		1	-		+		1	+	-		┾──	\vdash	\vdash	+		+	+		1	-	
<u> </u>		· · · ·			+	-	1	-	\vdash	+	\vdash	<u>†</u>	-	+	†	+	╀	\vdash	+	-	\vdash	+	+		+	+		†—	\vdash	
				-	1	+	+	-	+	+	+	┢	+	+	†—	\vdash	+	+	†—	1	+	+	+	+	+	+	\vdash	\vdash	+	
		-			+-	- <u> </u>	+	-	+-	\vdash	-	+	\vdash	-	1	+	+	1-	-	+-	\vdash	-	+	+	+	-		+	┢	
		1			_	+		-	+	+	+	+ -		+	+	+-	+	+	-	+	+	+	+	+	\vdash	+	-	+	-	
-		-			+	-	+	┢──	+	+	+	+		+-	+	+	+	-	+-	+	t-	+	+	\vdash	+	+	\vdash	-	+	
		+		-	+	+	+	+	+	+	+	╈	+-	+	+	+	+	+	┢─	+	┢┈	+	-	-	+	+	\vdash	+	+	
-	1	-			+	+	+	+	+	+-	+	+	1	+	+	+	+	1-	-	-	┢	+	┢	+	+	+	+	┢	-	
-		-	-	-	+	+	+	+	+	+	-	-	+	+	+	+	+-		-	+	+	+	┢	+	+	+	-	+	+	
-		-			+	-	+	-	+	-	+	-	-	+-	+	+-	+-	+	+	+	+	+	+	+	+-	+	-	+	+	
-	_	-		-	-	+	-	+	+	-	+	-	+	+	-	+	+	+	-	+	+	+	+	+	+	-	-	-	-	
L				_	_	1			1	1	1	1	_	1	1	1	1	1		1				1		1	1	1	_	

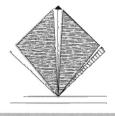
(8HRS.)

[/ °]			MOIST	TURE / 1	DENSIT			
Project #: J				5	Tested By:			age #: 1/1 7/13/08
	anan <mark>anan anan ana</mark> n				Sieve		Sieve	********
Boring #	BH-12/5-6	4	R4-31/5-4		MW-6I	0	Mw.8	ł
Sample #	1		B41-31/5-4	1				
Depth	55-57%		55-57%		69-70%	(25.5-18	
Ht of Sample	-		33 972		,		1	1
Tare #	464		641	(1	
Gross Wet Wt.			3967				1	X
Gross Dry Wt.	305.6		356.8	0	1		1	
Tare Wt.	84.9		85.0			- (-1-	
Wt. of Water	72.6		39.9	- /				
Net dry Wt.	220.7	-	271.8)-	A	1	
% Moisture	32.9		14.7				-	-
Dry Density	T		1 1 1	- (1		*
Wet Density	/	¥				-		
Pocket Pen	2.25	Y	E					-
$\phi = 2.416" f = 0.831 \qquad \gamma d = 4.8493 x Wds(q) \gamma d = Wds (q) x f L (in) y d = pcf X 0.1572 = KN/m-cub$	2		Same LENVIN 20 TOTA WET WITH WITH STAND WITH WITH STAND WITH)			11


3.21

Project Name:	SVRT - BART	Fo San José		Lab #	CAL 202 G623	Project #:	204104.T03
~	,				And and the second second second second second second second second second second second second second second s		
Sample #:	MW-61	Depth:	69'	Tested By::	PD	Date Tested:	7/25/08
U.S.	Weight Retain	ed	Percent	Percent	Percent		
Standard	Cumulative/	Таге:	RETAINED	PASSING	PASSING		
Seive	Individual		Cumulative	Cumulative	Cumulative		
2-in . (50-mm)			0.0%	100.0%			
1 1/2-in. (37.5-mm)	0.0		0.0%	100.0%		Dry Wt + Tare	100.0
1-in. (25.0-mm)	1.0		1.0%	99.0%		Tare Wt	0.0
3/4-in. (19.0-mm)	1.4		1.4%	98.6%		Dry Wt of Soil	100.0
1/2-in. (12.5-mm)	7.0		7.0%	93.0%			
3/8-in. (9.5-mm)	10.5		10.5%	89.5%			
No. 4 (4.75-mm)	17.8		17.8%	82.2%		Gravel	17.8%
No. 8 (2.36mm)	22.6		22.6%	77.4%			
No.16 (1.18 - μm)	27.9		27.9%	72.1%		Sand	77.5%
No.30 (600 - μm)	41.1		41 .1%	58.9%			
No.50 (300 - μm)	72.2		72.2%	27.8%		Fines	4.7%
No.100 (150 - μm)	91.1		91.1%	8.9%			
No.200 (75 - μm)	95.3		95.3%	4.7%	Dry W	/t + #4	1,009 gm
Wash - #200 + Pan			0.0%	100.0%	Dry W	/t - #4	4,642 gm
TOTAL	100.0	in the second second		Conserve and	Total I	Dry Wt	5,651 gm

09/25/07 (FYW)


Gsieves

PARIKH CONSULTANTS, INC.

09/25/07 (FYW

Appendix 12: Mineralogy Test Results

CAMET Research, Inc.

www.camet-lab.com

X-Ray Analysis for Industry and Research

Anil Dean, PE, GE Hatch Mott MacDonald 3825 Hopyard Road, Suite 240 Pleasanton, CA 94588 July 7, 2008

RE: Soil Mineralogy Testing - SVRT Project P.O. No.: 24965-PO-00012 Report No.: 60060108

It was requested to test a total of eleven (11) soils for abrasivity by mineralogical and petrographic evaluations. The soil samples received were labeled and classified as follows:

Silicon Valley Rapid Transit Project

ş.	Boring	Depth	Sample	Soil Type
1	BH-20	57.2	S-12	GW-GC
2	BH-21	56.5	S-8	GW-GC
3	BH-26	56.7	S-8	SP-SC
4	BH-28	67.7	S-11	CL
5	BH-31	61.2	S-5	GP-GM
6	BH-46	50.9	S-18A	ML/CL
7	BH-78	26	S-6	GW-GC
8	MW-6I	69		SP w/ gravel
9	MW-2G	70.5		SW-SM
10	MW-8B	25.5		GW-GM w/ sand
11	MW-8B	39		SP-SM

Below are the specific test assignments requested for each soil sample:

S. No.	XRD	Sieve/H yd	XRF	Clay ID	Petrograph y	Durability
1	1	1	1			
2	1	1	1			
3	1	1	1		1	
4	1		1	1		
5	1	1	1	No. Contraction of the	1	
6	1	a second and the	1	1		
7	1	1	1		1	
8	1	1	1		1	1
9	1	1	1		1	1
10	1	1	1		1	1
11	1	1	1		1	1

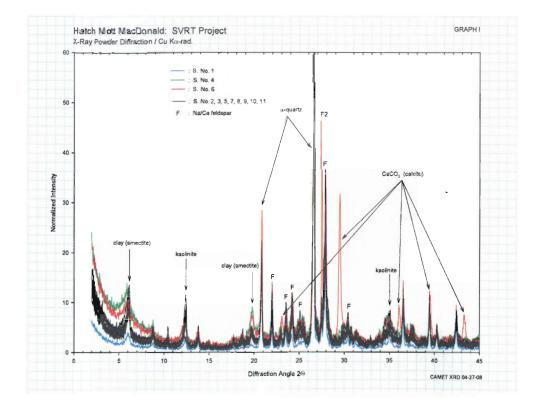
CAMET Research, Inc. - 6409 Camino Vista #F, Goleta, California 93117 - Tel. (805) 685-1665 - Fax (805) 685-9082

TEST PROCEDURES [a]

<u>XRD</u> (X-ray powder diffraction analysis) was performed on a horizontal Rigaku powder diffractometer using CuK α radiation with a diffracted beam monochromator. The specifics of the XRD techniques used are described in the RESULTS section of this report.

Sieve/Hydrometer tests were performed in accordance with ASTM D422-07.

<u>XRF</u> (wavelength dispersive X-ray fluorescence analysis) was performed using methods outlined in "The Practical Guide for Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis".

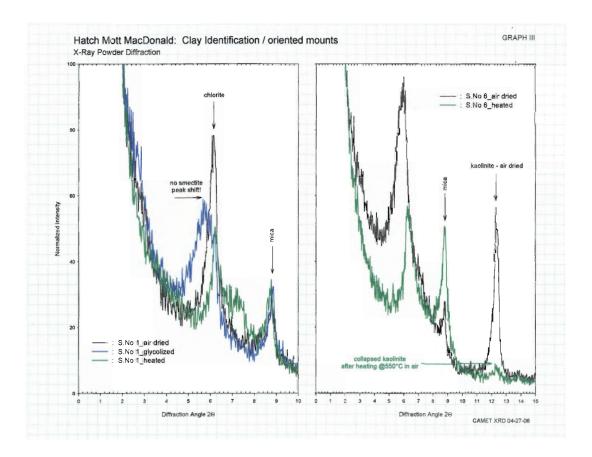

Clay ID was determined by the method described in Reference 3.

Petrography was performed in accordance with ASTM C295.

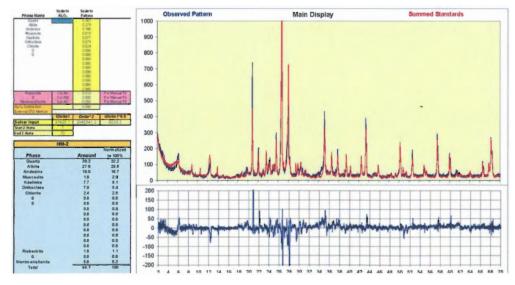
Durability was performed in accordance with accordance with ASTM D3744

RESULTS

XRD and Clay ID



X-ray powder diffraction patterns were produced from fractions passing through a 325 mesh sieve (<45µm) of each homogenized soil. GRAPH I shows all the_XRD patterns combined which were obtained from each of the 11 soils. Except for soil No. 6, all materials exhibit very similar concentrations of the rock forming minerals quartz, feldspar, expansive clay (smectite) and non-expansive clay (kaolinite, mica). Only soil No. 6 shows a considerable amount of calcite (CaCO₃) in addition to these minerals. With respect to expansive clay content, the eleven soils appear to fall into three distinctive groups: soil No.1, soil No. 4 & 6 and the remaining soils No. 2, 3, 5, 7, 8, 9, 10 and 11. The presence of expansive clay was confirmed in soils No. 4 and 6 (GRAPH II) by ethylene glycol treatment while the presence of kaolinite was found in soil No. 6 by heat treatment in air (GRAPH III).



CAMET Research, Inc. - 6409 Camino Vista #F, Goleta, California 93117 - Tel. (805) 685-1665 - Fax (805) 685-9082

3

The actual mineral concentrations of the three soil groups were obtained by least squares analysis of the full diffraction pattern (FULLPAT) of soils No. 1, 2 and 6.

Determination of mineral content of soil No. 2 by full pattern analysis (FULLPAT)

The table below lists the approximate(!) mineral concentrations for the three soil groups. The actual concentrations within each group can be expected to vary from the values listed in the table.

Mineral	Hardne ss	Soil No. 1	Soil No. 2, 3, 5, 7, 8, 9, 10, 11	Soil No. 4, 6
	(Mohs)	wt%	wt%	wt%
Quartz	7	51.0	32.0	24.0
Albite	6-6. 5	21.0	30.0	22.0
Andesine	5-6	10.0	10.5	13.0
Orthoclase	6-6. 5	8.5	8.5	12.0
Riebeckite	5	1.0	1.0	
Calcite	3-4			6*
Clay mineral:				
Muscovite	2.5- 3	1.0	2.0	1.0
Kaolinite	2-2. 5	5.5	8.0	11.0
Chlorite	1-2	1.5	3.0	3.0
Montmorillonite	1-2		5.0	8.0
Total Clay content		10	18	23

Nonexpansive clays: muscovite kaolinite chlorite Expansive clay (smectite): montmorillonite Feldspars: Albite, Andesine, Orthoclase

* no CaCO3 content in soil No. 4

WDXRF

The material received was dried at 60° C to remove excess water, pulverized in a SPEX ball-type mill to pass a 150µm sieve (No.100) and subsequently homogenized and dried at 110°C to constant weight (oven dry weight). Approximately three grams of material were placed in a porcelain crucible and calcined at 950°C in a muffle furnace. Samples 4 and 6 (clays) showed an elevated weight loss when compared to the other samples. It should be noted that XRD could identify calcium carbonate (CaCO₃) in sample 6. When heated in air at 900° CaCO₃ starts to decompose to calcium oxide CaO and carbon dioxide gas CO₂.

Prior to the fusion process, the mass loss associated with the calcination is reported as loss on ignition (LOI) and accounts in general for free moisture (a), combined water/organics (b) and CO_2 /organics (c). The materials calcined were mixed with a lithium borate flux and fused to beads at 1000°C in a muffle furnace. The glass beads were ground and polished to produce a flat surface for the X-ray analysis. Elemental data sets were collected on a Siemens SRS200 wavelength dispersive XRF spectrometer for which instrument calibration was established with USGS and Estonia reference rocks .

5

Soil No. 1 2 3 4 5 6 7 8 9 10 11 Analyte wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% SiO 76.47 67.19 68.74 62.13 66.51 61.84 67.36 68.82 71.63 65.61 71.89 Al_2 10.54 12.60 11.74 15.23 12.72 12.49 13.91 12.39 12.76 13.74 13.33 O₃ Fe₂ 4.19 5.52 5.62 6.06 5.60 5.83 6.04 5.68 5.84 6.19 4.24 O_3 Ca 2.66 2.59 2.05 2.27 1.99 1.82 2.69 2.06 2.22 2.88 1.68 0 Mg 2.82 2.67 2.88 1.95 2.67 2.54 2.62 2.92 2.72 2.86 1.89 0 Na₂ 2.56 2.77 2.72 2.48 3.34 4.48 3.59 3.17 2.61 3.66 2.87 0 K₂O 1.66 1.79 1.49 2.44 1.64 1.64 1.54 1.69 1.45 1.74 2.39 TiO 0.45 0.78 0.59 0.60 0.59 0.59 0.70 0.59 0.65 0.64 0.52 P_2O 0.11 0.15 0.15 0.14 0.16 0.16 0.17 0.14 0.17 0.18 0.15 LOI 2.51 3.31 3.36 5.02 3.25 7.68 2.69 2.99 3.76 2.27 2.58 Tot 102.4 102.3 100.4 103.8 101.5 98.86 98.96 98.92 99.13 99.14 al 8 7 9 3 99.73 5

The table below lists the elemental composition (expressed in oxide) of the homogenized fraction of each soil:

It should be noted that the higher LOI in Sample 6 is consistent with the presence of calcium carbonate that was found in that sample only by XRD

Heller

Ludwig Keller, Ph.D. CAMET RESEARCH, INC.

[a] <u>XRD measurements</u> were carried out by CAMET Research, Inc.

Sieve/Hydrometer tests were carried out by Pacific Materials Laboratory, 35S La Patera Ln, Goleta, CA 93117

CAMET Research, Inc. - 6409 Camino Vista #F, Goleta, California 93117 - Tel. (805) 685-1665 - Fax (865) 685-9082

6

Tel. 805.964.6901)

7

XRF measurements were carried out by Chemistry of Concrete, 6409 Camino Vista #E, Goleta, CA 93117 Tel. 805.965.9844

Clay ID measurements were carried out by CAMET Research, Inc.

Petrographic analysis was carried out by Analytical Consulting Group, Inc, 1746F Victoria Ave., Ventura, CA 93003 Tel 805.642.8180

Durability tests were carried out by Twining Laboratories of Southern California, 2883 East Spring Street, Long Beach, CA. Tel 562.426.3355

- Buhrke, VE, Jenkins R, Smith DK, A Practical Guide for the Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis, Chapter 3, Whole Rock Analysis, Wiley-VCH, 1998.
- [2] Chipera, S.J. and Bish, D.L., "FULLPAT: a full pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns", J. Appl. Cryst. 35, 744-749 2002
- [3] T. Kiipli, R.A. Batchelor, R.M. Rousseau, et al., "Seven Sedimentary Rock Reference Samples from Estonia", Oil Shale, 2000, Vol. 17, No. 3, p. 215-223

Pacific Materials Laboratory of Santa Barbara, Inc.

35-A South La Patera Lane P.O. Box 96 Goleta, CA 93116 Ph: (805) 964-6901

Santa Ynez Ph: (805) 688-7587

FAX No: (805) 964-6239 E-mail: pml@pml.sbcoxmail.com

April 18, 2008 Lab No: 79546-2 File No: 08-12785-2

Chemistry of Concrete Attn: Michael Neff, SM PE 6409 Camino Vista #E Goleta, CA 93117

SUBJECT: Sieve and Hydrometer Tests (ASTM D422) Soil Samples Delivered to PML SVRT project

Dear Mr. Neff:

In accordance with the request of Thomas Holzheu, sieve and hydrometer tests (ASTM D422) were performed per your chain of custody on eleven (11) soil samples delivered to this laboratory on April 4, 2008.

It should be noted; all of the samples containing material larger than the No. 10 sieve did not have enough material to meet the minimum quantity specified in ASTM D422 section 5.1.1 based on the nominal diameter of largest particles. The results of the testing is shown graphically in Appendix A.

If you have any questions concerning this matter, please do not hesitate to call. Thank you for the opportunity of providing this service.

Respectfully submitted,

PACIFIC MATERIALS LABORATORY, INC.

pppe

Ronald J. Pike, C. E. 42788

RJP:kfb

"We Test The Earth"

APPENDIX A LABORATORY TESTS

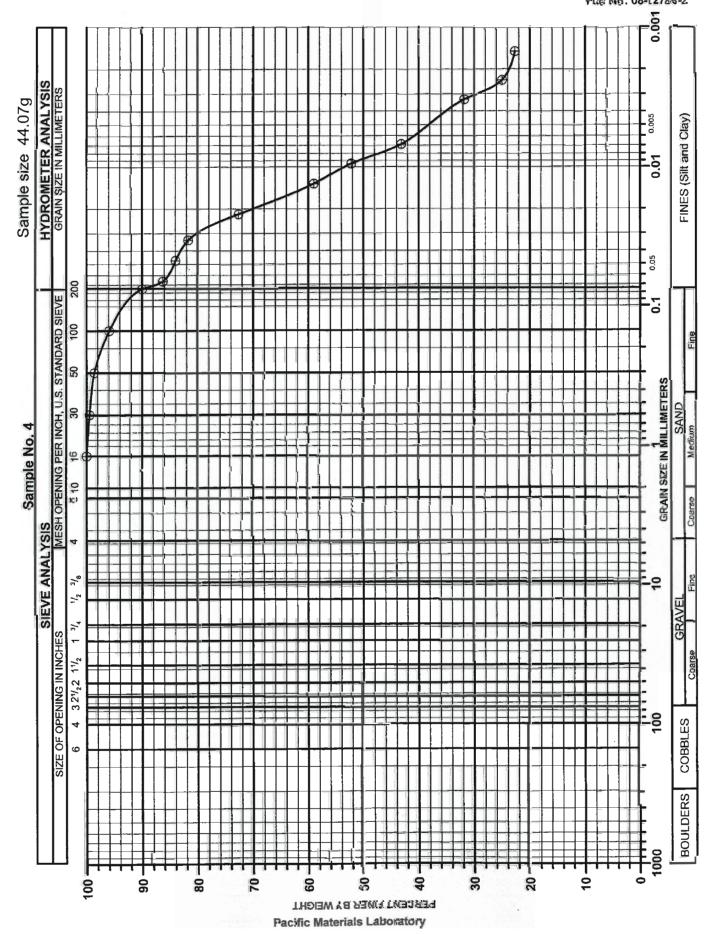
April 18, 2008 Lab No: 79546-2 File No: 08-12785-2

Pacific Materials Laboratory of Santa Barbara, Inc.

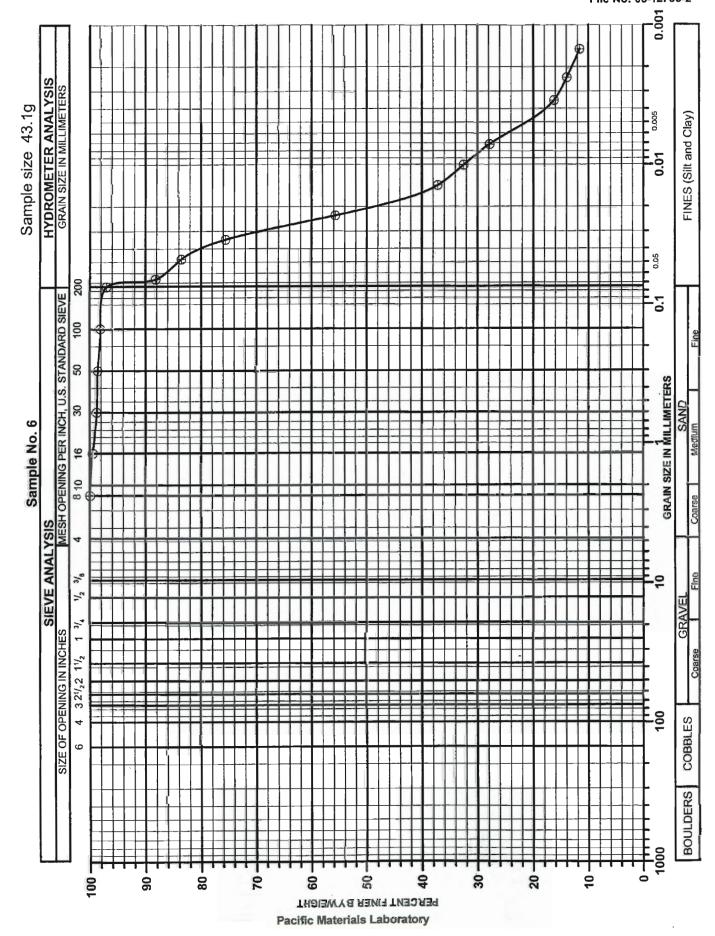
																																0.0	
HYDROMETER ANALYSIS	N MILLIMETERS																														0.005		
HYDROMETI	GRAIN SIZE IN																						-								-	0.0	
		200																													0.05		L
	D SIEVE	100 20				-	-																						1				
	STANDAR	50														t								-			2	Z	4			\$	
	ICH, U.S.	30																														LIMETER	AND
SIEVE ANALYSIS	NG PER IN	16					-															I	Y					E		1	Ę,	GRAIN SIZE IN MILLIMETERS	SAND
	H OPENIN	8 10				-+						+					+			+		1			+							GRAIN SL	
ALYSIS	MES	4		-											2			1														,	╞
EVE AN		8/E 2/1							8	2		4					-							-							Ę	2	VEL
SI	ICHES	2 1 3/4			Ź				-	-																							GRAVE
	VING IN IN	321/22 11/2																															
	SIZE OF OPENING IN INCHES	6 4			T																										Ę	2	
	SIZE											-					+														 		L
		9			6		-	RU -	-		10 02		en H	3			+		4			30 +	+		20							0001	Ľ

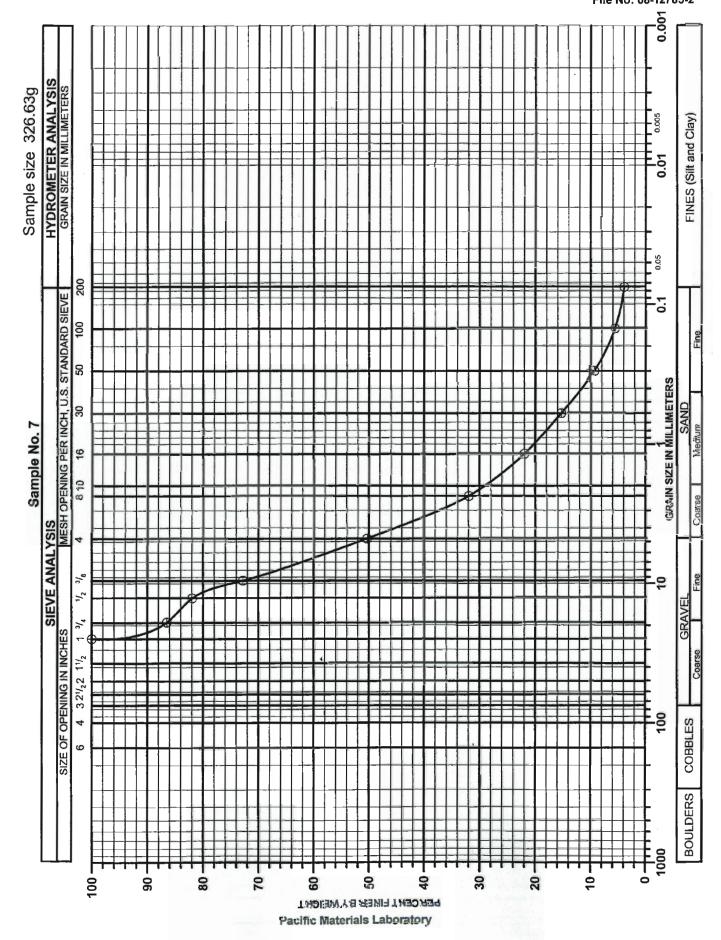
Date - April 18, 2008

Lab No: 79546-2 File No: 08-12785-2


F	1/2 3/8																				I UU GIRAIM SIZE IN MILLIMETERS	COBDI ES GRAVEL I
/SIS MESH OPENING PER INCH, U.S. STANDARD SIEVE	30 50 100 200																	/				SAND
HYDROMETER ANALYSIS GRAIN SIZE IN MILLIMETERS																					10.0	EINES (Silt and Clav)

100


		ç	H	+ 66	1 1	1	108	1		102	1			ł	F	50 1	+	+-	40-		H	30 +	H	-			1		-	Ħ	1000	L
	SIZE OF OPE	6 4																													100	
	SIZE OF OPENING IN INCHES	32422 142																														
SIEV		1 3/4 1/2				1	ł										Í		Ì			İ					ļ				-	
EANALY		/2 3/8																			-										ę	
E ANALYSIS	AESH OPEN	4 8 10											-																			NINY
	ING PER IN	0 16										-							1	1											COMMERCE MULTIMETEDS	
	VCH, U.S. S	30																					1									CAND
	TANDARD	50 100												-												1	Z					
	SIEVE	200																										/	D		0.1	
HYDRO	GRAIN																														0.05	
HYDROMETER ANALYSIS	SIZE IN MILLIMETE																														0.01 0.005	
YSIS	ERS			 		_					_	 	 													-					-	


.

Date - April 18, 2008

			SIE	/E ANALYSIS	Service of Mon 110 of Mine		HYDROMETER ANALYSIS
		SIZE OF OPENIN		1	DPENING PER INCH, U.S. STANDA	RD SIEVE	GRAIN SIZE IN MILLIMETERS
	00	4	$\frac{11}{2}$ 1 $\frac{3}{4}$		10 30		
	6		2				
	SO - US						
	20-1						
100 100 Caran streng and the second streng a							
100 10 CLARK SCIENCE CONTRACT OF CLARK SCIEN							
100 100 CRAN SIZEN MILIMETERS 0.1 0.							
line and lin							
lino 10 GRAN SZEINÁLLMETER 0.1 00 GRAN SZEIN							
CBAVE	40-11-04						
100 100 Carantees 0.1 0.05 Contraction of the second secon							
CBAVE							
100 Carl Science (100 Carl 100							
100 100 CRAINE CALLER CALL	30-1-1-						
100 100 GRANE CALL							
100 100 GRANE CALL							
100 100 GRANE CALL							
100 100 GRANE SZEIN MILLIMETERS 0.1 0.05 CAND							
100 100 GRANE CAN							
1000 100 GRANE 201 0.05 0.1 0.05 0.05							
1000 100 GRAIN SIZE IN MILLIMETERS 0.1 0.05 0.01 0.01 0.01 0.01 0.05 0.05							
00 100 GRAIN SIZE IN MILLIMETERS 0.1 0.05 0.01	10						
00 100 0.01 0.05 0.01 0.05 0.01 0.01 0.0							
00 100 100 10 GRAIN SIZE IN MILLIMETERS 0.1 0.05 0.01						Ĵ Ĵ	
100 10 300							
100 10 GRAVE 10 GRAIN SIZE IN MILLIMETERS 0.1 0.01 0.01						Ę	F
GRAVEI SAND	1000	100			AIN SIZE IN MILLIMETERS		
		L	DAVE		CAND		

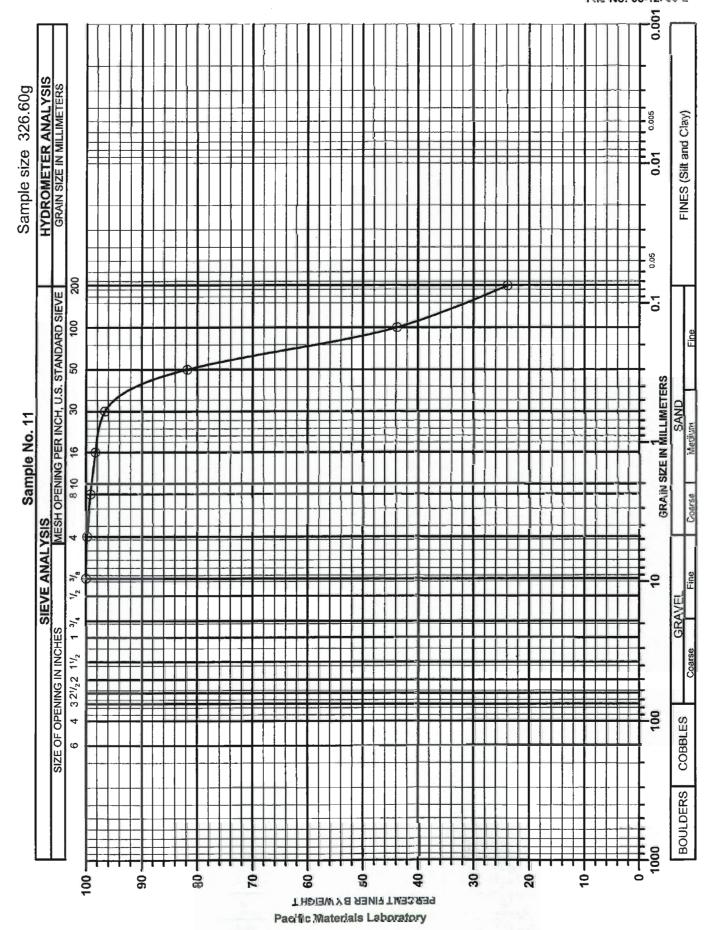
SIZE OF OPENING IN INCHES MALYSIS	1/2 1/2																		100 10 64	
SIEVE	1/2 1/2																		0	CPAVE
SIEVE	1/2 1/2																			GRAVEI
ALYSIS MESH OPENING	4 810			1															5	
PENING	8 10	H				1.1		11			 1 1		-							
PER	16																		AIN SIZE IN M	
INCH, U.S. STJ	30 50									2									GRAIN SIZE IN MILLIMETERS	SAND
ANDARD SIEVE	0 100															7	Z			
Ĩ	00																		0.05	
HYDROMETER ANALYSIS GRAIN SIZE IN MILLIMETERS																			0.01 0.005	

Date - April 18, 2008

17

S. Award

- A.8 -


	SIZE OF OPENING IN INCHES	4 321/22 11/2																							100	
SIEV		1 3/4 1/2 3/8		7																					<u>-</u>	CDAVE
ALYSIS Juni	MESH OPENIN	4 810																							CD AIN CT	
E ANALYSIS	IG PER INCH, U.S. STAND	16 30 50																2	8	/					CDAIN CITE IN MILLIMETEDS	CETA MILLINE ENS
		100 200																			-	/			0.1 0.05	
HYDROMETER ANALYSIS	GRAIN SIZE IN MILLIMETERS																								0.01 0.005	

Date - April 18, 2008

100

SIECE ANALYSIS SIECE OPENNIORIN DIFFES 6 4 3 377 1 4 7 4 7 4 7 4 7 4 7 7 7 7 7 7 7 7 7	SIEVE ANALYSIS SIEVE ANALYSIS MISSI OFENINGER INCH.IS. STANDARD SIEVE HYDROMETER A 6 4 3.07 3.00 30 100 30 6 4 3.07 3.00 30 100 30 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1			106	 4	-	H 08		1		1-02					3	3	+	1	50		1	-	6	H	-	-	100	1	H	-	20-	1		-1	10+				Ŧ	1000	L
SIEVE ANAL VSIS SIEVE ANAL VSIS MEEN GER INCH US STANDARD SIEVE 6 4 329,2 11,4 13,4 4 8 10 16 30 30 30 30 30 1 6 4 329,2 11,4 13,4 4 8 10 16 30	SIEVE ANAL VSIS SIEVE ANAL VSIS MEEN GER INCH US STANDARD SIEVE 6 4 329,2 11,4 13,4 4 8 10 16 30 30 30 30 30 1 6 4 329,2 11,4 13,4 4 8 10 16 30																																											0	
SIEVE ANALYSIS SIEVE ANALYSIS MESH OF ENING REFINCH. U.S. STANDARD SIEVE MESH OF 10 16 30 50 100 200 10 10 10 200 10 10 10 200 10 10 10 200 1	SIEVE ANALYSIS SIEVE ANALYSIS MESH OF ENING REFINCH. U.S. STANDARD SIEVE MESH OF 10 16 30 50 100 200 10 10 10 200 10 10 10 200 10 10 10 200 1		SIZI									-																																	L
SIEVE ANALYSIS MESH OPENING REFINCH.U.S. STANDARD SIEVE MESH OPENING REFINCH OPENING REFINCH OPENING MESH OPENING REFINCH OPENING REFINCH OPENING REFINCH OPENING MESH OPENING REFINCH OPENING REFINAL OPENING REFINCH OPENING	SIEVE ANALYSIS MESH OPENING REFINCH.U.S. STANDARD SIEVE MESH OPENING REFINCH OPENING REFINCH OPENING MESH OPENING REFINCH OPENING REFINCH OPENING REFINCH OPENING MESH OPENING REFINCH OPENING REFINAL OPENING REFINCH OPENING		E OF OP	6 4			Ļ			T								1		Ţ	T	ļ									Ì	T		1	Í		Π						Ī	10	
SIEVE ANALYSIS SIEVE ANALYSIS MESH OF ENING REFINCH. U.S. STANDARD SIEVE MESH OF 10 16 30 50 100 200 10 10 10 200 10 10 10 200 10 10 10 200 1	SIEVE ANALYSIS SIEVE ANALYSIS MESH OF ENING REFINCH. U.S. STANDARD SIEVE MESH OF 10 16 30 50 100 200 10 10 10 200 10 10 10 200 10 10 10 200 1		ENING	321/2																																								0	┝
SIEVE ANALYSIS MESH OPENING REFINCH. U.S. STANDARD SIEVE MESH OPENING REFINCH OPENING REFINE 0.1 0.0 0.0	SIEVE ANALYSIS MESH OPENING REFINCH. U.S. STANDARD SIEVE MESH OPENING REFINCH OPENING REFINE 0.1 0.0 0.0		IN INCH	2 11/2	2										F			+	+															1				-							
E ANALYSIS MESH OPENING REFINCH. U.S. STANDARD SIEVE MESH OPENING REFINE MESH	E ANALYSIS MESH OPENING REFINCH. U.S. STANDARD SIEVE MESH OPENING REFINE MESH	SIE	ES	1 3/4		-	-							ł					+				P															-					-		NVQ2
		VE AN		1/2 3/8									-							+				Ð																				10	Ē
		ALYSI	ME	4													-															2		4											
		ŝ	SH OPE	8					T	F	-	+											-		+	+							-		ł	2	3				-			GRAIN	
			NING PE	0 16														1		T					İ				Ì	Ì	t	T			Ī	Ì		X	1					SIZEIN	
			R INCH,	30																											İ									Ŷ			Ē	MITTIM	CAN
			U.S. ST/	5(_	-																	-	-											ľ			ETERS	0
			ANDARD	0 10(-							-	Ţ													-	-		-		-										ľ			
			SIEVE	0 20																				1						-												I	Ē	0.1	ſ
HYDROMETER ANALYS GRAIN SIZE IN MILLIMETERS GRAIN SIZE IN MILLIMETERS	HYDROMETER ANALYSIS GRAIN SIZE IN MILLIMETERS GRAIN SIZE IN MILLIMETERS			0												-																												C 770	
METER ANALYS	HYDROMETER ANALYSIS GRAIN SIZE IN MILLIMETERS GRAIN SIZE IN MILLIMETERS	HYDRO	GRAIN 5																															+						-		+			
	ANALYSIS ILLIMETERS	METER	IZE IN MI																							-														-			Ē	0.01	
		ANALYS	LLIMETER																										-														0.005		

Date - April 18, 2008

Analytical Consulting Group, Inc.

June 25, 2008 ACG Lab No. P0804-555

CAMET Research, Inc. 6409 Camino Vista Goleta, CA 93117 Attn: Dr. Ludwig Keller

Subject: ASTM C-295 Petrographic Examination of Soil Sample, SVRT Project

One sample of sandy gravel, identified as SVRT Sample 3: **BH-26** @ **56.7** ft, was submitted to Analytical Consulting Group, Inc. (ACG) for petrographic examination. The purpose of the examination was to determine the lithological composition of the sample. The sample identification and the USCS classification assigned by the client is listed in the attached table.

The sample was sieved into fractions retained on the $\frac{3}{8}$ -in, #4, #8, #16, #30, #50, #100, #200, and passing #200 sieves. Each fraction (except the $\frac{3}{8}$ -in) was further split to yield approximately 100 particles for analysis.

The examination was conducted in accordance with ASTM C-295. The examination was performed using, a stereobinocular microscope at 5x to 40x magnification. The finest sand fractions and some crushed grains from coarser fractions were examined immersed in refractive index liquid, using the polarized-light microscope at up to 400x magnification. The enclosed table and charts present the lithologic data for the samples, given as percent by particle count (approximate weight percent) for each size fraction except for the $+\frac{3}{8}$ ". The composition of the $+\frac{3}{8}$ " sample was determined by weighing each type of rock due to the range of particle sizes. A weighted average is calculated for the sample using the fraction weights determined by the sieve analysis. The sample data is presented in the attached table and chart. The analytical sensitivity for this method is approximately 0.1% for the weighted average of the sample.

The sample is composed primarily of fine-grained sandstones, siltstones, and mineral grains (principally quartz and feldspar) derived from the rocks. Volcanic and plutonic rocks are also present. Lithic clasts dominate in the larger size fractions and discrete mineral grains in the finer fractions.

Sandstones make up about 45% of the sample. The sandstones range from greywacke to quartz wacke, with lithic to arkosic types dominating. The sandstones are well cemented and some have probably undergone some metamorphism. The matrix consists of clay, mica, and/or chlorite, with variable amounts of iron oxide. No carbonates are present. Thin quartz veins are frequent in the greywackes. The sandstone particles are tan, grey, green, or reddish in color, generally equant, and rounded to subangular, with a few angular crushed particles.

1746F Victoria Avenue #366 • Ventura, CA 93003 • (805) 642-8180 • info@analyticalconsultinggroup.com

CAMET Research, Inc. SVRT Project – Sample 3: BH-26 ASTM C-295 Petrographic Analysis

June 25, 2008 ACG Lab No. P0805-555 Page 2

Dark grey siltstone and shale constitute about 7% of the sample. These rocks consist primarily of silt-sized quartz and feldspar grains with clay, mica, and/or chlorite. Some of these rocks are transitional to slate or schist. Thin quartz veins are frequent. The siltstone/shale particles are typically rounded to subrounded and equant to elongated in shape. About $\frac{2}{3}$ of the siltstone and shale particles are flat.

Other rock types present in the coarser fractions include volcanic (21%) and plutonic (11%) rocks. The volcanic rocks include a variety of holocrystalline intermediate to siliceous rocks and a few basalts. The groundmass of these rocks generally consists of microgranular quartz and feldspar or chert. Most of the volcanic rocks are metamorphosed to varying degrees, with some grading into quartz schist. The plutonic rocks in this sample are mostly medium-grained granitic rocks.

The proportion of free mineral grains increases with decreasing grain size. Mineral grains in the fine fractions consist primarily of quartz and feldspar, with small amounts of mafic minerals. Some fine-grained rock fragments, mostly siltstone/shale and metavolcanic rocks, persist into the finer fractions.

The sandstones in the #4+ fractions are generally fresh, sound, hard, and tough. Most grains require a light hammer blow (with a 3-lb hammer on a steel anvil) to break. Two percent of the sandstone particles in the #8 fraction were weathered. The weathered sandstone is much less tough but generally not friable. The sandstone particles in the finer fractions are less tough and can be crushed with forceps. The sandstones break down to a mixture of hard grains, mostly quartz, and soft clay/mica matrix.

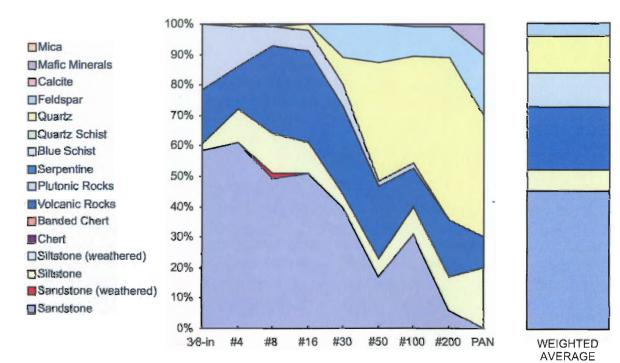
The siltstone/shale particles are fresh, sound, moderately hard, and moderately tough (can be crushed by a very light tap from the hammer). Grains with quartz veins are hard and quite tough. The volcanic and granitic rocks are generally very hard and tough.

The observations and conclusions given above are ACG's professional opinions based on laboratory observation of the samples as submitted and on information supplied by the client. Extension of these observations or conclusions to the product represented by the samples is the responsibility of the user. No warranty, express or implied, is made or intended in connection with the above investigation, or by the furnishing of this report, or by any other oral or written statement.

We appreciate the opportunity to be of service to you. If you have any questions, please call us at (805) 642-8180.

Respectfully submitted, Analytical Consulting Group, Inc.

Michael R. Tiffany, Petrographer Analytical Consulting Group, Inc. Professional Geologist No. 6750

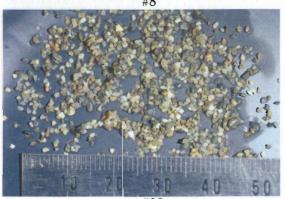


CAMET Research, Inc. SVRT Project – Sample 3: BH-26 ASTM C-295 Petrographic Analysis June 25, 2008 ACG Lab No. P0805-555 Page 3

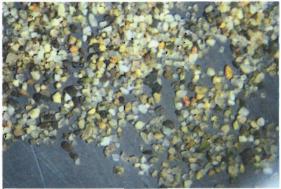
ASTM C-295 Petrographic Analysis SVRT Sample 3: BH-26 @ 56.7 ft SP-SC

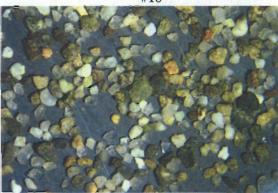
Rock/Mineral]			Si	ze Fractio	on				Weighted
Туре	³∕ ₈ -in	#4	#8	#16	#30	#50	#100	#200	PAN	Average
Sandstone	58.5%	61.0%	49.0%	51.0%	40.0%	16.8%	31.1%	5.9%		45.0%
Sandstone ^w			2.0%							0.2%
Siltstone	2.0%	11.0%	13.0%	10.0%	4.0%	5.9%	8.7%	10.9%	20.0%	6.7%
Volcanic Rocks	17.7%	14.0%	29.0%	30.0%	29.0%	23.8%	12.6%	18.8%	10.0%	20.5%
Plutonic Rocks	21.8%	13.0%	6.0%	7.0%	7.0%	2.0%	1.9%		0.0%	11.0%
Quartz		1.0%	0.0%	2.0%	9.0%	38.6%	35.0%	53.5%	40.0%	12.2%
Feldspar			1.0%		11.0%	12.9%	9.7%	9.9%	20.0%	4.2%
Mafic Minerals							1.0%	1.0%	10.0%	0.1%
Weight Fraction	32.2%	14.7%	10.2%	7.0%	6.8%	16.2%	9.7%	3.1%	0.1%	

w = weathered



CAMET Research, Inc. SVRT Project – Sample 3: BH-26 June 25, 2008 ACG Lab No. P0805-555


SVRT Sample 3: BH-26 @ 56.7 ft


#30

#50

ACg

Analytical Consulting Group, Inc.

June 26, 2008 ACG Lab No. P0804-555

CAMET Research, Inc. 6409 Camino Vista Goleta, CA 93117 Attn: Dr. Ludwig Keller

Subject: ASTM C-295 Petrographic Examination of Soil Sample, SVRT Project

One sample of sandy gravel, identified as SVRT Sample 5: **BH-31** @ 61.2 ft, was submitted to Analytical Consulting Group, Inc. (ACG) for petrographic examination. The purpose of the examination was to determine the lithological composition of the sample. The sample identification and the USCS classification assigned by the client is listed in the attached table.

The sample was sieved into fractions retained on the $\frac{3}{8}$ -in, #4, #8, #16, #30, #50, #100, #200, and passing #200 sieves. Each fraction (except the $+\frac{3}{8}$ -in) was further split to yield approximately 100 particles for analysis.

The examination was conducted in accordance with ASTM C-295. The examination was performed using a stereobinocular microscope at 5x to 40x magnification. The finest sand fractions and some crushed grains from coarser fractions were examined immersed in refractive index liquid, using the polarized-light microscope at up to 400x magnification. The enclosed table and charts present the lithologic data for the samples, given as percent by particle count (approximate weight percent) for each size fraction. A weighted average is calculated for the sample using the fraction weights determined by the sieve analysis. The sample data is presented in the attached table and chart. The analytical sensitivity for this method is approximately 0.1% for the weighted average of the sample.

In general, the sample is composed primarily of fine-grained sandstones, siltstones, and mineral grains (quartz and feldspar) derived from the rocks. Lithic clasts dominate in the larger size fractions and discrete mineral grains in the finer fractions.

Sandstones make up about 52% of the sample. The sandstones range from greywacke to quartz wacke, with lithic to arkosic types dominating. The sandstones are well cemented and some have probably undergone some metamorphism. The matrix consists of clay, mica, and/or chlorite, with variable amounts of iron oxide. No carbonates are present. Thin quartz veins are frequent in the greywackes. The sandstone particles are tan, grey, green, or reddish in color, generally equant, and rounded to subangular, with a few angular crushed particles.

Dark grey siltstone and shale constitute about 7% of the sample. These rocks consist primarily of silt-sized or smaller quartz grains with clay, mica, and/or chlorite. Some of these rocks are transitional to slate or schist. Thin quartz veins are frequent. The siltstone/shale particles are

CAMET Research, Inc. SVRT Project – Sample 5: BH-31 ASTM C-295 Petrographic Analysis June 26, 2008 ACG Lab No. P0805-555 Page 2

typically rounded to subrounded and equant to elongated in shape. About $\frac{2}{3}$ of the siltstone and shale particles are flat.

Other rock types present in the coarser fractions include volcanic and plutonic rocks. The volcanic rocks include a variety of holocrystalline intermediate to siliceous rocks and a few basalts. The groundmass of these rocks generally consists of microgranular quartz and feldspar or chert. Most of the volcanic rocks are metamorphosed to varying degrees, with some grading into quartz schist. The plutonic rocks consist primarily of a variety of granitic rocks and some diabase.

The proportion of free mineral grains increases with decreasing grain size. Mineral grains in the fine fractions consist primarily of quartz and feldspar, with trace amounts of amphibole, chlorite, biotite, epidote, and iron oxides. Some fine-grained rock fragments, mostly siltstone/shale and metavolcanic rocks, persist into the finer fractions.

The sandstones in the #4+ fractions are generally fresh, sound, hard, and tough. Most grains require a light hammer blow (with a 3-lb hammer on a steel anvil) to break. The sandstone particles in the finer fractions are less tough and can be crushed with forceps. The sandstones break down to a mixture of hard grains, mostly quartz, and soft clay/mica matrix.

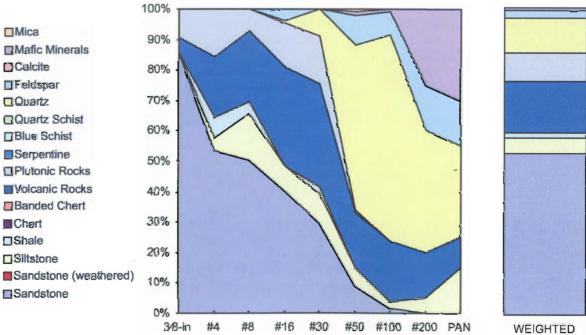
The siltstone/shale particles are fresh, sound, moderately hard, and moderately tough (can be crushed by a very light tap from the hammer) to moderately soft (crush easily with forceps). Grains with quartz veins are hard and quite tough. The volcanic and plutonic rocks are generally very hard and tough.

The observations and conclusions given above are ACG's professional opinions based on laboratory observation of the samples as submitted and on information supplied by the client. Extension of these observations or conclusions to the product represented by the samples is the responsibility of the user. No warranty, express or implied, is made or intended in connection with the above investigation, or by the furnishing of this report, or by any other oral or written statement.

We appreciate the opportunity to be of service to you. If you have any questions, please call us at (805) 642-8180.

Respectfully submitted, Analytical Consulting Group, Inc.

Michael R. Tiffany, Petrographer Analytical Consulting Group, Inc. Professional Geologist No. 6750

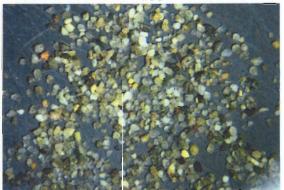


CAMET Research, Inc. SVRT Project – Sample 5: BH-31 ASTM C-295 Petrographic Analysis June 26, 2008 ACG Lab No. P0805-555 Page 3

ASTM C-295 Petrographic Analysis	
SVRT Sample 5: BH-31 @ 61.2 ft	
GP-GM	

Rock/Mineral				Si	ze Fractio	ງກ				Weighted
Туре	³∕ ₈ -in	#4	#8	#16	# # 30	#50	#100	#200	PAN	Average
Sandstone	85.7%	53.5%	50.5%	40.4%	29.7%	9.0%	1.9%			52.4%
Siltstone		4.0%	15.2%	7.7%	9.9%	6.0%	1.9%	5.0%	15.0%	4.9%
Shale		6.9%	4.0%		2.0%					2.0%
Volcanic Rocks	4.8%	19.8%	23.2%	32.7%	33.7%	18.0%	20.0%	15.0%	10.0%	16.8%
Plutonic Rocks	9.5%	15.8%	7.1%	14.4%	15.8%	1.0%				9.3%
Quartz				1.0%	8.9%	54.0%	67.6%	40.0%	30.0%	11.6%
Feldspar				3.8%		10.0%	7.6%	15.0%	15.0%	2.2%
Mafic Minerals						1.0%	1.0%	25.0%	30.0%	0.9%
Mica						1.0%]	0.1%
Weight Fraction	34.0%	18.1%	15.1%	9.4%	4.4%	7.1%	9.0%	2.7%	0.2%	ĺ

WEIGHTED AVERAGE


CAMET Research, Inc. SVRT Project – Sample 5: BH-31 June 26, 2008 ACG Lab No. P0805-555

SVRT Sample 5: BH-31 @ 61.2 ft

#30

#16

#50

Analytical Consulting Group, Inc.

June 30, 2008 ACG Lab No. P0804-555

CAMET Research, Inc. 6409 Camino Vista Goleta, CA 93117 Attn: Dr. Ludwig Keller

Subject: ASTM C-295 Petrographic Examination of Soil Sample, SVRT Project

One sample of soil, identified as SVRT Sample 7: **BH-78** @ **26** ft, was submitted to Analytical Consulting Group, Inc. (ACG) for petrographic examination. The purpose of the examination was to determine the lithological composition of the sample. The sample identification and the USCS classification assigned by the client is given in the attached table.

The sample was sieved into fractions retained on the $\frac{3}{8}$ -in, #4, #8, #16, #30, #50, #100, #200, and passing #200 sieves. Each fraction (except the $+\frac{3}{8}$ -in) was further split to yield approximately 100 particles for analysis.

The examination was conducted in accordance with ASTM C-295 using a stereobinocular microscope at 5x to 40x magnification. The finest sand fractions and some crushed grains from coarser fractions were examined immersed in refractive index liquid, using the polarized-light microscope at up to 400x magnification. The enclosed table and charts present the lithologic data for the samples, given as percent by particle count (approximate weight percent) for each size fraction. The composition of the $+\frac{3}{8}$ " sample was determined by weighing each type of rock rather than particle count. A weighted average is calculated for the sample using the fraction weights determined by the sieve analysis. The sample data is presented in the attached table and chart. The analytical sensitivity for this method is approximately 0.1% for the weighted average of the sample.

In general, the sample is composed primarily of fine-grained sandstones, siltstones, and mineral grains (quartz and feldspar) derived from the rocks. Lithic clasts dominate in the larger size fractions and discrete mineral grains in the finer fractions.

Sandstones make up about 65% of the sample. The sandstones range from greywacke to quartz wacke, with lithic to arkosic types dominating. The sandstones are well cemented and some have probably undergone some metamorphism. The matrix consists of clay, mica, and/or chlorite, with variable amounts of iron oxide. No carbonates are present. Thin quartz veins are frequent in the greywackes. The sandstone particles are tan, grey, green, or reddish in color, generally equant, and rounded to subangular, with a few angular crushed particles. A few weathered sandstone particles are present in the coarsest fractions.

Dark grey siltstone and shale constitute about 12% of the sample. These rocks consist primarily of silt-sized quartz grains with clay, mica, and/or chlorite. Some of these rocks are transitional to slate

or schist. Thin quartz veins are frequent. The siltstone/shale particles are typically rounded to subrounded and equant to elongated in shape. About $\frac{2}{3}$ of the siltstone and shale particles are flat.

Minor rock types present in the coarser fractions include volcanic rocks, granitic rocks, and diabase. The granitic rocks and diabase are grouped as plutonic rocks. The volcanic rocks include a variety of holocrystalline intermediate to siliceous rocks. The groundmass of these rocks generally consists of microgranular quartz and feldspar or chert. Most of the volcanic rocks are metamorphosed to varying degrees, with some grading into quartz schist.

The proportion of free mineral grains increases with decreasing grain size. Mineral grains in the fine fractions consist primarily of quartz and feldspar, with trace amounts of amphibole, chlorite, biotite, epidote, and iron oxides. Some fine-grained rock fragments, mostly siltstone/shale and metavolcanic rocks, persist into the finer fractions.

The sandstones in the #4+ fractions are generally fresh, sound, hard, and tough. Most grains require a light hammer blow (with a 3-lb hammer on a steel anvil) to break. Some samples have small quantities of weathered sandstone in the coarse fractions. The weathered sandstone is much less tough but generally not friable. The sandstone particles in the finer fractions are less tough and can be crushed with forceps. The sandstones break down to a mixture of hard grains, mostly quartz, and soft clay/mica matrix material.

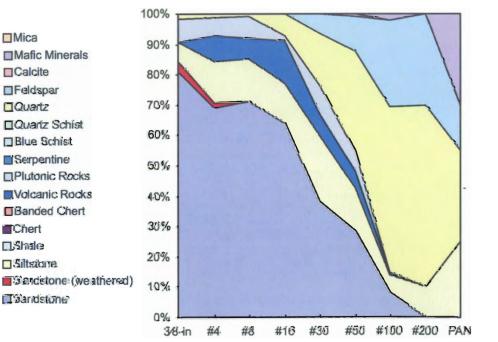
The siltstone/shale particles are fresh, sound, moderately hard, and moderately tough (can be crushed by a very light tap from the hammer). Grains with quartz veins are hard and quite tough. The volcanic and plutonic rocks are generally very hard and tough.

The observations and conclusions given above are ACG's professional opinions based on laboratory observation of the samples as submitted and on information supplied by the client. Extension of these observations or conclusions to the product represented by the samples is the responsibility of the user. No warranty, express or implied, is made or intended in connection with the above investigation, or by the furnishing of this report, or by any other oral or written statement.

We appreciate the opportunity to be of service to you. If you have any questions, please call us at (805) 642-8180.

Respectfully submitted, Analytical Consulting Group, Inc.

Michael R. Tiffany, Petrographer Analytical Consulting Group, Inc. Professional Geologist No. 6750



CAMET Research, Inc. SVRT Project – Sample 7: BH-78 ASTM C-295 Petrographic Analysis June 30, 2008 ACG Lab No. P0805-555 Page 3

ASTM C-295 Petrographic Analysis SVRT Sample 7: Bid-78 @ 26 ft GW-GC

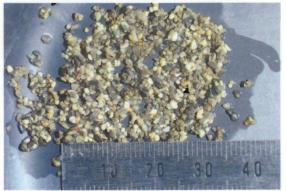
Rock/Mineral				Si	ze Fractio	on				Weighted
Туре	³⁄₀-in	#4	#8	#16	#30	#50	#100	#200	PAN	Average
Sandstone	81.1%	69.0%	71.0%	64.0%	38.0%	28.6%	7.9%			63.6%
Sandstone ^w	3.1%	1.9%								1.3%
Siltstone	6.5%	13.5%	14.0%	13.0%	22.2%	14.3%	5.9%	10.0%	25.0%	11.8%
Volcanic Rocks		8.4%	7.0%	14.0%	7.4%	5.4%	1.0%			5.6%
Plutonic Rocks	7.7%	5.8%	7.0%	2.0%	9.3%	6.3%				6.0%
Quartz	1.6%	1.3%	1.0%	7.0%	16.7%	33.0%	54.5%	60.0%	30.0%	8.4%
Feldspar					6.5%	11.6%	28.7%	30.0%	15.0%	3.0%
Calcite						0.9%				0.1%
Mafic Minerals							2.0%		30.0%	0.1%
Weight Fraction	28.9%	23.4%	17.2%	10.9%	6.6%	6.8%	4.1%	1.8%	0.2%	

w = weathered

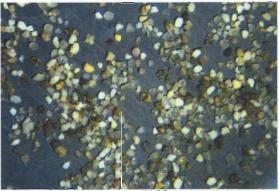
WEIGHTED AVERAGE

CAMET Research, Inc. SVRT Project – Sample 7: BH-78

1

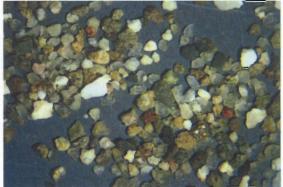

June 30, 2008 A.C.G Lab No. P0805-555

SVRT Sample 7: BH-78 @ 25 ft



3/8"

#30



#100

#16

#50

Analytical Consulting Group, Inc.

June 2, 2008

ACG Lab No. P0804-555

CAMET Research, Inc. 6409 Camino Vista Goleta, CA 93117 Attn: Dr. Ludwig Keller

Subject: ASTM C-295 Petrographic Examination of Soil Sample, SVRT Project

One sample of soil, identified as SVRT Sample 8: **MW-6I @ 69 ft**, was submitted to Analytical Consulting Group, Inc. (ACG) for petrographic examination. The purpose of the examination was to determine the lithological composition of the sample. The sample identification and the USCS classification assigned by the client is listed in the attached table.

The sample was sieved into fractions retained on the $\frac{3}{8}$ -in, #4, #8, #16, #30, #50, #100, #200, and passing #200 sieves. Each fraction (except the $\frac{3}{8}$ -in) was further split to yield approximately 100 particles for analysis. The $\frac{3}{8}$ -in sample consisted of just 17 particles.

The examinations were conducted in accordance with ASTM C-295. The examinations were performed using a stereobinocular microscope at 5x to 40x magnification. The finest sand fractions and some crushed grains from coarser fractions were examined immersed in refractive index liquid, using the polarized-light microscope at up to 400x magnification. Selected grains were thinsectioned and examined with the polarized-light microscope to assist in rock identification. The enclosed table and charts present the lithologic data for the samples, given as percent by particle count (approximate weight percent) for each size fraction. The composition of the $+\frac{3}{8}$ " sample was determined by weight rather than particle count. A weighted average is calculated for the sample using the fraction weights determined by the sieve analysis. The sample data is presented in the attached table and chart. The analytical sensitivity for this method is approximately 0.1% for the weighted average of the sample.

In general, the sample is composed primarily of fine-grained sandstones, volcanic rocks, and mineral grains (quartz and feldspar) derived from the rocks. Lithic clasts dominate in the larger size fractions and discrete mineral grains in the finer fractions.

Volcanic rocks constitute about 25% of the sample. The volcanic rocks include a variety of holocrystalline intermediate to siliceous rocks and a few basalts. The groundmass of these rocks generally consists of microgranular quartz and feldspar or chert. Most of the volcanic rocks are metamorphosed to varying degrees, with some grading into quartz schist.

Sandstones make up about 17% of the sample. The sandstones range from greywacke to quartz wacke, with lithic to arkosic types dominating. The sandstones are well cemented and some have probably undergone some metamorphism. The matrix consists of clay, mica, and/or chlorite, with

CAMET Research, Inc. SVRT Project – Sample MW-6I @ 69 ft ASTM C-295 Petrographic Analysis

variable amounts of iron oxide. No carbonates are present. Thin quartz veins are frequent in the greywackes. The sandstone particles are tan, grey, green, or reddish in color, generally equant, and rounded to subangular, with a few angular crushed particles.

Dark grey siltstone and shale constitute about 14% of the sample. These rocks consist primarily of silt-sized quartz grains with clay, mica, and/or chlorite. Some of these rocks are transitional to slate or schist. Thin quartz veins are frequent. The siltstone/shale particles are typically rounded to subrounded and equant to elongated in shape. About $\frac{2}{3}$ of the siltstone and shale particles are flat. A few weathered siltstone particles are present.

Other rock types present in the coarser fractions include granitic rocks, gabbro, and diabase. These rocks are grouped as plutonic rocks.

The proportion of free mineral grains increases with decreasing grain size. Mineral grains in the fine fractions consist primarily of quartz, with smaller amounts of feldspar, amphibole, chlorite, biotite, epidote, and iron oxides. Some fine-grained rock fragments, mostly siltstone and metavolcanic rocks, persist into the finer fractions.

The sandstones in the #4+ fractions are generally fresh, sound, hard, and tough. Most grains require a light hammer blow (with a 3-lb hammer on a steel anvil) to break. The sandstone particles in the finer fractions are less tough and can be crushed with forceps. The sandstones break down to a mixture of hard grains, mostly quartz, and soft clay/mica matrix.

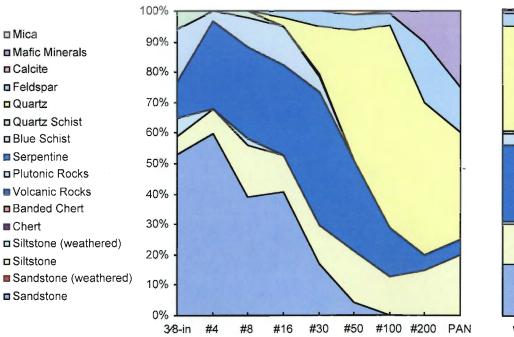
The siltstone/shale particles are fresh, sound, moderately hard, and moderately tough (can be crushed by a very light tap from the hammer). Grains with quartz veins are hard and quite tough. The volcanic rocks and plutonic rocks are generally very hard and tough. Small quantities of weathered siltstone are present in the coarse fractions. These particles are generally soft to friable.

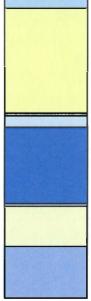
The observations and conclusions given above are ACG's professional opinions based on laboratory observation of the samples as submitted and on information supplied by the client. Extension of these observations or conclusions to the product represented by the samples is the responsibility of the user. No warranty, express or implied, is made or intended in connection with the above investigation, or by the furnishing of this report, or by any other oral or written statement.

We appreciate the opportunity to be of service to you. If you have any questions, please call us at (805) 642-8180.

Respectfully submitted, Analytical Consulting Group, Inc.

Michael R. Tiffan, Petrographer Analytical Consulting Group, Inc. Professional Geologist No. 6750




CAMET Research, Inc. SVRT Project – Sample MW-61@69 ft ASTM C-295 Petrographic Analysis June 2, 2008 ACG Lab No. P0805-555 Page 3

ASTM C-295 Petrographic Analysis SVRT Sample 8: MW-61 @ 69 ft SP with gravel

Rock/Mineral			_	Si	ze Fractio	on				Weighted
Туре	³∕ ₈ -in	#4	#8	#16	#30	#50	#100	#200	PAN	Average
Sandstone	52.9%	59.7%	39.0%	40.6%	16.8%	4.3%				16.9%
Siltstone	5.9%	8.1%	17.0%	11.9%	12.9%	17.0%	12.5%	15.0%	20.0%	13.2%
Siltstone ^w	5.9%		2.0%							0.8%
Volcanic Rocks	11.8%	29.0%	30.0%	29.7%	43.6%	29.8%	16.3%	5.0%	5.0%	24.8%
Plutonic Rocks	17.6%	3.2%	10.0%	12.9%	5.0%					3.8%
Quartz Schist	5.9%		2.0%		1.0%					0.9%
Quartz				3.0%	15.8%	42.6%	66.3%	50.0%	35.0%	34.2%
Feldspar				2.0%	5.0%	5.3%	3.8%	20.0%	15.0%	4.3%
Mafic Minerals							1.0%	10.0%	25.0%	0.7%
Mica						1.1%				0.4%
Weight Fraction	12.7%	6.8%	3.1%	3.6%	12.1%	33.3%	23.6%	4.7%	0.2%	

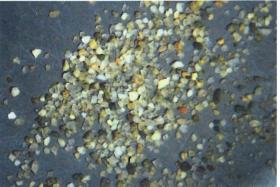
w = weathered

WEIGHTED AVERAGE

CAMET Research, Inc. SVRT Project – Sample MW-6I @ 69 ft June 2, 2008 ACG Lab No. P0805-555

Sample 8: MW-61 @ 69 ft

3/8″


#0

#30

30

40

50

#100

#16

#50

Analytical Consulting Group, Inc.

June 3, 2008 ACG Lab No. P0804-555

CAMET Research, Inc. 6409 Camino Vista Goleta, CA 93117 Attn: Dr. Ludwig Keller

Subject: ASTM C-295 Petrographic Examination of Soil Sample, SVRT Project

One sample of soil, identified as SVRT Sample 9: **MW-2G** @ **70.5** ft, was submitted to Analytical Consulting Group, Inc. (ACG) for petrographic examination. The purpose of the examination was to determine the lithological composition of the sample. The sample identification and the USCS classification assigned by the client is listed in the attached table.

The sample was sieved into fractions retained on the $\frac{3}{8}$ -in, #4, #8, #16, #30, #50, #100, #200, and passing #200 sieves. Each fraction (except the $+\frac{3}{8}$ -in) was further split to yield approximately 100 particles for analysis.

The examinations were conducted in accordance with ASTM C-295. The examinations were performed using a stereobinocular microscope at 5x to 40x magnification. The finest sand fractions and some crushed grains from coarser fractions were examined immersed in refractive index liquid, using the polarized-light microscope at up to 400x magnification. The enclosed table and charts present the lithologic data for the samples, given as percent by particle count (approximate weight percent) for each size fraction. A weighted average is calculated for the sample using the fraction weights determined by the sieve analysis. The sample data is presented in the attached table and chart. The analytical sensitivity for this method is approximately 0.1% for the weighted average of the sample.

This sample is composed primarily of fine-grained sandstones, chert, and mineral grains (quartz and feldspar) derived from coarser rocks. Lithic clasts dominate in the larger size fractions and discrete mineral grains in the finer fractions.

Sandstones make up about 56% of the sample. The sandstones range from greywacke to quartz wacke, with lithic to arkosic types dominating. The sandstones are well cemented and some have probably undergone some metamorphism. The matrix consists of clay, mica, and/or chlorite, with variable amounts of iron oxide. No carbonates are present. Thin quartz veins are frequent in the greywackes. The sandstone particles are tan, grey, green, or reddish in color, generally equant, and rounded to subangular, with a few angular crushed particles.

Chert makes up about 15% of the sample. The cherts consist of microgranular quartz and chalcedony and are mostly red, green, or tan in color. About ¼ of the cherts are banded, with thin lamellae of different grain sizes.

1746F Victoria Avenue #366 • Ventura, CA 93003 • (805) 642-8180 • info@analyticalconsultinggroup.com

CAMET Research, Inc. SVRT Project – Sample 9: MW-2G @ 70.5 ft ASTM C-295 Petrographic Analysis June 3, 2008 ACG Lab No. P0805-555 Page 2

Volcanic rocks make up about 9% of the sample. The volcanic rocks include a variety of holocrystalline intermediate to siliceous rocks. The groundmass of these rocks generally consists of microgranular quartz and feldspar or chert. Most of the volcanic rocks are metamorphosed to varying degrees, with some grading into quartz schist.

Granitic rocks and diabase are grouped as plutonic rocks. The plutonic rocks make up about 5% of the sample. The plutonic rocks are variable but are generally medium-grained rocks consisting of feldspar with quartz and/or mafic minerals.

Dark grey siltstone and shale constitute about 2% of the sample. These rocks consist primarily of silt-sized quartz grains with clay, mica, and/or chlorite. Some of these rocks are transitional to slate or schist. Thin quartz veins are frequent. The siltstone/shale particles are typically rounded to subrounded and equant to elongated in shape. About ²/₃ of the siltstone and shale particles are flat.

The proportion of free mineral grains increases with decreasing grain size. Mineral grains in the fine fractions consist primarily of quartz and feldspar, with trace amounts of amphibole, chlorite, biotite, epidote, and iron oxides. Some fine-grained rock fragments, mostly siltstone/shale, chert, and metavolcanic rocks, persist into the finer fractions.

The sandstones in the #4+ fractions are generally fresh, sound, hard, and tough. Most grains require a light hammer blow (with a 3-lb hammer on a steel anvil) to break. Some samples have small quantities of weathered sandstone in the coarse fractions. The sandstone particles in the finer fractions are less tough and can be crushed with forceps. The sandstones break down to a mixture of hard grains, mostly quartz, and soft clay/mica matrix.

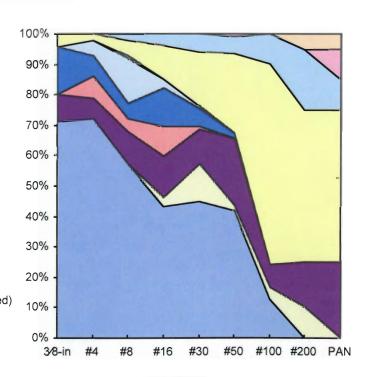
The siltstone/shale particles are fresh, sound, moderately hard, and moderately tough (can be crushed by a very light tap from the hammer). Grains with quartz veins are hard and quite tough. The cherts are very hard and extremely tough, requiring a heavy harmer blow to break them. The volcanic rocks, and plutonic rocks are generally very hard and tough.

The observations and conclusions given above are ACG's professional opinions based on laboratory observation of the samples as submitted and on information supplied by the client. Extension of these observations or conclusions to the product represented by the samples is the responsibility of the user. No warranty, express or implied, is made or intended in connection with the above investigation, or by the furnishing of this report, or by any other oral or written statement.

We appreciate the opportunity to be of service to you. If you have any questions, please call us at (805) 642-8180.

Respectfully submitted, Analytical Consulting Group, Inc.

Michael R. Tiffany, Petrographer Analytical Consulting Group, Inc. Professional Geologist No. 6750


CAMET Research, Inc. SVRT Project – Sample 9: MW-2G @ 70.5 ft ASTM C-295 Petrographic Analysis June 3, 2008 ACG Lab No. P0805-555 Page 3


ASTM C-295 Petrographic Analysis SVRT Sample 9: MW-2G @ 70.5 ft SW-SM

Rock/Mineral	l			S	ze Fractio	on				Weighted
Туре	³∕ ₈ -in	#4	#8	#16	#30	#50	#100	#200	PAN	Average
Sandstone	71.1%	72.0%	57.0%	43.1%	45.0%	42.2%	12.6%			55.8%
Siltstone				2.9%	12.2%	1.8%	3.9%	10.0%		1.8%
Chert	8.9%	7.0%	11.0%	13.7%	11.5%	22.0%	7.8%	15.0%	25.0%	10.5%
Banded Chert		7.0%	4.0%	9.8%	0.8%					3.9%
Volcanic Rocks	15.6%	7.0%	5.0%	12.7%	6.1%	1.8%				8.9%
Plutonic Rocks		5.0%	15.0%	2.9%	0.8%					4.8%
Quartz Schist			1.0%							0.2%
Quartz	4.4%	2.0%	5.0%	10.8%	17.6%	26.6%	66.0%	50.0%	50.0%	11.7%
Feldspar			2.0%	3.9%	6.1%	5.5%	9.7%	20.0%	10.0%	2.9%
Clay									10.0%	0.0%
Mica								5.0%	5%	0.2%
Weight Fraction	20.9%	26.0%	20.5%	12.2%	6.0%	4.8%	4.9%	4.6%	0.1%	

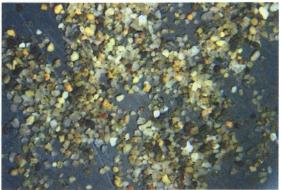
w = weathered

□ Mica Mafic Minerals Clay Feldspar Quartz Quartz Schist Blue Schist Serpentine Plutonic Rocks Volcanic Rocks Banded Chert Chert □ Shale □ Siltstone Sandstone (weathered) Sandstone

WEIGHTED AVERAGE

CAMET Research, Inc. SVRT Project – Sample MW-2G @ 70.5

Sample 9: MW-2G @ 70.5


3/8″

#8

#30



#50

Analytical Consulting Group, Inc.

June 3, 2008 ACG Lab No. P0804-555

CAMET Research, Inc. 6409 Camino Vista Goleta, CA 93117 Attn: Dr. Ludwig Keller

Subject: ASTM C-295 Petrographic Examination of Soil Sample, SVRT Project

One sample of soil, identified as SVRT Sample 10: MW-8B @ 25.5 ft, was submitted to Analytical Consulting Group, Inc. (ACG) for petrographic examination. The purpose of the examination was to determine the lithological composition of the sample. The sample identification and the USCS classification assigned by the client is listed in the attached table.

The sample was sieved into fractions retained on the $\frac{3}{8}$ -in, #4, #8, #16, #30, #50, #100, #200, and passing #200 sieves. Each fraction (except the $+\frac{3}{8}$ -in) was further split to yield approximately 100 particles for analysis.

The examinations were conducted in accordance with ASTM C-295. The examinations were performed using a stereobinocular microscope at 5x to 40x magnification. The finest sand fractions and some crushed grains from coarser fractions were examined immersed in refractive index liquid, using the polarized-light microscope at up to 400x magnification. Selected grains were thinsectioned and examined with the polarized-light microscope to assist in rock identification. The enclosed table and charts present the lithologic data for the samples, given as percent by particle count (approximate weight percent) for each size fraction. The composition of the +3/8'' sample was determined by weight. A weighted average is calculated for the sample using the fraction weights determined by the sieve analysis. The sample data is presented in the attached table and chart. The analytical sensitivity for this method is approximately 0.1% for the weighted average of the sample.

In general, the sample is composed primarily of fine-grained sandstones, siltstones, volcanic rocks, and mineral grains (quartz and feldspar) derived from coarser rocks. Lithic clasts dominate in the larger size fractions and discrete mineral grains in the finer fractions.

Sandstones make up about 55% of the sample. The sandstones range from greywacke to quartz wacke, with lithic to arkosic types dominating. The sandstones are well cemented and some have probably undergone some metamorphism. The matrix consists of clay, mica, and/or chlorite, with variable amounts of iron oxide. No carbonates are present. Thin quartz veins are frequent in the greywackes. The sandstone particles are tan, grey, green, or reddish in color, generally equant, and rounded to subangular, with a few angular crushed particles.

Volcanic rocks constitute about 21% of the sample. The volcanic rocks include a variety of holocrystalline intermediate to siliceous rocks. The groundmass of these rocks generally consists of

¹⁷⁴⁶F Victoria Avenue #366 • Ventura, CA 93003 • (805) 642-8180 • info@analyticalconsultinggroup.com

CAMET Research, Inc. SVRT Project – Sample 10: MW-8B ASTM C-295 Petrographic Analysis

June 3, 2008 ACG Lab No. P0805-555 Page 2

microgranular quartz and feldspar or chert. Most of the volcanic rocks are metamorphosed to varying degrees, with some grading into quartz schist.

Dark grey siltstone and shale constitute about 9% of the sample. These rocks consist primarily of silt-sized quartz grains with clay, mica, and/or chlorite. Some of these rocks are transitional to slate or schist. Thin quartz veins are frequent. The siltstone/shale particles are typically rounded to subrounded and equant to elongated in shape. About $\frac{2}{3}$ of the siltstone and shale particles are flat.

Minor constituents include granitic rocks, diabase, chert, blueschist, and serpentine. The granitic rocks and diabase are grouped as plutonic rocks. The two serpentine particles found were partially serpentinized peridotite or greenstone, harder than pure serpentine.

The proportion of free mineral grains increases with decreasing grain size. Mineral grains in the fine fractions consist primarily of quartz and feldspar, with trace amounts of amphibole, chlorite, biotite, epidote, and iron oxides. Some fine-grained rock fragments, mostly siltstone/shale, chert, and metavolcanic rocks, persist into the finer fractions.

The sandstones in the #4+ fractions are generally fresh, sound, hard, and tough. Most grains require a light hammer blow (with a 3-lb hammer on a steel anvil) to break. The sandstone particles in the finer fractions are less tough and can be crushed with forceps. The sandstones break down to a mixture of hard grains, mostly quartz, and soft clay/mica matrix.

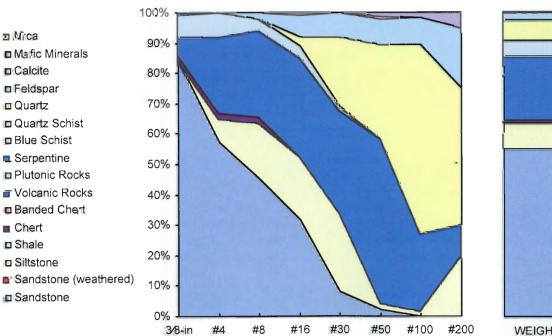
The siltstone/shale particles are fresh, sound, moderately hard, and moderately tough (can be crushed by a very light tap from the hammer). Grains with quartz veins are hard and quite tough. The chert, volcanic rocks, and plutonic rocks are generally very hard and tough.

The observations and conclusions given above are ACG's professional opinions based on laboratory observation of the samples as submitted and on information supplied by the client. Extension of these observations or conclusions to the product represented by the samples is the responsibility of the user. No warranty, express or implied, is made or intended in connection with the above investigation, or by the furnishing of this report, or by any other oral or written statement.

We appreciate the opportunity to be of service to you. If you have any questions, please call us at (805) 642-8180.

Respectfully submitted, Analytical Consulting Group, Inc.

Michael R. Tiffany, Petrographer Analytical Consulting Group, Inc. Professional Geologist No. 6750



CAMET Research, Inc. SVRT Project – Sample 10: MW-8B ASTIM C-295 Petrographic Analysis Jane 3, 2008 ACG Lab No. 19805-555 Page 3

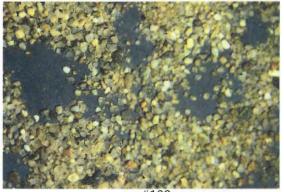
ASTM C-295 Petrographic Analysis SVRT Sample 10: MW-8B @ 25.5 ft GW-GM with sand

Bock /Mineral]	Size Fraction								Weighted
Type	³⁄ _{i8} −in	#4	#8	#16	#30	#50	#100	#200	PAN	Average
Sandstone	84.3%	57.0%	45.5%	31.7%	8.0%	2.2%				54,7%
Siltstone		8.0%	18.2%	20.8%	26.0%	2.2%	1.7%	20.0%	-	8.6%
Chert	1.6%	2.0%	2.0%							1.3%
Volcanic Rocks	6.0%	25.0%	28.3%	32.7%	34.0%	54.8%	25.2%	10.0%		20.5%
Plutonic Rocks	7.3%	8.0%	4.0%	4.0%	1.0%				_	5.3%
Serpentine	0.5%									0.2%
Blueschist	0.2%									0.1%
Quartz				3.0%	23.0%	31.2%	62.6%	45.0%		6.2%
Feldspar		1	2.0%	6.9%	8.0%	8.6%	8.7%	20.0%		2.7%
Matic Minerals	I			1.0%		1.1%	1.7%	5.0%		0.3%
Weight Fraction	41.6%	14.5%	15.8%	11.3%	6.5%	5.6%	3.2%	1.5%	0.0%	

w = weathered

CAMET Research, Inc. SVRT Project – Sample 10: MW-8B

June 3, 2008 ACG Lab No. P0895-555


Sample 10: MW-8B @ 25.5'

#8

#30

#50

Analytical Consulting Group, Inc.

June 3, 2008 ACG Lab No. P0804-555

CAMET Research, Inc. 6409 Camino Vista Goleta, CA 93117 Attn: Dr. Ludwig Keller

Subject: ASTM C-295 Petrographic Examination of Soil Sample, SVRT Project

One sample of soil, identified as SVRT Sample 11: **MW-8B** @ **39** ft, was submitted to Analytical Consulting Group, Inc. (ACG) for petrographic examination. The purpose of the examination was to determine the lithological composition of the sample. The sample identification and the USCS classification assigned by the client is listed in the attached table.

The sample was sieved into fractions retained on the #4, #8, #16, #30, #50, #100, #200, and passing #200 sieves. Each fraction (except the #4 and #8) was further split to yield approximately 100 particles for analysis.

The examinations were conducted in accordance with ASTM C-295. The examinations were performed using a stereobinocular microscope at 5x to 40x magnification. The finest sand fractions and some crushed grains from coarser fractions were examined immersed in refractive index liquid, using the polarized-light microscope at up to 400x magnification. The enclosed table and charts present the lithologic data for the samples, given as percent by particle count (approximate weight percent) for each size fraction. A weighted average is calculated for the sample using the fraction weights determined by the sieve analysis. The sample data is presented in the attached table and chart. The analytical sensitivity for this method is approximately 0.1% for the weighted average of the sample.

This sample is composed primarily of quartz grains, with smaller quantities of rock fragments and other mineral grains. Lithic clasts dominate in the larger size fractions and discrete mineral grains in the finer fractions. Because of the fineness of the material in this sample (SP-SM), quartz comprises about 59% of the sample.

Sandstones make up about 14% of the sample. The sandstones range from greywacke to quartz wacke, with lithic to arkosic types dominating. The sandstones are well cemented and some have probably undergone some metamorphism. The matrix consists of clay, mica, and/or chlorite, with variable amounts of iron oxide. No carbonates are present. Thin quartz veins are frequent in the greywackes. The sandstone particles are tan, grey, green, or reddish in color, generally equant, and rounded to subangular, with a few angular crushed particles. A few weathered sandstone particles are present.

1746F Victoria Avenue #366 • Ventura, CA 93003 • (805) 642-8180 • info@analyticalconsultinggroup.com

CAMET Research, Inc. SVRT Project – Sample 11: MW-8B @ 39 ft ASTM C-295 Petrographic Analysis June 3, 2008 ACG Lab No. P0805-555 Page 2

Dark grey siltstone and shale constitute about 12% of the sample. These rocks consist primarily of silt-sized quartz grains with clay, mica, and/or chlorite. Some of these rocks are transitional to slate or schist. Thin quartz veins are frequent. The siltstone/shale particles are typically rounded to subrounded and equant to elongated in shape. About ²/₃ of the siltstone and shale particles are flat.

Minor lithic constituents include chert, volcanic rocks, and granitic (plutonic) rocks. The proportion of free mineral grains increases with decreasing grain size. Mineral grains in the finer fractions consist primarily of quartz and feldspar, with trace amounts of biotite, amphibole, chlorite, epidote, and iron oxides. Some fine-grained fragments of siltstone and chert persist into the finer fractions.

The sandstones in the #4+ fractions are generally fresh, sound, hard, and moderately tough. The sandstone particles can be crushed with forceps. Very small quantities of weathered sandstone are present. The weathered sandstone is much less tough but generally not friable. The sandstones break down to a mixture of hard grains, mostly quartz, and soft clay/mica matrix.

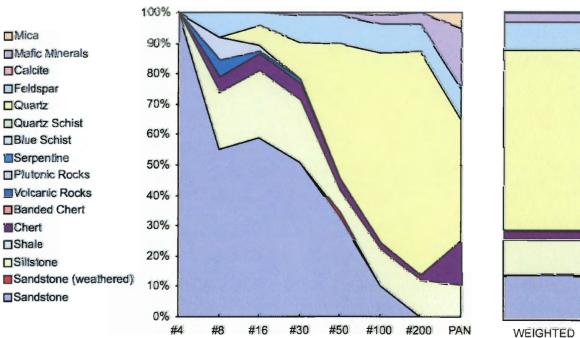
The siltstone/shale particles are fresh, sound, moderately hard, and moderately tough (can be crushed by a very light tap from the hammer). Grains with quartz veins are hard and quite tough. The chert, volcanic rocks, and plutonic rocks are generally very hard and tough.

The observations and conclusions given above are ACG's professional opinions based on laboratory observation of the samples as submitted and on information supplied by the client. Extension of these observations or conclusions to the product represented by the samples is the responsibility of the user. No warranty, express or implied, is made or intended in connection with the above investigation, or by the furnishing of this report, or by any other oral or written statement.

We appreciate the opportunity to be of service to you. If you have any questions, please call us at (805) 642-8180.

Respectfully submitted, Analytical Consulting Group, Inc.

Michael R. Tiffany, Petrographer Analytical Consulting Group, Inc. Professional Geologist No. 6750



CAMET Research, Inc. SVRT Project – Sample 11: MW-8B @ 39 ft ASTM C-295 Petrographic Analysis June 3, 2008 ACG Lab No. P0805-555 Page 3

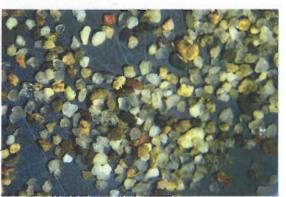
ASTM C-295 Petrographic Analysis SVRT Sample 11: MW-8B @ 39 ft SP-SM

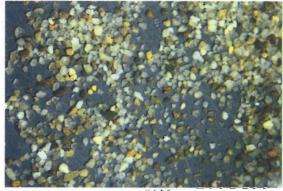
Rock/Mineral	Size Fraction								Weighted	
Туре	³⁄ ₈ −in	#4	#8	#16	#30	<i>#</i> 50	#100	#200	PAN	Average
Sandstone		100.0%	55.3%	58.9%	51.0%	32.4%	10.2%			14.0%
Sandstone ^w						1.9%				0.3%
Siltstone			18.4%	22.1%	20.2%	7.4%	12.0%	11.9%	10.0%	11.5%
Chert	No. Sec.		5.3%	5.3%	5.8%	3.7%	1.9%	1.8%	15.0%	2.4%
Volcanic Rocks			5.3%	1.1%	1.0%					0.1%
Plutonic Rocks			7.9%	2.1%						0.1%
Quartz				6.3%	12.5%	44.4%	63.0%	73.4%	40.0%	59.2%
Feldspar			7.9%	4.2%	8.7%	9.3%	9.3%	9.2%	10.0%	9.1%
Mafic Minerals					1.0%	0.9%	2.8%	3.7%	20.0%	2.7%
Mica							0.9%		5.0%	0.5%
Weight Fraction	0.0%	0.5%	1.1%	1.5%	2.2%	17.5%	51.5%	25.0%	0.8%	

w = weathered

CAMET Research, Inc. SVRT Project – Sample 11: MW-8B @ 39 ft June 3, 2008 ACG Lab No. P0805-555

Sample 11: MW-8B @ 39'


#4


#16

#30

#50

#100

Durability Index (Fine) ASTM D3744/ CAL T229

TWINING LABORATORIES

ang Majar Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah Salah

Project Name:	Hatch-Mott-medunald 080333.3	8	Testeci By : JP Input By: 5-2-28	· · · · · ·
	Chemistry of Concrete		Date Tested:	
Sampled By:			Checked By:	
Date Sampled:	4/18/08		Sample No.: 97916	قىر ئىيى بى
Sample Location:	N/A			100 C 10 C
USCS Description:	SP			ay 21 - 1 - 1
Material Description:	pourly unaded Sand Maranel			at tea la stational de la stational de la station de la station de la station de la station de la station de la

to be a

÷.

••

. . . .

Trial No.	Soak . Time	End Soak Time	Start Sedimentation Time	Sedimentation Time	Sand Reading	D.I. (%)
2 REMARKS	3:				 TOTAL =	52
					AVG. =	52
		1			DI=	52

TWINING LABORATORIES OF SOUTHERN CALIFORNIA Durability Index (Fine) ASTM D3744/ CAL T229 hedonald Project Name: Ha Tested By : Project No. : Input By: 5 -2-08 of Concy Date Tested: Client: (5 DIAN ient Checked By: Sampled By: 19/08 Date Sampled: 41 Sample No.: 9 7917 Sample Location: Lab No.: SW-SM **USCS** Description: Material Description: 101.451 Sedimentation Spak D.I. (%) Trial No. Time End Soak Time Start Sedimentation Time Time Clay Reading Sand Reading 38 90 43 50 38:45 18:45 100 1 2 REMARKS: 45 TOTAL = AVG. = 43

DI=

43

٠.

Interview Variation

Durability Index (Fine) ASTM D3744/ CAL T229

Project Name:	Harton	-Mott-	Inden	101	10
Project No. :	0000	5515		-	· .
Qilent:	Chamist	Note	oncrete		
Sampled By:	arent	_/			·
ate Sampled:	4/18/0	98			· · · · · · · · · · · · · · · · · · ·
ple Location:	N/A			<u> </u>	
Description:	GW-G	M			
Description:					

Tested By :	JN				
input By:	6-2.00	\$	· . ·		
	200		_ ,,	1.11	
Date Tested:			. .		
Chacked By:			-		
Sample No.:	3				
Lab No.:	9.79	18	÷.,	an in the second	
• • •	· · ·			an an anti-sano - i	

Trial No.	Scak Time	End Soak Time	Start Settimentation วิลิกค	Sedimentation Time	Clay Reading	Sand Reading	D.I. (%)	1. 1996 1. 1996 1. 1997 1. 1997
1	100	50	3.31.45	18:08	72	,41	57	1
Z							51	
REMARKS	i:					TOTAL =		
						AVG. =	57	
						Di=	57	

TWINING LABORATORIES OF SOUTHIEN CALIFORNIA

ALL THE REAL PROPERTY IN

Durability Index (Fine) ASTM D3744/ CAL T229

Project Name: Hatch-Mott- Project No.: 680333,3	Medonald	Tested By : 5-2-08
Client: CLADIAL MY	of Concrete	Date Tested:
Sampled By: client	a set and a set and a set and a set and a set and a set and a set and a set and a set and a set and a set and a	Checked By:
Date Sampled: 4/19/08		Sample No .: 4
Sample Location: N/A		Lab No.: 97919
USCS Description: SP-SM		
laterial Description:	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Trial No.	Soak Time	End Soak Time	Start Sedimentation Time	Sedimentation		Sand Reading	D.I. (%)
1	100	50	38:45	18:45	105	42	210
2			• • •				
REMARKS	:					TOTALS	4D
	• .					AVG. =	40
						[]=	up

.

19 2